STT/native_client/ctcdecode/__init__.py
2021-05-18 13:45:52 +02:00

264 lines
9.1 KiB
Python

from __future__ import absolute_import, division, print_function
from . import swigwrapper # pylint: disable=import-self
# This module is built with SWIG_PYTHON_STRICT_BYTE_CHAR so we must handle
# string encoding explicitly, here and throughout this file.
__version__ = swigwrapper.__version__.decode("utf-8")
# Hack: import error codes by matching on their names, as SWIG unfortunately
# does not support binding enums to Python in a scoped manner yet.
for symbol in dir(swigwrapper):
if symbol.startswith("STT_ERR_"):
globals()[symbol] = getattr(swigwrapper, symbol)
class Scorer(swigwrapper.Scorer):
"""Wrapper for Scorer.
:param alpha: Language model weight.
:type alpha: float
:param beta: Word insertion bonus.
:type beta: float
:scorer_path: Path to load scorer from.
:alphabet: Alphabet
:type scorer_path: basestring
"""
def __init__(self, alpha=None, beta=None, scorer_path=None, alphabet=None):
super(Scorer, self).__init__()
# Allow bare initialization
if alphabet:
assert alpha is not None, "alpha parameter is required"
assert beta is not None, "beta parameter is required"
assert scorer_path, "scorer_path parameter is required"
err = self.init(scorer_path.encode("utf-8"), alphabet)
if err != 0:
raise ValueError(
"Scorer initialization failed with error code 0x{:X}".format(err)
)
self.reset_params(alpha, beta)
class Alphabet(swigwrapper.Alphabet):
"""Convenience wrapper for Alphabet which calls init in the constructor"""
def __init__(self, config_path):
super(Alphabet, self).__init__()
err = self.init(config_path.encode("utf-8"))
if err != 0:
raise ValueError(
"Alphabet initialization failed with error code 0x{:X}".format(err)
)
def CanEncodeSingle(self, input):
"""
Returns true if the single character/output class has a corresponding label
in the alphabet.
"""
return super(Alphabet, self).CanEncodeSingle(input.encode("utf-8"))
def CanEncode(self, input):
"""
Returns true if the entire string can be encoded into labels in this
alphabet.
"""
return super(Alphabet, self).CanEncode(input.encode("utf-8"))
def EncodeSingle(self, input):
"""
Encode a single character/output class into a label. Character must be in
the alphabet, this method will assert that. Use `CanEncodeSingle` to test.
"""
return super(Alphabet, self).EncodeSingle(input.encode("utf-8"))
def Encode(self, input):
"""
Encode a sequence of character/output classes into a sequence of labels.
Characters are assumed to always take a single Unicode codepoint.
Characters must be in the alphabet, this method will assert that. Use
`CanEncode` and `CanEncodeSingle` to test.
"""
# Convert SWIG's UnsignedIntVec to a Python list
res = super(Alphabet, self).Encode(input.encode("utf-8"))
return [el for el in res]
def DecodeSingle(self, input):
res = super(Alphabet, self).DecodeSingle(input)
return res.decode("utf-8")
def Decode(self, input):
"""Decode a sequence of labels into a string."""
res = super(Alphabet, self).Decode(input)
return res.decode("utf-8")
class UTF8Alphabet(swigwrapper.UTF8Alphabet):
"""Convenience wrapper for Alphabet which calls init in the constructor"""
def __init__(self):
super(UTF8Alphabet, self).__init__()
err = self.init(b"")
if err != 0:
raise ValueError(
"UTF8Alphabet initialization failed with error code 0x{:X}".format(err)
)
def CanEncodeSingle(self, input):
"""
Returns true if the single character/output class has a corresponding label
in the alphabet.
"""
return super(UTF8Alphabet, self).CanEncodeSingle(input.encode("utf-8"))
def CanEncode(self, input):
"""
Returns true if the entire string can be encoded into labels in this
alphabet.
"""
return super(UTF8Alphabet, self).CanEncode(input.encode("utf-8"))
def EncodeSingle(self, input):
"""
Encode a single character/output class into a label. Character must be in
the alphabet, this method will assert that. Use `CanEncodeSingle` to test.
"""
return super(UTF8Alphabet, self).EncodeSingle(input.encode("utf-8"))
def Encode(self, input):
"""
Encode a sequence of character/output classes into a sequence of labels.
Characters are assumed to always take a single Unicode codepoint.
Characters must be in the alphabet, this method will assert that. Use
`CanEncode` and `CanEncodeSingle` to test.
"""
# Convert SWIG's UnsignedIntVec to a Python list
res = super(UTF8Alphabet, self).Encode(input.encode("utf-8"))
return [el for el in res]
def DecodeSingle(self, input):
res = super(UTF8Alphabet, self).DecodeSingle(input)
return res.decode("utf-8")
def Decode(self, input):
"""Decode a sequence of labels into a string."""
res = super(UTF8Alphabet, self).Decode(input)
return res.decode("utf-8")
def ctc_beam_search_decoder(
probs_seq,
alphabet,
beam_size,
cutoff_prob=1.0,
cutoff_top_n=40,
scorer=None,
hot_words=dict(),
num_results=1,
):
"""Wrapper for the CTC Beam Search Decoder.
:param probs_seq: 2-D list of probability distributions over each time
step, with each element being a list of normalized
probabilities over alphabet and blank.
:type probs_seq: 2-D list
:param alphabet: Alphabet
:param beam_size: Width for beam search.
:type beam_size: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
characters with highest probs in alphabet will be
used in beam search, default 40.
:type cutoff_top_n: int
:param scorer: External scorer for partially decoded sentence, e.g. word
count or language model.
:type scorer: Scorer
:param hot_words: Map of words (keys) to their assigned boosts (values)
:type hot_words: map{string:float}
:param num_results: Number of beams to return.
:type num_results: int
:return: List of tuples of confidence and sentence as decoding
results, in descending order of the confidence.
:rtype: list
"""
beam_results = swigwrapper.ctc_beam_search_decoder(
probs_seq,
alphabet,
beam_size,
cutoff_prob,
cutoff_top_n,
scorer,
hot_words,
num_results,
)
beam_results = [
(res.confidence, alphabet.Decode(res.tokens)) for res in beam_results
]
return beam_results
def ctc_beam_search_decoder_batch(
probs_seq,
seq_lengths,
alphabet,
beam_size,
num_processes,
cutoff_prob=1.0,
cutoff_top_n=40,
scorer=None,
hot_words=dict(),
num_results=1,
):
"""Wrapper for the batched CTC beam search decoder.
:param probs_seq: 3-D list with each element as an instance of 2-D list
of probabilities used by ctc_beam_search_decoder().
:type probs_seq: 3-D list
:param alphabet: alphabet list.
:alphabet: Alphabet
:param beam_size: Width for beam search.
:type beam_size: int
:param num_processes: Number of parallel processes.
:type num_processes: int
:param cutoff_prob: Cutoff probability in alphabet pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
characters with highest probs in alphabet will be
used in beam search, default 40.
:type cutoff_top_n: int
:param num_processes: Number of parallel processes.
:type num_processes: int
:param scorer: External scorer for partially decoded sentence, e.g. word
count or language model.
:type scorer: Scorer
:param hot_words: Map of words (keys) to their assigned boosts (values)
:type hot_words: map{string:float}
:param num_results: Number of beams to return.
:type num_results: int
:return: List of tuples of confidence and sentence as decoding
results, in descending order of the confidence.
:rtype: list
"""
batch_beam_results = swigwrapper.ctc_beam_search_decoder_batch(
probs_seq,
seq_lengths,
alphabet,
beam_size,
num_processes,
cutoff_prob,
cutoff_top_n,
scorer,
hot_words,
num_results,
)
batch_beam_results = [
[(res.confidence, alphabet.Decode(res.tokens)) for res in beam_results]
for beam_results in batch_beam_results
]
return batch_beam_results