STT/evaluate.py
2019-04-16 11:06:26 -03:00

181 lines
6.6 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import itertools
import json
from multiprocessing import cpu_count
import numpy as np
import progressbar
import tensorflow as tf
from ds_ctcdecoder import ctc_beam_search_decoder_batch, Scorer
from six.moves import zip
from util.config import Config, initialize_globals
from util.evaluate_tools import calculate_report
from util.feeding import create_dataset
from util.flags import create_flags, FLAGS
from util.logging import log_error, log_progress, create_progressbar
from util.text import levenshtein
def sparse_tensor_value_to_texts(value, alphabet):
r"""
Given a :class:`tf.SparseTensor` ``value``, return an array of Python strings
representing its values, converting tokens to strings using ``alphabet``.
"""
return sparse_tuple_to_texts((value.indices, value.values, value.dense_shape), alphabet)
def sparse_tuple_to_texts(sp_tuple, alphabet):
indices = sp_tuple[0]
values = sp_tuple[1]
results = [''] * sp_tuple[2][0]
for i, index in enumerate(indices):
results[index[0]] += alphabet.string_from_label(values[i])
# List of strings
return results
def evaluate(test_csvs, create_model, try_loading):
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta,
FLAGS.lm_binary_path, FLAGS.lm_trie_path,
Config.alphabet)
test_csvs = FLAGS.test_files.split(',')
test_sets = [create_dataset([csv], batch_size=FLAGS.test_batch_size) for csv in test_csvs]
iterator = tf.data.Iterator.from_structure(test_sets[0].output_types,
test_sets[0].output_shapes,
output_classes=test_sets[0].output_classes)
test_init_ops = [iterator.make_initializer(test_set) for test_set in test_sets]
(batch_x, batch_x_len), batch_y = iterator.get_next()
# One rate per layer
no_dropout = [None] * 6
logits, _ = create_model(batch_x=batch_x,
seq_length=batch_x_len,
dropout=no_dropout)
# Transpose to batch major and apply softmax for decoder
transposed = tf.nn.softmax(tf.transpose(logits, [1, 0, 2]))
loss = tf.nn.ctc_loss(labels=batch_y,
inputs=logits,
sequence_length=batch_x_len)
tf.train.get_or_create_global_step()
# Get number of accessible CPU cores for this process
try:
num_processes = cpu_count()
except NotImplementedError:
num_processes = 1
# Create a saver using variables from the above newly created graph
saver = tf.train.Saver()
with tf.Session(config=Config.session_config) as session:
# Restore variables from training checkpoint
loaded = try_loading(session, saver, 'best_dev_checkpoint', 'best validation')
if not loaded:
loaded = try_loading(session, saver, 'checkpoint', 'most recent')
if not loaded:
log_error('Checkpoint directory ({}) does not contain a valid checkpoint state.'.format(FLAGS.checkpoint_dir))
exit(1)
def run_test(init_op, dataset):
logitses = []
losses = []
seq_lengths = []
ground_truths = []
bar = create_progressbar(prefix='Computing acoustic model predictions | ',
widgets=['Steps: ', progressbar.Counter(), ' | ', progressbar.Timer()]).start()
log_progress('Computing acoustic model predictions...')
step_count = 0
# Initialize iterator to the appropriate dataset
session.run(init_op)
# First pass, compute losses and transposed logits for decoding
while True:
try:
logits, loss_, lengths, transcripts = session.run([transposed, loss, batch_x_len, batch_y])
except tf.errors.OutOfRangeError:
break
step_count += 1
bar.update(step_count)
logitses.append(logits)
losses.extend(loss_)
seq_lengths.append(lengths)
ground_truths.extend(sparse_tensor_value_to_texts(transcripts, Config.alphabet))
bar.finish()
predictions = []
bar = create_progressbar(max_value=step_count,
prefix='Decoding predictions | ').start()
log_progress('Decoding predictions...')
# Second pass, decode logits and compute WER and edit distance metrics
for logits, seq_length in bar(zip(logitses, seq_lengths)):
decoded = ctc_beam_search_decoder_batch(logits, seq_length, Config.alphabet, FLAGS.beam_width,
num_processes=num_processes, scorer=scorer)
predictions.extend(d[0][1] for d in decoded)
distances = [levenshtein(a, b) for a, b in zip(ground_truths, predictions)]
wer, cer, samples = calculate_report(ground_truths, predictions, distances, losses)
mean_loss = np.mean(losses)
# Take only the first report_count items
report_samples = itertools.islice(samples, FLAGS.report_count)
print('Test on %s - WER: %f, CER: %f, loss: %f' %
(dataset, wer, cer, mean_loss))
print('-' * 80)
for sample in report_samples:
print('WER: %f, CER: %f, loss: %f' %
(sample.wer, sample.distance, sample.loss))
print(' - src: "%s"' % sample.src)
print(' - res: "%s"' % sample.res)
print('-' * 80)
return samples
samples = []
for csv, init_op in zip(test_csvs, test_init_ops):
print('Testing model on {}'.format(csv))
samples.extend(run_test(init_op, dataset=csv))
return samples
def main(_):
initialize_globals()
if not FLAGS.test_files:
log_error('You need to specify what files to use for evaluation via '
'the --test_files flag.')
exit(1)
from DeepSpeech import create_model, try_loading # pylint: disable=cyclic-import
samples = evaluate(FLAGS.test_files.split(','), create_model, try_loading)
if FLAGS.test_output_file:
# Save decoded tuples as JSON, converting NumPy floats to Python floats
json.dump(samples, open(FLAGS.test_output_file, 'w'), default=float)
if __name__ == '__main__':
create_flags()
tf.app.flags.DEFINE_string('test_output_file', '', 'path to a file to save all src/decoded/distance/loss tuples')
tf.app.run(main)