da55cfae86
This reverts commit3dcb3743ac
, reversing changes made to457198c88d
.
215 lines
7.6 KiB
Python
Executable File
215 lines
7.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
import csv
|
||
import os
|
||
import re
|
||
import subprocess
|
||
import zipfile
|
||
from multiprocessing import Pool
|
||
|
||
import progressbar
|
||
import sox
|
||
|
||
import unidecode
|
||
from deepspeech_training.util.downloader import SIMPLE_BAR, maybe_download
|
||
from deepspeech_training.util.importers import (
|
||
get_counter,
|
||
get_imported_samples,
|
||
get_importers_parser,
|
||
get_validate_label,
|
||
print_import_report,
|
||
)
|
||
|
||
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||
SAMPLE_RATE = 16000
|
||
MAX_SECS = 15
|
||
ARCHIVE_NAME = "2019-04-11_fr_FR"
|
||
ARCHIVE_DIR_NAME = "ts_" + ARCHIVE_NAME
|
||
ARCHIVE_URL = (
|
||
"https://deepspeech-storage-mirror.s3.fr-par.scw.cloud/" + ARCHIVE_NAME + ".zip"
|
||
)
|
||
|
||
|
||
def _download_and_preprocess_data(target_dir, english_compatible=False):
|
||
# Making path absolute
|
||
target_dir = os.path.abspath(target_dir)
|
||
# Conditionally download data
|
||
archive_path = maybe_download(
|
||
"ts_" + ARCHIVE_NAME + ".zip", target_dir, ARCHIVE_URL
|
||
)
|
||
# Conditionally extract archive data
|
||
_maybe_extract(target_dir, ARCHIVE_DIR_NAME, archive_path)
|
||
# Conditionally convert TrainingSpeech data to DeepSpeech CSVs and wav
|
||
_maybe_convert_sets(
|
||
target_dir, ARCHIVE_DIR_NAME, english_compatible=english_compatible
|
||
)
|
||
|
||
|
||
def _maybe_extract(target_dir, extracted_data, archive_path):
|
||
# If target_dir/extracted_data does not exist, extract archive in target_dir
|
||
extracted_path = os.path.join(target_dir, extracted_data)
|
||
if not os.path.exists(extracted_path):
|
||
print('No directory "%s" - extracting archive...' % extracted_path)
|
||
if not os.path.isdir(extracted_path):
|
||
os.mkdir(extracted_path)
|
||
with zipfile.ZipFile(archive_path) as zip_f:
|
||
zip_f.extractall(extracted_path)
|
||
else:
|
||
print('Found directory "%s" - not extracting it from archive.' % archive_path)
|
||
|
||
|
||
def one_sample(sample):
|
||
""" Take a audio file, and optionally convert it to 16kHz WAV """
|
||
orig_filename = sample["path"]
|
||
# Storing wav files next to the wav ones - just with a different suffix
|
||
wav_filename = os.path.splitext(orig_filename)[0] + ".converted.wav"
|
||
_maybe_convert_wav(orig_filename, wav_filename)
|
||
file_size = -1
|
||
frames = 0
|
||
if os.path.exists(wav_filename):
|
||
file_size = os.path.getsize(wav_filename)
|
||
frames = int(
|
||
subprocess.check_output(
|
||
["soxi", "-s", wav_filename], stderr=subprocess.STDOUT
|
||
)
|
||
)
|
||
label = sample["text"]
|
||
|
||
rows = []
|
||
|
||
# Keep track of how many samples are good vs. problematic
|
||
counter = get_counter()
|
||
if file_size == -1:
|
||
# Excluding samples that failed upon conversion
|
||
counter["failed"] += 1
|
||
elif label is None:
|
||
# Excluding samples that failed on label validation
|
||
counter["invalid_label"] += 1
|
||
elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
|
||
# Excluding samples that are too short to fit the transcript
|
||
counter["too_short"] += 1
|
||
elif frames / SAMPLE_RATE > MAX_SECS:
|
||
# Excluding very long samples to keep a reasonable batch-size
|
||
counter["too_long"] += 1
|
||
else:
|
||
# This one is good - keep it for the target CSV
|
||
rows.append((wav_filename, file_size, label))
|
||
counter["imported_time"] += frames
|
||
counter["all"] += 1
|
||
counter["total_time"] += frames
|
||
|
||
return (counter, rows)
|
||
|
||
|
||
def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
|
||
extracted_dir = os.path.join(target_dir, extracted_data)
|
||
# override existing CSV with normalized one
|
||
target_csv_template = os.path.join(target_dir, "ts_" + ARCHIVE_NAME + "_{}.csv")
|
||
if os.path.isfile(target_csv_template):
|
||
return
|
||
path_to_original_csv = os.path.join(extracted_dir, "data.csv")
|
||
with open(path_to_original_csv) as csv_f:
|
||
data = [
|
||
d
|
||
for d in csv.DictReader(csv_f, delimiter=",")
|
||
if float(d["duration"]) <= MAX_SECS
|
||
]
|
||
|
||
for line in data:
|
||
line["path"] = os.path.join(extracted_dir, line["path"])
|
||
|
||
num_samples = len(data)
|
||
rows = []
|
||
counter = get_counter()
|
||
|
||
print("Importing {} wav files...".format(num_samples))
|
||
pool = Pool()
|
||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||
for i, processed in enumerate(pool.imap_unordered(one_sample, data), start=1):
|
||
counter += processed[0]
|
||
rows += processed[1]
|
||
bar.update(i)
|
||
bar.update(num_samples)
|
||
pool.close()
|
||
pool.join()
|
||
|
||
with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file: # 80%
|
||
with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file: # 10%
|
||
with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file: # 10%
|
||
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
|
||
train_writer.writeheader()
|
||
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
|
||
dev_writer.writeheader()
|
||
test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
|
||
test_writer.writeheader()
|
||
|
||
for i, item in enumerate(rows):
|
||
transcript = validate_label(
|
||
cleanup_transcript(
|
||
item[2], english_compatible=english_compatible
|
||
)
|
||
)
|
||
if not transcript:
|
||
continue
|
||
wav_filename = os.path.join(target_dir, extracted_data, item[0])
|
||
i_mod = i % 10
|
||
if i_mod == 0:
|
||
writer = test_writer
|
||
elif i_mod == 1:
|
||
writer = dev_writer
|
||
else:
|
||
writer = train_writer
|
||
writer.writerow(
|
||
dict(
|
||
wav_filename=wav_filename,
|
||
wav_filesize=os.path.getsize(wav_filename),
|
||
transcript=transcript,
|
||
)
|
||
)
|
||
|
||
imported_samples = get_imported_samples(counter)
|
||
assert counter["all"] == num_samples
|
||
assert len(rows) == imported_samples
|
||
|
||
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
||
|
||
|
||
def _maybe_convert_wav(orig_filename, wav_filename):
|
||
if not os.path.exists(wav_filename):
|
||
transformer = sox.Transformer()
|
||
transformer.convert(samplerate=SAMPLE_RATE)
|
||
try:
|
||
transformer.build(orig_filename, wav_filename)
|
||
except sox.core.SoxError as ex:
|
||
print("SoX processing error", ex, orig_filename, wav_filename)
|
||
|
||
|
||
PUNCTUATIONS_REG = re.compile(r"[°\-,;!?.()\[\]*…—]")
|
||
MULTIPLE_SPACES_REG = re.compile(r"\s{2,}")
|
||
|
||
|
||
def cleanup_transcript(text, english_compatible=False):
|
||
text = text.replace("’", "'").replace("\u00A0", " ")
|
||
text = PUNCTUATIONS_REG.sub(" ", text)
|
||
text = MULTIPLE_SPACES_REG.sub(" ", text)
|
||
if english_compatible:
|
||
text = unidecode.unidecode(text)
|
||
return text.strip().lower()
|
||
|
||
|
||
def handle_args():
|
||
parser = get_importers_parser(description="Importer for TrainingSpeech dataset.")
|
||
parser.add_argument(dest="target_dir")
|
||
parser.add_argument(
|
||
"--english-compatible",
|
||
action="store_true",
|
||
dest="english_compatible",
|
||
help="Remove diactrics and other non-ascii chars.",
|
||
)
|
||
return parser.parse_args()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
cli_args = handle_args()
|
||
validate_label = get_validate_label(cli_args)
|
||
_download_and_preprocess_data(cli_args.target_dir, cli_args.english_compatible)
|