98 lines
3.0 KiB
Python
98 lines
3.0 KiB
Python
# Copyright 2019 Mycroft AI Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import hashlib
|
|
import numpy as np
|
|
import os
|
|
from typing import *
|
|
|
|
from precise_lite.params import pr, Vectorizer
|
|
from precise_lite.util import load_audio, InvalidAudio
|
|
from sonopy import mfcc_spec, mel_spec
|
|
|
|
inhibit_t = 0.4
|
|
inhibit_dist_t = 1.0
|
|
inhibit_hop_t = 0.1
|
|
|
|
vectorizers = {
|
|
Vectorizer.mels: lambda x: mel_spec(
|
|
x, pr.sample_rate, (pr.window_samples, pr.hop_samples),
|
|
num_filt=pr.n_filt, fft_size=pr.n_fft
|
|
),
|
|
Vectorizer.mfccs: lambda x: mfcc_spec(
|
|
x, pr.sample_rate, (pr.window_samples, pr.hop_samples),
|
|
num_filt=pr.n_filt, fft_size=pr.n_fft, num_coeffs=pr.n_mfcc
|
|
),
|
|
Vectorizer.speechpy_mfccs: lambda x: __import__('speechpy').feature.mfcc(
|
|
x, pr.sample_rate, pr.window_t, pr.hop_t, pr.n_mfcc, pr.n_filt, pr.n_fft
|
|
)
|
|
}
|
|
|
|
|
|
def vectorize_raw(audio: np.ndarray) -> np.ndarray:
|
|
"""Turns audio into feature vectors, without clipping for length"""
|
|
if len(audio) == 0:
|
|
raise InvalidAudio('Cannot vectorize empty audio!')
|
|
return vectorizers[pr.vectorizer](audio)
|
|
|
|
|
|
def add_deltas(features: np.ndarray) -> np.ndarray:
|
|
deltas = np.zeros_like(features)
|
|
for i in range(1, len(features)):
|
|
deltas[i] = features[i] - features[i - 1]
|
|
|
|
return np.concatenate([features, deltas], -1)
|
|
|
|
|
|
def vectorize(audio: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Args:
|
|
audio: Audio verified to be of `sample_rate`
|
|
|
|
Returns:
|
|
array<float>: Vector representation of audio
|
|
"""
|
|
if len(audio) > pr.max_samples:
|
|
audio = audio[-pr.max_samples:]
|
|
features = vectorize_raw(audio)
|
|
if len(features) < pr.n_features:
|
|
features = np.concatenate([
|
|
np.zeros((pr.n_features - len(features), features.shape[1])),
|
|
features
|
|
])
|
|
if len(features) > pr.n_features:
|
|
features = features[-pr.n_features:]
|
|
|
|
return features
|
|
|
|
|
|
def vectorize_delta(audio: np.ndarray) -> np.ndarray:
|
|
return add_deltas(vectorize(audio))
|
|
|
|
|
|
def vectorize_inhibit(audio: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Returns an array of inputs generated from the
|
|
wake word audio that shouldn't cause an activation
|
|
"""
|
|
|
|
def samp(x):
|
|
return int(pr.sample_rate * x)
|
|
|
|
inputs = []
|
|
for offset in range(samp(inhibit_t), samp(inhibit_dist_t), samp(inhibit_hop_t)):
|
|
if len(audio) - offset < samp(pr.buffer_t / 2.):
|
|
break
|
|
inputs.append(vectorize(audio[:-offset]))
|
|
return np.array(inputs) if inputs else np.empty((0, pr.n_features, pr.feature_size))
|