STT/bin/import_cv2.py
Anas Abou Allaban 521842deea
Convert channels for CV2 dataset
When running a training session on the CV2 dataset, it is possible to get the following error:

```
ValueError: Mono-channel audio required
```

This makes the [pysox Transformer](https://pysox.readthedocs.io/en/latest/api.html#sox.transform.Transformer.convert) also convert the channels.
2020-10-15 11:22:39 -04:00

222 lines
7.8 KiB
Python
Executable File

#!/usr/bin/env python
"""
Broadly speaking, this script takes the audio downloaded from Common Voice
for a certain language, in addition to the *.tsv files output by CorporaCreator,
and the script formats the data and transcripts to be in a state usable by
DeepSpeech.py
Use "python3 import_cv2.py -h" for help
"""
import csv
import os
import subprocess
import unicodedata
from multiprocessing import Pool
import progressbar
import sox
from deepspeech_training.util.downloader import SIMPLE_BAR
from deepspeech_training.util.importers import (
get_counter,
get_imported_samples,
get_importers_parser,
get_validate_label,
print_import_report,
)
from ds_ctcdecoder import Alphabet
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
SAMPLE_RATE = 16000
CHANNELS = 1
MAX_SECS = 10
PARAMS = None
FILTER_OBJ = None
class LabelFilter:
def __init__(self, normalize, alphabet, validate_fun):
self.normalize = normalize
self.alphabet = alphabet
self.validate_fun = validate_fun
def filter(self, label):
if self.normalize:
label = unicodedata.normalize("NFKD", label.strip()).encode("ascii", "ignore").decode("ascii", "ignore")
label = self.validate_fun(label)
if self.alphabet and label and not self.alphabet.CanEncode(label):
label = None
return label
def init_worker(params):
global FILTER_OBJ # pylint: disable=global-statement
validate_label = get_validate_label(params)
alphabet = Alphabet(params.filter_alphabet) if params.filter_alphabet else None
FILTER_OBJ = LabelFilter(params.normalize, alphabet, validate_label)
def one_sample(sample):
""" Take an audio file, and optionally convert it to 16kHz WAV """
mp3_filename = sample[0]
if not os.path.splitext(mp3_filename.lower())[1] == ".mp3":
mp3_filename += ".mp3"
# Storing wav files next to the mp3 ones - just with a different suffix
wav_filename = os.path.splitext(mp3_filename)[0] + ".wav"
_maybe_convert_wav(mp3_filename, wav_filename)
file_size = -1
frames = 0
if os.path.exists(wav_filename):
file_size = os.path.getsize(wav_filename)
frames = int(
subprocess.check_output(
["soxi", "-s", wav_filename], stderr=subprocess.STDOUT
)
)
label = FILTER_OBJ.filter(sample[1])
rows = []
counter = get_counter()
if file_size == -1:
# Excluding samples that failed upon conversion
counter["failed"] += 1
elif label is None:
# Excluding samples that failed on label validation
counter["invalid_label"] += 1
elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
# Excluding samples that are too short to fit the transcript
counter["too_short"] += 1
elif frames / SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter["too_long"] += 1
else:
# This one is good - keep it for the target CSV
rows.append((os.path.split(wav_filename)[-1], file_size, label, sample[2]))
counter["imported_time"] += frames
counter["all"] += 1
counter["total_time"] += frames
return (counter, rows)
def _maybe_convert_set(dataset, tsv_dir, audio_dir, filter_obj, space_after_every_character=None, rows=None, exclude=None):
exclude_transcripts = set()
exclude_speakers = set()
if exclude is not None:
for sample in exclude:
exclude_transcripts.add(sample[2])
exclude_speakers.add(sample[3])
if rows is None:
rows = []
input_tsv = os.path.join(os.path.abspath(tsv_dir), dataset + ".tsv")
if not os.path.isfile(input_tsv):
return rows
print("Loading TSV file: ", input_tsv)
# Get audiofile path and transcript for each sentence in tsv
samples = []
with open(input_tsv, encoding="utf-8") as input_tsv_file:
reader = csv.DictReader(input_tsv_file, delimiter="\t")
for row in reader:
samples.append((os.path.join(audio_dir, row["path"]), row["sentence"], row["client_id"]))
counter = get_counter()
num_samples = len(samples)
print("Importing mp3 files...")
pool = Pool(initializer=init_worker, initargs=(PARAMS,))
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
counter += processed[0]
rows += processed[1]
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
imported_samples = get_imported_samples(counter)
assert counter["all"] == num_samples
assert len(rows) == imported_samples
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
output_csv = os.path.join(os.path.abspath(audio_dir), dataset + ".csv")
print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
with open(output_csv, "w", encoding="utf-8", newline="") as output_csv_file:
print("Writing CSV file for DeepSpeech.py as: ", output_csv)
writer = csv.DictWriter(output_csv_file, fieldnames=FIELDNAMES)
writer.writeheader()
bar = progressbar.ProgressBar(max_value=len(rows), widgets=SIMPLE_BAR)
for filename, file_size, transcript, speaker in bar(rows):
if transcript in exclude_transcripts or speaker in exclude_speakers:
continue
if space_after_every_character:
writer.writerow(
{
"wav_filename": filename,
"wav_filesize": file_size,
"transcript": " ".join(transcript),
}
)
else:
writer.writerow(
{
"wav_filename": filename,
"wav_filesize": file_size,
"transcript": transcript,
}
)
return rows
def _preprocess_data(tsv_dir, audio_dir, space_after_every_character=False):
exclude = []
for dataset in ["test", "dev", "train", "validated", "other"]:
set_samples = _maybe_convert_set(dataset, tsv_dir, audio_dir, space_after_every_character)
if dataset in ["test", "dev"]:
exclude += set_samples
if dataset == "validated":
_maybe_convert_set("train-all", tsv_dir, audio_dir, space_after_every_character,
rows=set_samples, exclude=exclude)
def _maybe_convert_wav(mp3_filename, wav_filename):
if not os.path.exists(wav_filename):
transformer = sox.Transformer()
transformer.convert(samplerate=SAMPLE_RATE, n_channels=CHANNELS)
try:
transformer.build(mp3_filename, wav_filename)
except sox.core.SoxError:
pass
def parse_args():
parser = get_importers_parser(description="Import CommonVoice v2.0 corpora")
parser.add_argument("tsv_dir", help="Directory containing tsv files")
parser.add_argument(
"--audio_dir",
help='Directory containing the audio clips - defaults to "<tsv_dir>/clips"',
)
parser.add_argument(
"--filter_alphabet",
help="Exclude samples with characters not in provided alphabet",
)
parser.add_argument(
"--normalize",
action="store_true",
help="Converts diacritic characters to their base ones",
)
parser.add_argument(
"--space_after_every_character",
action="store_true",
help="To help transcript join by white space",
)
return parser.parse_args()
def main():
audio_dir = PARAMS.audio_dir if PARAMS.audio_dir else os.path.join(PARAMS.tsv_dir, "clips")
_preprocess_data(PARAMS.tsv_dir, audio_dir, PARAMS.space_after_every_character)
if __name__ == "__main__":
PARAMS = parse_args()
main()