precise-lite-amd64aarch64/precise_lite/vectorization.py
2021-08-15 22:14:36 +01:00

98 lines
3.0 KiB
Python

# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import numpy as np
import os
from typing import *
from precise_lite.params import pr, Vectorizer
from precise_lite.util import load_audio, InvalidAudio
from sonopy import mfcc_spec, mel_spec
inhibit_t = 0.4
inhibit_dist_t = 1.0
inhibit_hop_t = 0.1
vectorizers = {
Vectorizer.mels: lambda x: mel_spec(
x, pr.sample_rate, (pr.window_samples, pr.hop_samples),
num_filt=pr.n_filt, fft_size=pr.n_fft
),
Vectorizer.mfccs: lambda x: mfcc_spec(
x, pr.sample_rate, (pr.window_samples, pr.hop_samples),
num_filt=pr.n_filt, fft_size=pr.n_fft, num_coeffs=pr.n_mfcc
),
Vectorizer.speechpy_mfccs: lambda x: __import__('speechpy').feature.mfcc(
x, pr.sample_rate, pr.window_t, pr.hop_t, pr.n_mfcc, pr.n_filt, pr.n_fft
)
}
def vectorize_raw(audio: np.ndarray) -> np.ndarray:
"""Turns audio into feature vectors, without clipping for length"""
if len(audio) == 0:
raise InvalidAudio('Cannot vectorize empty audio!')
return vectorizers[pr.vectorizer](audio)
def add_deltas(features: np.ndarray) -> np.ndarray:
deltas = np.zeros_like(features)
for i in range(1, len(features)):
deltas[i] = features[i] - features[i - 1]
return np.concatenate([features, deltas], -1)
def vectorize(audio: np.ndarray) -> np.ndarray:
"""
Args:
audio: Audio verified to be of `sample_rate`
Returns:
array<float>: Vector representation of audio
"""
if len(audio) > pr.max_samples:
audio = audio[-pr.max_samples:]
features = vectorize_raw(audio)
if len(features) < pr.n_features:
features = np.concatenate([
np.zeros((pr.n_features - len(features), features.shape[1])),
features
])
if len(features) > pr.n_features:
features = features[-pr.n_features:]
return features
def vectorize_delta(audio: np.ndarray) -> np.ndarray:
return add_deltas(vectorize(audio))
def vectorize_inhibit(audio: np.ndarray) -> np.ndarray:
"""
Returns an array of inputs generated from the
wake word audio that shouldn't cause an activation
"""
def samp(x):
return int(pr.sample_rate * x)
inputs = []
for offset in range(samp(inhibit_t), samp(inhibit_dist_t), samp(inhibit_hop_t)):
if len(audio) - offset < samp(pr.buffer_t / 2.):
break
inputs.append(vectorize(audio[:-offset]))
return np.array(inputs) if inputs else np.empty((0, pr.n_features, pr.feature_size))