precise-lite-amd64aarch64/runner/precise_lite_runner/runner.py

247 lines
7.9 KiB
Python

# Python 2 + 3
# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import atexit
import time
from subprocess import PIPE, Popen
from threading import Thread, Event
class Engine:
def __init__(self, chunk_size=2048):
self.chunk_size = chunk_size
def start(self):
pass
def stop(self):
pass
def get_prediction(self, chunk):
raise NotImplementedError
class PreciseEngine(Engine):
"""
Wraps a binary precise executable
Args:
exe_file (Union[str, list]): Either filename or list of arguments
(ie. ['python', 'precise/scripts/engine.py'])
model_file (str): Location to .pb model file to use (with .pb.params)
chunk_size (int): Number of *bytes* per prediction. Higher numbers
decrease CPU usage but increase latency
"""
def __init__(self, exe_file, model_file, chunk_size=2048):
Engine.__init__(self, chunk_size)
self.exe_args = exe_file if isinstance(exe_file, list) else [exe_file]
self.exe_args += [model_file, str(self.chunk_size)]
self.proc = None
def start(self):
self.proc = Popen(self.exe_args, stdin=PIPE, stdout=PIPE)
def stop(self):
if self.proc:
self.proc.kill()
self.proc = None
def get_prediction(self, chunk):
if len(chunk) != self.chunk_size:
raise ValueError('Invalid chunk size: ' + str(len(chunk)))
self.proc.stdin.write(chunk)
self.proc.stdin.flush()
return float(self.proc.stdout.readline())
class ListenerEngine(Engine):
def __init__(self, listener, chunk_size=2048):
Engine.__init__(self, chunk_size)
self.get_prediction = listener.update
class ReadWriteStream:
"""
Class used to support writing binary audio data at any pace,
optionally chopping when the buffer gets too large
"""
def __init__(self, s=b'', chop_samples=-1):
self.buffer = s
self.write_event = Event()
self.chop_samples = chop_samples
def __len__(self):
return len(self.buffer)
def read(self, n=-1, timeout=None):
if n == -1:
n = len(self.buffer)
if 0 < self.chop_samples < len(self.buffer):
samples_left = len(self.buffer) % self.chop_samples
self.buffer = self.buffer[-samples_left:]
return_time = 1e10 if timeout is None else (
timeout + time.time()
)
while len(self.buffer) < n:
self.write_event.clear()
if not self.write_event.wait(return_time - time.time()):
return b''
chunk = self.buffer[:n]
self.buffer = self.buffer[n:]
return chunk
def write(self, s):
self.buffer += s
self.write_event.set()
def flush(self):
"""Makes compatible with sys.stdout"""
pass
class TriggerDetector:
"""
Reads predictions and detects activations
This prevents multiple close activations from occurring when
the predictions look like ...!!!..!!...
"""
def __init__(self, chunk_size, sensitivity=0.5, trigger_level=3):
self.chunk_size = chunk_size
self.sensitivity = sensitivity
self.trigger_level = trigger_level
self.activation = 0
def update(self, prob):
# type: (float) -> bool
"""Returns whether the new prediction caused an activation"""
chunk_activated = prob > 1.0 - self.sensitivity
if chunk_activated or self.activation < 0:
self.activation += 1
has_activated = self.activation > self.trigger_level
if has_activated or chunk_activated and self.activation < 0:
self.activation = -(8 * 2048) // self.chunk_size
if has_activated:
return True
elif self.activation > 0:
self.activation -= 1
return False
class PreciseRunner:
"""
Wrapper to use Precise. Example:
>>> def on_act():
... print('Activation!')
...
>>> p = PreciseRunner(PreciseEngine('./precise-engine'), on_activation=on_act)
>>> p.start()
>>> from time import sleep; sleep(10)
>>> p.stop()
Args:
engine (Engine): Object containing info on the binary engine
trigger_level (int): Number of chunk activations needed to trigger on_activation
Higher values add latency but reduce false positives
sensitivity (float): From 0.0 to 1.0, how sensitive the network should be
stream (BinaryIO): Binary audio stream to read 16000 Hz 1 channel int16
audio from. If not given, the microphone is used
on_prediction (Callable): callback for every new prediction
on_activation (Callable): callback for when the wake word is heard
"""
def __init__(self, engine, trigger_level=3, sensitivity=0.5, stream=None,
on_prediction=lambda x: None, on_activation=lambda: None):
self.engine = engine
self.trigger_level = trigger_level
self.stream = stream
self.on_prediction = on_prediction
self.on_activation = on_activation
self.chunk_size = engine.chunk_size
self.pa = None
self.thread = None
self.running = False
self.is_paused = False
self.detector = TriggerDetector(self.chunk_size, sensitivity, trigger_level)
atexit.register(self.stop)
def _wrap_stream_read(self, stream):
"""
pyaudio.Stream.read takes samples as n, not bytes
so read(n) should be read(n // sample_depth)
"""
import pyaudio
if getattr(stream.read, '__func__', None) is pyaudio.Stream.read:
stream.read = lambda x: pyaudio.Stream.read(stream, x // 2, False)
def start(self):
"""Start listening from stream"""
if self.stream is None:
from pyaudio import PyAudio, paInt16
self.pa = PyAudio()
self.stream = self.pa.open(
16000, 1, paInt16, True, frames_per_buffer=self.chunk_size
)
self._wrap_stream_read(self.stream)
self.engine.start()
self.running = True
self.is_paused = False
self.thread = Thread(target=self._handle_predictions, daemon=True)
self.thread.daemon = True
self.thread.start()
def stop(self):
"""Stop listening and close stream"""
if self.thread:
self.running = False
if isinstance(self.stream, ReadWriteStream):
self.stream.write(b'\0' * self.chunk_size)
self.thread.join()
self.thread = None
self.engine.stop()
if self.pa:
self.pa.terminate()
self.stream.stop_stream()
self.stream = self.pa = None
def pause(self):
self.is_paused = True
def play(self):
self.is_paused = False
def _handle_predictions(self):
"""Continuously check Precise process output"""
while self.running:
#t0 = time.time()
chunk = self.stream.read(self.chunk_size)
if self.is_paused:
continue
prob = self.engine.get_prediction(chunk)
self.on_prediction(prob)
if self.detector.update(prob):
self.on_activation()
#t1 = time.time()
#print("Prediction time: %.4f" % ((t1-t0)))