da55cfae86
This reverts commit3dcb3743ac
, reversing changes made to457198c88d
.
129 lines
4.3 KiB
Python
Executable File
129 lines
4.3 KiB
Python
Executable File
#!/usr/bin/env python
|
|
import glob
|
|
import os
|
|
import tarfile
|
|
import wave
|
|
|
|
import pandas
|
|
|
|
from deepspeech_training.util.importers import get_importers_parser
|
|
|
|
COLUMN_NAMES = ["wav_filename", "wav_filesize", "transcript"]
|
|
|
|
|
|
def extract(archive_path, target_dir):
|
|
print("Extracting {} into {}...".format(archive_path, target_dir))
|
|
with tarfile.open(archive_path) as tar:
|
|
tar.extractall(target_dir)
|
|
|
|
|
|
def is_file_truncated(wav_filename, wav_filesize):
|
|
with wave.open(wav_filename, mode="rb") as fin:
|
|
assert fin.getframerate() == 16000
|
|
assert fin.getsampwidth() == 2
|
|
assert fin.getnchannels() == 1
|
|
|
|
header_duration = fin.getnframes() / fin.getframerate()
|
|
filesize_duration = (wav_filesize - 44) / 16000 / 2
|
|
|
|
return header_duration != filesize_duration
|
|
|
|
|
|
def preprocess_data(folder_with_archives, target_dir):
|
|
# First extract subset archives
|
|
for subset in ("train", "dev", "test"):
|
|
extract(
|
|
os.path.join(
|
|
folder_with_archives, "magicdata_{}_set.tar.gz".format(subset)
|
|
),
|
|
target_dir,
|
|
)
|
|
|
|
# Folder structure is now:
|
|
# - magicdata_{train,dev,test}.tar.gz
|
|
# - magicdata/
|
|
# - train/*.wav
|
|
# - train/TRANS.txt
|
|
# - dev/*.wav
|
|
# - dev/TRANS.txt
|
|
# - test/*.wav
|
|
# - test/TRANS.txt
|
|
|
|
# The TRANS files are CSVs with three columns, one containing the WAV file
|
|
# name, one containing the speaker ID, and one containing the transcription
|
|
|
|
def load_set(set_path):
|
|
transcripts = pandas.read_csv(
|
|
os.path.join(set_path, "TRANS.txt"), sep="\t", index_col=0
|
|
)
|
|
glob_path = os.path.join(set_path, "*", "*.wav")
|
|
set_files = []
|
|
for wav in glob.glob(glob_path):
|
|
try:
|
|
wav_filename = wav
|
|
wav_filesize = os.path.getsize(wav)
|
|
transcript_key = os.path.basename(wav)
|
|
transcript = transcripts.loc[transcript_key, "Transcription"]
|
|
|
|
# Some files in this dataset are truncated, the header duration
|
|
# doesn't match the file size. This causes errors at training
|
|
# time, so check here if things are fine before including a file
|
|
if is_file_truncated(wav_filename, wav_filesize):
|
|
print(
|
|
"Warning: File {} is corrupted, header duration does "
|
|
"not match file size. Ignoring.".format(wav_filename)
|
|
)
|
|
continue
|
|
|
|
set_files.append((wav_filename, wav_filesize, transcript))
|
|
except KeyError:
|
|
print("Warning: Missing transcript for WAV file {}.".format(wav))
|
|
return set_files
|
|
|
|
for subset in ("train", "dev", "test"):
|
|
print("Loading {} set samples...".format(subset))
|
|
subset_files = load_set(os.path.join(target_dir, subset))
|
|
df = pandas.DataFrame(data=subset_files, columns=COLUMN_NAMES)
|
|
|
|
# Trim train set to under 10s
|
|
if subset == "train":
|
|
durations = (df["wav_filesize"] - 44) / 16000 / 2
|
|
df = df[durations <= 10.0]
|
|
print("Trimming {} samples > 10 seconds".format((durations > 10.0).sum()))
|
|
|
|
with_noise = df["transcript"].str.contains(r"\[(FIL|SPK)\]")
|
|
df = df[~with_noise]
|
|
print(
|
|
"Trimming {} samples with noise ([FIL] or [SPK])".format(
|
|
sum(with_noise)
|
|
)
|
|
)
|
|
|
|
dest_csv = os.path.join(target_dir, "magicdata_{}.csv".format(subset))
|
|
print("Saving {} set into {}...".format(subset, dest_csv))
|
|
df.to_csv(dest_csv, index=False)
|
|
|
|
|
|
def main():
|
|
# https://openslr.org/68/
|
|
parser = get_importers_parser(description="Import MAGICDATA corpus")
|
|
parser.add_argument(
|
|
"folder_with_archives",
|
|
help="Path to folder containing magicdata_{train,dev,test}.tar.gz",
|
|
)
|
|
parser.add_argument(
|
|
"--target_dir",
|
|
default="",
|
|
help="Target folder to extract files into and put the resulting CSVs. Defaults to a folder called magicdata next to the archives",
|
|
)
|
|
params = parser.parse_args()
|
|
|
|
if not params.target_dir:
|
|
params.target_dir = os.path.join(params.folder_with_archives, "magicdata")
|
|
|
|
preprocess_data(params.folder_with_archives, params.target_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|