precise-lite-amd64aarch64/precise_lite/train_data.py

224 lines
8.4 KiB
Python

# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
from glob import glob
from hashlib import md5
from os.path import join, isfile
from prettyparse import Usage
from pyache import Pyache
from typing import *
from precise_lite.util import find_wavs, load_audio
from precise_lite.vectorization import vectorize_delta, vectorize
class TrainData:
"""Class to handle loading of wave data from categorized folders and tagged text files"""
usage = Usage('''
:folder str
Folder to load wav files from
:-tf --tags-folder str {folder}
Specify a different folder to load file ids
in tags file from
:-tg --tags-file str -
Text file to load tags from where each line is
<file_id> TAB (wake-word|not-wake-word) and
{folder}/<file_id>.wav exists
''', tags_folder=lambda args: args.tags_folder.format(folder=args.folder))
def __init__(self, train_files: Tuple[List[str], List[str]],
test_files: Tuple[List[str], List[str]]):
self.train_files, self.test_files = train_files, test_files
@classmethod
def from_folder(cls, folder: str) -> 'TrainData':
"""
Load a set of data from a structured folder in the following format:
{prefix}/
wake-word/
*.wav
not-wake-word/
*.wav
test/
wake-word/
*.wav
not-wake-word/
*.wav
"""
return cls(find_wavs(folder), find_wavs(join(folder, 'test')))
@classmethod
def from_tags(cls, tags_file: str, tags_folder: str) -> 'TrainData':
"""
Load a set of data from a text file with tags in the following format:
<file_id> (tab) <tag>
<file_id> (tab) <tag>
file_id: identifier of file such that the following
file exists: {tags_folder}/{data_id}.wav
tag: "wake-word" or "not-wake-word"
"""
if not tags_file:
num_ignored_wavs = len(glob(join(tags_folder, '*.wav')))
if num_ignored_wavs > 10:
print('WARNING: Found {} wavs but no tags file specified!'.format(num_ignored_wavs))
return cls(([], []), ([], []))
if not isfile(tags_file):
raise RuntimeError('Database file does not exist: ' + tags_file)
train_groups = {}
train_group_file = join(tags_file.replace('.txt', '') + '.groups.json')
if isfile(train_group_file):
try:
with open(train_group_file) as f:
train_groups = json.load(f)
except ValueError:
pass
tags_files = {
'wake-word': [],
'not-wake-word': []
}
with open(tags_file) as f:
for line in f.read().split('\n'):
if not line:
continue
file, tag = line.split('\t')
tags_files[tag.strip()].append(join(tags_folder, file.strip() + '.wav'))
train_files, test_files = ([], []), ([], [])
for label, rows in enumerate([tags_files['wake-word'], tags_files['not-wake-word']]):
for fn in rows:
if not isfile(fn):
print('Missing file:', fn)
continue
if fn not in train_groups:
train_groups[fn] = (
'test' if md5(fn.encode('utf8')).hexdigest() > 'c' * 32
else 'train'
)
{
'train': train_files,
'test': test_files
}[train_groups[fn]][label].append(fn)
with open(train_group_file, 'w') as f:
json.dump(train_groups, f)
return cls(train_files, test_files)
@classmethod
def from_both(cls, tags_file: str, tags_folder: str, folder: str) -> 'TrainData':
"""Load data from both a database and a structured folder"""
return cls.from_tags(tags_file, tags_folder) + cls.from_folder(folder)
def load(self, train=True, test=True, shuffle=True) -> tuple:
"""
Load the vectorized representations of the stored data files
Args:
train: Whether to load train data
test: Whether to load test data
"""
return self.__load(self.__load_files, train, test, shuffle=shuffle)
def load_inhibit(self, train=True, test=True) -> tuple:
"""Generate data with inhibitory inputs created from wake word samples"""
def loader(kws: list, nkws: list):
from precise_lite.params import pr
inputs = np.empty((0, pr.n_features, pr.feature_size))
outputs = np.zeros((len(kws), 1))
for f in kws:
if not isfile(f):
continue
new_vec = load_vector(f, vectorize_inhibit)
inputs = np.concatenate([inputs, new_vec])
return self.merge((inputs, outputs), self.__load_files(kws, nkws))
return self.__load(loader, train, test)
@staticmethod
def merge(data_a: tuple, data_b: tuple) -> tuple:
return np.concatenate((data_a[0], data_b[0])), np.concatenate((data_a[1], data_b[1]))
def __repr__(self) -> str:
string = '<TrainData wake_words={kws} not_wake_words={nkws}' \
' test_wake_words={test_kws} test_not_wake_words={test_nkws}>'
return string.format(
kws=len(self.train_files[0]), nkws=len(self.train_files[1]),
test_kws=len(self.test_files[0]), test_nkws=len(self.test_files[1])
)
def __add__(self, other: 'TrainData') -> 'TrainData':
if not isinstance(other, TrainData):
raise TypeError('Can only add TrainData to TrainData')
return TrainData((self.train_files[0] + other.train_files[0],
self.train_files[1] + other.train_files[1]),
(self.test_files[0] + other.test_files[0],
self.test_files[1] + other.test_files[1]))
def __load(self, loader: Callable, train: bool, test: bool, **kwargs) -> tuple:
return tuple([
loader(*files, **kwargs) if files else None
for files in (train and self.train_files,
test and self.test_files)
])
@staticmethod
def __load_files(kw_files: list, nkw_files: list, vectorizer: Callable = None, shuffle=True) -> tuple:
from precise_lite.params import pr
input_parts = []
output_parts = []
vectorizer = vectorizer or (vectorize_delta if pr.use_delta else vectorize)
cache = Pyache('.cache', lambda x: vectorizer(load_audio(x)), pr.vectorization_md5_hash())
def add(filenames, output):
def on_loop():
on_loop.i += 1
print('\r{0:.2%} '.format(on_loop.i / len(filenames)), end='', flush=True)
on_loop.i = 0
new_inputs = cache.load(filenames, on_loop=on_loop)
new_outputs = np.array([[output] for _ in range(len(new_inputs))])
if new_inputs.size == 0:
new_inputs = np.empty((0, pr.n_features, pr.feature_size))
if new_outputs.size == 0:
new_outputs = np.empty((0, 1))
input_parts.append(new_inputs)
output_parts.append(new_outputs)
print('\r \r', end='', flush=True)
print('Loading wake-word...')
add(kw_files, 1.0)
print('Loading not-wake-word...')
add(nkw_files, 0.0)
from precise_lite.params import pr
inputs = np.concatenate(input_parts) if input_parts else np.empty((0, pr.n_features, pr.feature_size))
outputs = np.concatenate(output_parts) if output_parts else np.empty((0, 1))
shuffle_ids = np.arange(len(inputs))
if shuffle:
np.random.shuffle(shuffle_ids)
return inputs[shuffle_ids], outputs[shuffle_ids]