STT/bin/import_m-ailabs.py
Reuben Morais da55cfae86 Revert "Merge pull request #3237 from lissyx/rename-training-package"
This reverts commit 3dcb3743ac, reversing
changes made to 457198c88d.
2020-08-26 11:46:08 +02:00

227 lines
8.0 KiB
Python
Executable File

#!/usr/bin/env python3
# pylint: disable=invalid-name
import csv
import os
import subprocess
import tarfile
import unicodedata
from glob import glob
from multiprocessing import Pool
import progressbar
from deepspeech_training.util.downloader import SIMPLE_BAR, maybe_download
from deepspeech_training.util.importers import (
get_counter,
get_imported_samples,
get_importers_parser,
get_validate_label,
print_import_report,
)
from ds_ctcdecoder import Alphabet
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
SAMPLE_RATE = 16000
MAX_SECS = 15
ARCHIVE_DIR_NAME = "{language}"
ARCHIVE_NAME = "{language}.tgz"
ARCHIVE_URL = "http://www.caito.de/data/Training/stt_tts/" + ARCHIVE_NAME
def _download_and_preprocess_data(target_dir):
# Making path absolute
target_dir = os.path.abspath(target_dir)
# Conditionally download data
archive_path = maybe_download(ARCHIVE_NAME, target_dir, ARCHIVE_URL)
# Conditionally extract data
_maybe_extract(target_dir, ARCHIVE_DIR_NAME, archive_path)
# Produce CSV files
_maybe_convert_sets(target_dir, ARCHIVE_DIR_NAME)
def _maybe_extract(target_dir, extracted_data, archive_path):
# If target_dir/extracted_data does not exist, extract archive in target_dir
extracted_path = os.path.join(target_dir, extracted_data)
if not os.path.exists(extracted_path):
print('No directory "%s" - extracting archive...' % extracted_path)
if not os.path.isdir(extracted_path):
os.mkdir(extracted_path)
tar = tarfile.open(archive_path)
tar.extractall(extracted_path)
tar.close()
else:
print('Found directory "%s" - not extracting it from archive.' % archive_path)
def one_sample(sample):
""" Take a audio file, and optionally convert it to 16kHz WAV """
wav_filename = sample[0]
file_size = -1
frames = 0
if os.path.exists(wav_filename):
tmp_filename = os.path.splitext(wav_filename)[0]+'.tmp.wav'
subprocess.check_call(
['sox', wav_filename, '-r', str(SAMPLE_RATE), '-c', '1', '-b', '16', tmp_filename], stderr=subprocess.STDOUT
)
os.rename(tmp_filename, wav_filename)
file_size = os.path.getsize(wav_filename)
frames = int(
subprocess.check_output(
["soxi", "-s", wav_filename], stderr=subprocess.STDOUT
)
)
label = label_filter(sample[1])
counter = get_counter()
rows = []
if file_size == -1:
# Excluding samples that failed upon conversion
print("conversion failure", wav_filename)
counter["failed"] += 1
elif label is None:
# Excluding samples that failed on label validation
counter["invalid_label"] += 1
elif int(frames / SAMPLE_RATE * 1000 / 15 / 2) < len(str(label)):
# Excluding samples that are too short to fit the transcript
counter["too_short"] += 1
elif frames / SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter["too_long"] += 1
else:
# This one is good - keep it for the target CSV
rows.append((wav_filename, file_size, label))
counter["imported_time"] += frames
counter["all"] += 1
counter["total_time"] += frames
return (counter, rows)
def _maybe_convert_sets(target_dir, extracted_data):
extracted_dir = os.path.join(target_dir, extracted_data)
# override existing CSV with normalized one
target_csv_template = os.path.join(
target_dir, ARCHIVE_DIR_NAME, ARCHIVE_NAME.replace(".tgz", "_{}.csv")
)
if os.path.isfile(target_csv_template):
return
wav_root_dir = os.path.join(extracted_dir)
# Get audiofile path and transcript for each sentence in tsv
samples = []
glob_dir = os.path.join(wav_root_dir, "**/metadata.csv")
for record in glob(glob_dir, recursive=True):
if any(
map(lambda sk: sk in record, SKIP_LIST)
): # pylint: disable=cell-var-from-loop
continue
with open(record, "r") as rec:
for re in rec.readlines():
re = re.strip().split("|")
audio = os.path.join(os.path.dirname(record), "wavs", re[0] + ".wav")
transcript = re[2]
samples.append((audio, transcript))
counter = get_counter()
num_samples = len(samples)
rows = []
print("Importing WAV files...")
pool = Pool()
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
counter += processed[0]
rows += processed[1]
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file: # 80%
with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file: # 10%
with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file: # 10%
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
train_writer.writeheader()
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
dev_writer.writeheader()
test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
test_writer.writeheader()
for i, item in enumerate(rows):
transcript = validate_label(item[2])
if not transcript:
continue
wav_filename = item[0]
i_mod = i % 10
if i_mod == 0:
writer = test_writer
elif i_mod == 1:
writer = dev_writer
else:
writer = train_writer
writer.writerow(
dict(
wav_filename=os.path.relpath(wav_filename, extracted_dir),
wav_filesize=os.path.getsize(wav_filename),
transcript=transcript,
)
)
imported_samples = get_imported_samples(counter)
assert counter["all"] == num_samples
assert len(rows) == imported_samples
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
def handle_args():
parser = get_importers_parser(
description="Importer for M-AILABS dataset. https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/."
)
parser.add_argument(dest="target_dir")
parser.add_argument(
"--filter_alphabet",
help="Exclude samples with characters not in provided alphabet",
)
parser.add_argument(
"--normalize",
action="store_true",
help="Converts diacritic characters to their base ones",
)
parser.add_argument(
"--skiplist",
type=str,
default="",
help="Directories / books to skip, comma separated",
)
parser.add_argument(
"--language", required=True, type=str, help="Dataset language to use"
)
return parser.parse_args()
if __name__ == "__main__":
CLI_ARGS = handle_args()
ALPHABET = Alphabet(CLI_ARGS.filter_alphabet) if CLI_ARGS.filter_alphabet else None
SKIP_LIST = filter(None, CLI_ARGS.skiplist.split(","))
validate_label = get_validate_label(CLI_ARGS)
def label_filter(label):
if CLI_ARGS.normalize:
label = (
unicodedata.normalize("NFKD", label.strip())
.encode("ascii", "ignore")
.decode("ascii", "ignore")
)
label = validate_label(label)
if ALPHABET and label and not ALPHABET.CanEncode(label):
label = None
return label
ARCHIVE_DIR_NAME = ARCHIVE_DIR_NAME.format(language=CLI_ARGS.language)
ARCHIVE_NAME = ARCHIVE_NAME.format(language=CLI_ARGS.language)
ARCHIVE_URL = ARCHIVE_URL.format(language=CLI_ARGS.language)
_download_and_preprocess_data(target_dir=CLI_ARGS.target_dir)