precise-lite-amd64aarch64/precise_lite/scripts/eval.py

124 lines
4.3 KiB
Python

#!/usr/bin/env python3
# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from os.path import isfile, isdir
from prettyparse import Usage
from precise_lite.network_runner import Listener
from precise_lite.params import inject_params
from precise_lite.pocketsphinx.scripts.test import PocketsphinxTestScript
from precise_lite.scripts.base_script import BaseScript
from precise_lite.stats import Stats
from precise_lite.train_data import TrainData
class EvalScript(BaseScript):
usage = Usage('''
Evaluate a list of models on a dataset
:-u --use-train
Evaluate training data instead of test data
:-t --threshold float 0.5
Network output to be considered an activation
:-pw --pocketsphinx-wake-word str -
Optional wake word used to
generate a Pocketsphinx data point
:-pd --pocketsphinx-dict str -
Optional word dictionary used to
generate a Pocketsphinx data point
Format = wake-word.yy-mm-dd.dict
:-pf --pocketsphinx-folder str -
Optional hmm folder used to
generate a Pocketsphinx data point.
:-pth --pocketsphinx-threshold float 1e-90
Optional threshold used to
generate a Pocketsphinx data point
:-o --output str stats.json
Output json file
...
''')
usage.add_argument('models', nargs='*',
help='List of model filenames in format: wake-word.yy-mm-dd.net')
usage |= TrainData.usage
def __init__(self, args):
super().__init__(args)
if not (
bool(args.pocketsphinx_dict) ==
bool(args.pocketsphinx_folder) ==
bool(args.pocketsphinx_wake_word)
):
raise ValueError('Must pass all or no Pocketsphinx arguments')
self.is_pocketsphinx = bool(args.pocketsphinx_dict)
if self.is_pocketsphinx:
if not isfile(args.pocketsphinx_dict):
raise ValueError('No such file: ' + args.pocketsphinx_dict)
if not isdir(args.pocketsphinx_folder):
raise ValueError('No such folder: ' + args.pocketsphinx_folder)
def run(self):
args = self.args
data = TrainData.from_both(args.tags_file, args.tags_folder, args.folder)
data_files = data.train_files if args.use_train else data.test_files
print('Data:', data)
metrics = {}
if self.is_pocketsphinx:
script = PocketsphinxTestScript.create(
key_phrase=args.pocketsphinx_wake_word, dict_file=args.pocketsphinx_dict,
hmm_folder=args.pocketsphinx_folder, threshold=args.pocketsphinx_threshold
)
ww_files, nww_files = data_files
script.run_test(ww_files, 'Wake Word', 1.0)
script.run_test(nww_files, 'Not Wake Word', 0.0)
stats = script.get_stats()
metrics[args.pocketsphinx_dict] = stats.to_dict(args.threshold)
for model_name in args.models:
print('Calculating', model_name + '...')
inject_params(model_name)
train, test = data.load(args.use_train, not args.use_train)
inputs, targets = train if args.use_train else test
predictions = Listener.find_runner(model_name)(model_name).predict(inputs)
stats = Stats(predictions, targets, sum(data_files, []))
print('----', model_name, '----')
print(stats.counts_str())
print()
print(stats.summary_str())
print()
metrics[model_name] = stats.to_dict(args.threshold)
print('Writing to:', args.output)
with open(args.output, 'w') as f:
json.dump(metrics, f)
main = EvalScript.run_main
if __name__ == '__main__':
main()