STT/bin/import_aishell.py
2021-05-18 13:45:52 +02:00

95 lines
3.4 KiB
Python
Executable File

#!/usr/bin/env python
import glob
import os
import tarfile
import pandas
from coqui_stt_training.util.importers import get_importers_parser
COLUMNNAMES = ["wav_filename", "wav_filesize", "transcript"]
def extract(archive_path, target_dir):
print("Extracting {} into {}...".format(archive_path, target_dir))
with tarfile.open(archive_path) as tar:
tar.extractall(target_dir)
def preprocess_data(tgz_file, target_dir):
# First extract main archive and sub-archives
extract(tgz_file, target_dir)
main_folder = os.path.join(target_dir, "data_aishell")
wav_archives_folder = os.path.join(main_folder, "wav")
for targz in glob.glob(os.path.join(wav_archives_folder, "*.tar.gz")):
extract(targz, main_folder)
# Folder structure is now:
# - data_aishell/
# - train/S****/*.wav
# - dev/S****/*.wav
# - test/S****/*.wav
# - wav/S****.tar.gz
# - transcript/aishell_transcript_v0.8.txt
# Transcripts file has one line per WAV file, where each line consists of
# the WAV file name without extension followed by a single space followed
# by the transcript.
# Since the transcripts themselves can contain spaces, we split on space but
# only once, then build a mapping from file name to transcript
transcripts_path = os.path.join(
main_folder, "transcript", "aishell_transcript_v0.8.txt"
)
with open(transcripts_path) as fin:
transcripts = dict((line.split(" ", maxsplit=1) for line in fin))
def load_set(glob_path):
set_files = []
for wav in glob.glob(glob_path):
try:
wav_filename = wav
wav_filesize = os.path.getsize(wav)
transcript_key = os.path.splitext(os.path.basename(wav))[0]
transcript = transcripts[transcript_key].strip("\n")
set_files.append((wav_filename, wav_filesize, transcript))
except KeyError:
print("Warning: Missing transcript for WAV file {}.".format(wav))
return set_files
for subset in ("train", "dev", "test"):
print("Loading {} set samples...".format(subset))
subset_files = load_set(os.path.join(main_folder, subset, "S*", "*.wav"))
df = pandas.DataFrame(data=subset_files, columns=COLUMNNAMES)
# Trim train set to under 10s by removing the last couple hundred samples
if subset == "train":
durations = (df["wav_filesize"] - 44) / 16000 / 2
df = df[durations <= 10.0]
print("Trimming {} samples > 10 seconds".format((durations > 10.0).sum()))
dest_csv = os.path.join(target_dir, "aishell_{}.csv".format(subset))
print("Saving {} set into {}...".format(subset, dest_csv))
df.to_csv(dest_csv, index=False)
def main():
# http://www.openslr.org/33/
parser = get_importers_parser(description="Import AISHELL corpus")
parser.add_argument("aishell_tgz_file", help="Path to data_aishell.tgz")
parser.add_argument(
"--target_dir",
default="",
help="Target folder to extract files into and put the resulting CSVs. Defaults to same folder as the main archive.",
)
params = parser.parse_args()
if not params.target_dir:
params.target_dir = os.path.dirname(params.aishell_tgz_file)
preprocess_data(params.aishell_tgz_file, params.target_dir)
if __name__ == "__main__":
main()