96 lines
3.6 KiB
Python
96 lines
3.6 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2019 Mycroft AI Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from itertools import islice
|
|
|
|
from fitipy import Fitipy
|
|
from prettyparse import Usage
|
|
|
|
from precise_lite.scripts.train import TrainScript
|
|
from precise_lite.util import calc_sample_hash
|
|
|
|
|
|
class TrainSampledScript(TrainScript):
|
|
usage = Usage('''
|
|
Train a model, sampling data points with the highest loss from a larger dataset
|
|
|
|
:-c --cycles int 200
|
|
Number of sampling cycles of size {epoch} to run
|
|
|
|
:-n --num-sample-chunk int 50
|
|
Number of new samples to introduce at a time between training cycles
|
|
|
|
:-sf --samples-file str -
|
|
Json file to write selected samples to.
|
|
Default = {model_base}.samples.json
|
|
|
|
:-is --invert-samples
|
|
Unused parameter
|
|
...
|
|
''') | TrainScript.usage
|
|
|
|
def __init__(self, args):
|
|
super().__init__(args)
|
|
if self.args.invert_samples:
|
|
raise ValueError('--invert-samples should be left blank')
|
|
self.args.samples_file = (self.args.samples_file or '{model_base}.samples.json').format(
|
|
model_base=self.model_base
|
|
)
|
|
self.samples, self.hash_to_ind = self.load_sample_data(self.args.samples_file, self.train)
|
|
self.metrics_fiti = Fitipy(self.model_base + '.logs', 'sampling-metrics.txt')
|
|
|
|
def write_sampling_metrics(self, predicted):
|
|
correct = float(sum((predicted > 0.5) == (self.train[1] > 0.5)) / len(self.train[1]))
|
|
print('Successfully calculated: {0:.3%}'.format(correct))
|
|
|
|
lines = self.metrics_fiti.read().lines()
|
|
lines.append('{}\t{}'.format(len(self.samples) / len(self.train[1]), correct))
|
|
self.metrics_fiti.write().lines(lines)
|
|
|
|
def choose_new_samples(self, predicted):
|
|
failed_samples = {
|
|
calc_sample_hash(inp, target)
|
|
for i, (inp, pred, target) in enumerate(zip(self.train[0], predicted, self.train[1]))
|
|
if (pred > 0.5) != (target > 0.5)
|
|
}
|
|
remaining_failed_samples = failed_samples - self.samples
|
|
print('Remaining failed samples:', len(remaining_failed_samples))
|
|
return islice(remaining_failed_samples, self.args.num_sample_chunk)
|
|
|
|
def run(self):
|
|
print('Writing to:', self.args.samples_file)
|
|
print('Writing metrics to:', self.metrics_fiti.path)
|
|
for _ in range(self.args.cycles):
|
|
print('Calculating on whole dataset...')
|
|
predicted = self.model.predict(self.train[0])
|
|
|
|
self.samples.update(self.choose_new_samples(predicted))
|
|
Fitipy(self.args.samples_file).write().set(self.samples)
|
|
print('Added', self.args.num_sample_chunk, 'samples')
|
|
|
|
self.write_sampling_metrics(predicted)
|
|
|
|
self.model.fit(
|
|
*self.sampled_data, batch_size=self.args.batch_size,
|
|
epochs=self.epoch + self.args.epochs,
|
|
callbacks=self.callbacks, initial_epoch=self.epoch,
|
|
validation_data=self.test
|
|
)
|
|
|
|
|
|
main = TrainSampledScript.run_main
|
|
|
|
if __name__ == '__main__':
|
|
main()
|