precise-lite-amd64aarch64/precise_lite/scripts/train.py
2021-08-15 22:14:36 +01:00

172 lines
5.9 KiB
Python

#!/usr/bin/env python3
# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fitipy import Fitipy
from tensorflow.keras.callbacks import LambdaCallback
from os.path import splitext, isfile
from prettyparse import Usage
from typing import Any, Tuple
from precise_lite.model import create_model, ModelParams
from precise_lite.params import inject_params, save_params
from precise_lite.scripts.base_script import BaseScript
from precise_lite.train_data import TrainData
from precise_lite.util import calc_sample_hash
class TrainScript(BaseScript):
usage = Usage('''
Train a new model on a dataset
:model str
Keras model file (.net) to load from and save to
:-sf --samples-file str -
Loads subset of data from the provided json file
generated with precise_lite-train-sampled
:-is --invert-samples
Loads subset of data not inside --samples-file
:-e --epochs int 10
Number of epochs to train model for
:-s --sensitivity float 0.2
Weighted loss bias. Higher values decrease increase positives
:-b --batch-size int 5000
Batch size for training
:-sb --save-best
Only save the model each epoch if its stats improve
:-nv --no-validation
Disable accuracy and validation calculation
to improve speed during training
:-mm --metric-monitor str loss
Metric used to determine when to save
:-em --extra-metrics
Add extra metrics during training
:-f --freeze-till int 0
Freeze all weights up to this index (non-inclusive).
Can be negative to wrap from end
...
''') | TrainData.usage
def __init__(self, args):
super().__init__(args)
if args.invert_samples and not args.samples_file:
raise ValueError('You must specify --samples-file when using --invert-samples')
if args.samples_file and not isfile(args.samples_file):
raise ValueError('No such file: ' + (args.invert_samples or args.samples_file))
if not 0.0 <= args.sensitivity <= 1.0:
raise ValueError('sensitivity must be between 0.0 and 1.0')
inject_params(args.model)
save_params(args.model)
params = ModelParams(skip_acc=args.no_validation, extra_metrics=args.extra_metrics,
loss_bias=1.0 - args.sensitivity, freeze_till=args.freeze_till)
self.model = create_model(args.model, params)
self.train, self.test = self.load_data(self.args)
from tensorflow.keras.callbacks import ModelCheckpoint
checkpoint = ModelCheckpoint(args.model, monitor=args.metric_monitor,
save_best_only=args.save_best)
epoch_fiti = Fitipy(splitext(args.model)[0] + '.epoch')
self.epoch = epoch_fiti.read().read(0, int)
def on_epoch_end(_a, _b):
self.epoch += 1
epoch_fiti.write().write(self.epoch, str)
self.model_base = splitext(self.args.model)[0]
if args.samples_file:
self.samples, self.hash_to_ind = self.load_sample_data(args.samples_file, self.train)
else:
self.samples = set()
self.hash_to_ind = {}
self.callbacks = [
checkpoint,
LambdaCallback(on_epoch_end=on_epoch_end),
]
@staticmethod
def load_sample_data(filename, train_data) -> Tuple[set, dict]:
samples = Fitipy(filename).read().set()
hash_to_ind = {
calc_sample_hash(inp, outp): ind
for ind, (inp, outp) in enumerate(zip(*train_data))
}
for hsh in list(samples):
if hsh not in hash_to_ind:
print('Missing hash:', hsh)
samples.remove(hsh)
return samples, hash_to_ind
@staticmethod
def load_data(args: Any) -> Tuple[tuple, tuple]:
data = TrainData.from_both(args.tags_file, args.tags_folder, args.folder)
print('Data:', data)
train, test = data.load(True, not args.no_validation)
print('Inputs shape:', train[0].shape)
print('Outputs shape:', train[1].shape)
if test:
print('Test inputs shape:', test[0].shape)
print('Test outputs shape:', test[1].shape)
if 0 in train[0].shape or 0 in train[1].shape:
print('Not enough data to train')
exit(1)
return train, test
@property
def sampled_data(self):
"""Returns (train_inputs, train_outputs)"""
if self.args.samples_file:
if self.args.invert_samples:
chosen_samples = set(self.hash_to_ind) - self.samples
else:
chosen_samples = self.samples
selected_indices = [self.hash_to_ind[h] for h in chosen_samples]
return self.train[0][selected_indices], self.train[1][selected_indices]
else:
return self.train[0], self.train[1]
def run(self):
self.model.summary()
train_inputs, train_outputs = self.sampled_data
self.model.fit(
train_inputs, train_outputs, self.args.batch_size,
self.epoch + self.args.epochs, validation_data=self.test,
initial_epoch=self.epoch, callbacks=self.callbacks,
use_multiprocessing=True, validation_freq=5,
verbose=1
)
main = TrainScript.run_main
if __name__ == '__main__':
main()