Merge pull request #2818 from lissyx/validate_label_locale+multiprocessing.notDummy
Validate label locale+multiprocessing.not dummy
This commit is contained in:
commit
ff9a720764
|
@ -7,7 +7,7 @@ import os
|
|||
import sys
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
import argparse
|
||||
from util.importers import get_importers_parser
|
||||
import glob
|
||||
import pandas
|
||||
import tarfile
|
||||
|
@ -81,7 +81,7 @@ def preprocess_data(tgz_file, target_dir):
|
|||
|
||||
def main():
|
||||
# https://www.openslr.org/62/
|
||||
parser = argparse.ArgumentParser(description='Import aidatatang_200zh corpus')
|
||||
parser = get_importers_parser(description='Import aidatatang_200zh corpus')
|
||||
parser.add_argument('tgz_file', help='Path to aidatatang_200zh.tgz')
|
||||
parser.add_argument('--target_dir', default='', help='Target folder to extract files into and put the resulting CSVs. Defaults to same folder as the main archive.')
|
||||
params = parser.parse_args()
|
||||
|
|
|
@ -7,7 +7,7 @@ import os
|
|||
import sys
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
import argparse
|
||||
from util.importers import get_importers_parser
|
||||
import glob
|
||||
import tarfile
|
||||
import pandas
|
||||
|
@ -80,7 +80,7 @@ def preprocess_data(tgz_file, target_dir):
|
|||
|
||||
def main():
|
||||
# http://www.openslr.org/33/
|
||||
parser = argparse.ArgumentParser(description='Import AISHELL corpus')
|
||||
parser = get_importers_parser(description='Import AISHELL corpus')
|
||||
parser.add_argument('aishell_tgz_file', help='Path to data_aishell.tgz')
|
||||
parser.add_argument('--target_dir', default='', help='Target folder to extract files into and put the resulting CSVs. Defaults to same folder as the main archive.')
|
||||
params = parser.parse_args()
|
||||
|
|
|
@ -15,10 +15,8 @@ import progressbar
|
|||
|
||||
from glob import glob
|
||||
from os import path
|
||||
from threading import RLock
|
||||
from multiprocessing.dummy import Pool
|
||||
from multiprocessing import cpu_count
|
||||
from util.text import validate_label
|
||||
from multiprocessing import Pool
|
||||
from util.importers import validate_label_eng as validate_label, get_counter, get_imported_samples, print_import_report
|
||||
from util.downloader import maybe_download, SIMPLE_BAR
|
||||
|
||||
FIELDNAMES = ['wav_filename', 'wav_filesize', 'transcript']
|
||||
|
@ -53,27 +51,8 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
for source_csv in glob(path.join(extracted_dir, '*.csv')):
|
||||
_maybe_convert_set(extracted_dir, source_csv, path.join(target_dir, os.path.split(source_csv)[-1]))
|
||||
|
||||
def _maybe_convert_set(extracted_dir, source_csv, target_csv):
|
||||
print()
|
||||
if path.exists(target_csv):
|
||||
print('Found CSV file "%s" - not importing "%s".' % (target_csv, source_csv))
|
||||
return
|
||||
print('No CSV file "%s" - importing "%s"...' % (target_csv, source_csv))
|
||||
samples = []
|
||||
with open(source_csv) as source_csv_file:
|
||||
reader = csv.DictReader(source_csv_file)
|
||||
for row in reader:
|
||||
samples.append((row['filename'], row['text']))
|
||||
|
||||
# Mutable counters for the concurrent embedded routine
|
||||
counter = { 'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0 }
|
||||
lock = RLock()
|
||||
num_samples = len(samples)
|
||||
rows = []
|
||||
|
||||
def one_sample(sample):
|
||||
mp3_filename = path.join(*(sample[0].split('/')))
|
||||
mp3_filename = path.join(extracted_dir, mp3_filename)
|
||||
mp3_filename = sample[0]
|
||||
# Storing wav files next to the mp3 ones - just with a different suffix
|
||||
wav_filename = path.splitext(mp3_filename)[0] + ".wav"
|
||||
_maybe_convert_wav(mp3_filename, wav_filename)
|
||||
|
@ -83,7 +62,8 @@ def _maybe_convert_set(extracted_dir, source_csv, target_csv):
|
|||
file_size = path.getsize(wav_filename)
|
||||
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
|
||||
label = validate_label(sample[1])
|
||||
with lock:
|
||||
rows = []
|
||||
counter = get_counter()
|
||||
if file_size == -1:
|
||||
# Excluding samples that failed upon conversion
|
||||
counter['failed'] += 1
|
||||
|
@ -100,11 +80,32 @@ def _maybe_convert_set(extracted_dir, source_csv, target_csv):
|
|||
# This one is good - keep it for the target CSV
|
||||
rows.append((wav_filename, file_size, label))
|
||||
counter['all'] += 1
|
||||
counter['total_time'] += frames
|
||||
return (counter, rows)
|
||||
|
||||
def _maybe_convert_set(extracted_dir, source_csv, target_csv):
|
||||
print()
|
||||
if path.exists(target_csv):
|
||||
print('Found CSV file "%s" - not importing "%s".' % (target_csv, source_csv))
|
||||
return
|
||||
print('No CSV file "%s" - importing "%s"...' % (target_csv, source_csv))
|
||||
samples = []
|
||||
with open(source_csv) as source_csv_file:
|
||||
reader = csv.DictReader(source_csv_file)
|
||||
for row in reader:
|
||||
samples.append((os.path.join(extracted_dir, row['filename']), row['text']))
|
||||
|
||||
# Mutable counters for the concurrent embedded routine
|
||||
counter = get_counter()
|
||||
num_samples = len(samples)
|
||||
rows = []
|
||||
|
||||
print('Importing mp3 files...')
|
||||
pool = Pool(cpu_count())
|
||||
pool = Pool()
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, _ in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
counter += processed[0]
|
||||
rows += processed[1]
|
||||
bar.update(i)
|
||||
bar.update(num_samples)
|
||||
pool.close()
|
||||
|
@ -118,15 +119,11 @@ def _maybe_convert_set(extracted_dir, source_csv, target_csv):
|
|||
for filename, file_size, transcript in bar(rows):
|
||||
writer.writerow({ 'wav_filename': filename, 'wav_filesize': file_size, 'transcript': transcript })
|
||||
|
||||
print('Imported %d samples.' % (counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long']))
|
||||
if counter['failed'] > 0:
|
||||
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
|
||||
if counter['invalid_label'] > 0:
|
||||
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
|
||||
if counter['too_short'] > 0:
|
||||
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
|
||||
if counter['too_long'] > 0:
|
||||
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], MAX_SECS))
|
||||
imported_samples = get_imported_samples(counter)
|
||||
assert counter['all'] == num_samples
|
||||
assert len(rows) == imported_samples
|
||||
|
||||
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
||||
|
||||
def _maybe_convert_wav(mp3_filename, wav_filename):
|
||||
if not path.exists(wav_filename):
|
||||
|
|
|
@ -16,18 +16,15 @@ sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
|||
|
||||
import csv
|
||||
import sox
|
||||
import argparse
|
||||
import subprocess
|
||||
import progressbar
|
||||
import unicodedata
|
||||
|
||||
from os import path
|
||||
from threading import RLock
|
||||
from multiprocessing.dummy import Pool
|
||||
from multiprocessing import cpu_count
|
||||
from multiprocessing import Pool
|
||||
from util.downloader import SIMPLE_BAR
|
||||
from util.text import Alphabet, validate_label
|
||||
from util.helpers import secs_to_hours
|
||||
from util.text import Alphabet
|
||||
from util.importers import get_importers_parser, get_validate_label, get_counter, get_imported_samples, print_import_report
|
||||
|
||||
|
||||
FIELDNAMES = ['wav_filename', 'wav_filesize', 'transcript']
|
||||
|
@ -35,34 +32,16 @@ SAMPLE_RATE = 16000
|
|||
MAX_SECS = 10
|
||||
|
||||
|
||||
def _preprocess_data(tsv_dir, audio_dir, label_filter, space_after_every_character=False):
|
||||
def _preprocess_data(tsv_dir, audio_dir, space_after_every_character=False):
|
||||
for dataset in ['train', 'test', 'dev', 'validated', 'other']:
|
||||
input_tsv = path.join(path.abspath(tsv_dir), dataset+".tsv")
|
||||
if os.path.isfile(input_tsv):
|
||||
print("Loading TSV file: ", input_tsv)
|
||||
_maybe_convert_set(input_tsv, audio_dir, label_filter, space_after_every_character)
|
||||
|
||||
|
||||
def _maybe_convert_set(input_tsv, audio_dir, label_filter, space_after_every_character=None):
|
||||
output_csv = path.join(audio_dir, os.path.split(input_tsv)[-1].replace('tsv', 'csv'))
|
||||
print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
|
||||
|
||||
# Get audiofile path and transcript for each sentence in tsv
|
||||
samples = []
|
||||
with open(input_tsv, encoding='utf-8') as input_tsv_file:
|
||||
reader = csv.DictReader(input_tsv_file, delimiter='\t')
|
||||
for row in reader:
|
||||
samples.append((row['path'], row['sentence']))
|
||||
|
||||
# Keep track of how many samples are good vs. problematic
|
||||
counter = {'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0, 'total_time': 0}
|
||||
lock = RLock()
|
||||
num_samples = len(samples)
|
||||
rows = []
|
||||
_maybe_convert_set(input_tsv, audio_dir, space_after_every_character)
|
||||
|
||||
def one_sample(sample):
|
||||
""" Take a audio file, and optionally convert it to 16kHz WAV """
|
||||
mp3_filename = path.join(audio_dir, sample[0])
|
||||
mp3_filename = sample[0]
|
||||
if not path.splitext(mp3_filename.lower())[1] == '.mp3':
|
||||
mp3_filename += ".mp3"
|
||||
# Storing wav files next to the mp3 ones - just with a different suffix
|
||||
|
@ -73,8 +52,9 @@ def _maybe_convert_set(input_tsv, audio_dir, label_filter, space_after_every_cha
|
|||
if path.exists(wav_filename):
|
||||
file_size = path.getsize(wav_filename)
|
||||
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
|
||||
label = label_filter(sample[1])
|
||||
with lock:
|
||||
label = label_filter_fun(sample[1])
|
||||
rows = []
|
||||
counter = get_counter()
|
||||
if file_size == -1:
|
||||
# Excluding samples that failed upon conversion
|
||||
counter['failed'] += 1
|
||||
|
@ -93,10 +73,29 @@ def _maybe_convert_set(input_tsv, audio_dir, label_filter, space_after_every_cha
|
|||
counter['all'] += 1
|
||||
counter['total_time'] += frames
|
||||
|
||||
return (counter, rows)
|
||||
|
||||
def _maybe_convert_set(input_tsv, audio_dir, space_after_every_character=None):
|
||||
output_csv = path.join(audio_dir, os.path.split(input_tsv)[-1].replace('tsv', 'csv'))
|
||||
print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
|
||||
|
||||
# Get audiofile path and transcript for each sentence in tsv
|
||||
samples = []
|
||||
with open(input_tsv, encoding='utf-8') as input_tsv_file:
|
||||
reader = csv.DictReader(input_tsv_file, delimiter='\t')
|
||||
for row in reader:
|
||||
samples.append((path.join(audio_dir, row['path']), row['sentence']))
|
||||
|
||||
counter = get_counter()
|
||||
num_samples = len(samples)
|
||||
rows = []
|
||||
|
||||
print("Importing mp3 files...")
|
||||
pool = Pool(cpu_count())
|
||||
pool = Pool()
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, _ in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
counter += processed[0]
|
||||
rows += processed[1]
|
||||
bar.update(i)
|
||||
bar.update(num_samples)
|
||||
pool.close()
|
||||
|
@ -113,16 +112,11 @@ def _maybe_convert_set(input_tsv, audio_dir, label_filter, space_after_every_cha
|
|||
else:
|
||||
writer.writerow({'wav_filename': filename, 'wav_filesize': file_size, 'transcript': transcript})
|
||||
|
||||
print('Imported %d samples.' % (counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long']))
|
||||
if counter['failed'] > 0:
|
||||
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
|
||||
if counter['invalid_label'] > 0:
|
||||
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
|
||||
if counter['too_short'] > 0:
|
||||
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
|
||||
if counter['too_long'] > 0:
|
||||
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], MAX_SECS))
|
||||
print('Final amount of imported audio: %s.' % secs_to_hours(counter['total_time'] / SAMPLE_RATE))
|
||||
imported_samples = get_imported_samples(counter)
|
||||
assert counter['all'] == num_samples
|
||||
assert len(rows) == imported_samples
|
||||
|
||||
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
||||
|
||||
|
||||
def _maybe_convert_wav(mp3_filename, wav_filename):
|
||||
|
@ -136,7 +130,7 @@ def _maybe_convert_wav(mp3_filename, wav_filename):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
PARSER = argparse.ArgumentParser(description='Import CommonVoice v2.0 corpora')
|
||||
PARSER = get_importers_parser(description='Import CommonVoice v2.0 corpora')
|
||||
PARSER.add_argument('tsv_dir', help='Directory containing tsv files')
|
||||
PARSER.add_argument('--audio_dir', help='Directory containing the audio clips - defaults to "<tsv_dir>/clips"')
|
||||
PARSER.add_argument('--filter_alphabet', help='Exclude samples with characters not in provided alphabet')
|
||||
|
@ -144,6 +138,7 @@ if __name__ == "__main__":
|
|||
PARSER.add_argument('--space_after_every_character', action='store_true', help='To help transcript join by white space')
|
||||
|
||||
PARAMS = PARSER.parse_args()
|
||||
validate_label = get_validate_label(PARAMS)
|
||||
|
||||
AUDIO_DIR = PARAMS.audio_dir if PARAMS.audio_dir else os.path.join(PARAMS.tsv_dir, 'clips')
|
||||
ALPHABET = Alphabet(PARAMS.filter_alphabet) if PARAMS.filter_alphabet else None
|
||||
|
@ -161,4 +156,4 @@ if __name__ == "__main__":
|
|||
label = None
|
||||
return label
|
||||
|
||||
_preprocess_data(PARAMS.tsv_dir, AUDIO_DIR, label_filter_fun, PARAMS.space_after_every_character)
|
||||
_preprocess_data(PARAMS.tsv_dir, AUDIO_DIR, PARAMS.space_after_every_character)
|
||||
|
|
|
@ -19,7 +19,7 @@ import unicodedata
|
|||
import librosa
|
||||
import soundfile # <= Has an external dependency on libsndfile
|
||||
|
||||
from util.text import validate_label
|
||||
from util.importers import validate_label_eng as validate_label
|
||||
|
||||
def _download_and_preprocess_data(data_dir):
|
||||
# Assume data_dir contains extracted LDC2004S13, LDC2004T19, LDC2005S13, LDC2005T19
|
||||
|
|
|
@ -7,7 +7,7 @@ import os
|
|||
import sys
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
import argparse
|
||||
from util.importers import get_importers_parser
|
||||
import glob
|
||||
import numpy as np
|
||||
import pandas
|
||||
|
@ -81,7 +81,7 @@ def preprocess_data(tgz_file, target_dir):
|
|||
|
||||
def main():
|
||||
# https://www.openslr.org/38/
|
||||
parser = argparse.ArgumentParser(description='Import Free ST Chinese Mandarin corpus')
|
||||
parser = get_importers_parser(description='Import Free ST Chinese Mandarin corpus')
|
||||
parser.add_argument('tgz_file', help='Path to ST-CMDS-20170001_1-OS.tar.gz')
|
||||
parser.add_argument('--target_dir', default='', help='Target folder to extract files into and put the resulting CSVs. Defaults to same folder as the main archive.')
|
||||
params = parser.parse_args()
|
||||
|
|
|
@ -1,12 +1,16 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# Make sure we can import stuff from util/
|
||||
# This script needs to be run from the root of the DeepSpeech repository
|
||||
import os
|
||||
import csv
|
||||
import sys
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
import csv
|
||||
import math
|
||||
import urllib
|
||||
import logging
|
||||
import argparse
|
||||
from util.importers import get_importers_parser, get_validate_label
|
||||
import subprocess
|
||||
from os import path
|
||||
from pathlib import Path
|
||||
|
@ -15,8 +19,6 @@ import swifter
|
|||
import pandas as pd
|
||||
from sox import Transformer
|
||||
|
||||
from util.text import validate_label
|
||||
|
||||
|
||||
__version__ = "0.1.0"
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
@ -38,7 +40,7 @@ def parse_args(args):
|
|||
Returns:
|
||||
:obj:`argparse.Namespace`: command line parameters namespace
|
||||
"""
|
||||
parser = argparse.ArgumentParser(
|
||||
parser = get_importers_parser(
|
||||
description="Imports GramVaani data for Deep Speech"
|
||||
)
|
||||
parser.add_argument(
|
||||
|
@ -286,6 +288,7 @@ def main(args):
|
|||
args ([str]): command line parameter list
|
||||
"""
|
||||
args = parse_args(args)
|
||||
validate_label = get_validate_label(args)
|
||||
setup_logging(args.loglevel)
|
||||
_logger.info("Starting GramVaani importer...")
|
||||
_logger.info("Starting loading GramVaani csv...")
|
||||
|
|
|
@ -3,13 +3,13 @@ from __future__ import absolute_import, division, print_function
|
|||
|
||||
# Make sure we can import stuff from util/
|
||||
# This script needs to be run from the root of the DeepSpeech repository
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
from util.importers import get_importers_parser, get_validate_label, get_counter, get_imported_samples, print_import_report
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import re
|
||||
import sox
|
||||
|
@ -18,17 +18,14 @@ import subprocess
|
|||
import progressbar
|
||||
import unicodedata
|
||||
|
||||
from threading import RLock
|
||||
from multiprocessing.dummy import Pool
|
||||
from multiprocessing import cpu_count
|
||||
from multiprocessing import Pool
|
||||
from util.downloader import SIMPLE_BAR
|
||||
|
||||
from os import path
|
||||
from glob import glob
|
||||
|
||||
from util.downloader import maybe_download
|
||||
from util.text import Alphabet, validate_label
|
||||
from util.helpers import secs_to_hours
|
||||
from util.text import Alphabet
|
||||
|
||||
FIELDNAMES = ['wav_filename', 'wav_filesize', 'transcript']
|
||||
SAMPLE_RATE = 16000
|
||||
|
@ -61,32 +58,9 @@ def _maybe_extract(target_dir, extracted_data, archive_path):
|
|||
else:
|
||||
print('Found directory "%s" - not extracting it from archive.' % archive_path)
|
||||
|
||||
def _maybe_convert_sets(target_dir, extracted_data):
|
||||
extracted_dir = path.join(target_dir, extracted_data)
|
||||
# override existing CSV with normalized one
|
||||
target_csv_template = os.path.join(target_dir, ARCHIVE_DIR_NAME + '_' + ARCHIVE_NAME.replace('.zip', '_{}.csv'))
|
||||
if os.path.isfile(target_csv_template):
|
||||
return
|
||||
|
||||
ogg_root_dir = os.path.join(extracted_dir, ARCHIVE_NAME.replace('.zip', ''))
|
||||
|
||||
# Get audiofile path and transcript for each sentence in tsv
|
||||
samples = []
|
||||
glob_dir = os.path.join(ogg_root_dir, '**/*.ogg')
|
||||
for record in glob(glob_dir, recursive=True):
|
||||
record_file = record.replace(ogg_root_dir + os.path.sep, '')
|
||||
if record_filter(record_file):
|
||||
samples.append((record_file, os.path.splitext(os.path.basename(record_file))[0]))
|
||||
|
||||
# Keep track of how many samples are good vs. problematic
|
||||
counter = {'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0, 'total_time': 0}
|
||||
lock = RLock()
|
||||
num_samples = len(samples)
|
||||
rows = []
|
||||
|
||||
def one_sample(sample):
|
||||
""" Take a audio file, and optionally convert it to 16kHz WAV """
|
||||
ogg_filename = path.join(ogg_root_dir, sample[0])
|
||||
ogg_filename = sample[0]
|
||||
# Storing wav files next to the ogg ones - just with a different suffix
|
||||
wav_filename = path.splitext(ogg_filename)[0] + ".wav"
|
||||
_maybe_convert_wav(ogg_filename, wav_filename)
|
||||
|
@ -96,7 +70,9 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
file_size = path.getsize(wav_filename)
|
||||
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
|
||||
label = label_filter(sample[1])
|
||||
with lock:
|
||||
rows = []
|
||||
counter = get_counter()
|
||||
|
||||
if file_size == -1:
|
||||
# Excluding samples that failed upon conversion
|
||||
counter['failed'] += 1
|
||||
|
@ -115,10 +91,35 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
counter['all'] += 1
|
||||
counter['total_time'] += frames
|
||||
|
||||
return (counter, rows)
|
||||
|
||||
def _maybe_convert_sets(target_dir, extracted_data):
|
||||
extracted_dir = path.join(target_dir, extracted_data)
|
||||
# override existing CSV with normalized one
|
||||
target_csv_template = os.path.join(target_dir, ARCHIVE_DIR_NAME + '_' + ARCHIVE_NAME.replace('.zip', '_{}.csv'))
|
||||
if os.path.isfile(target_csv_template):
|
||||
return
|
||||
|
||||
ogg_root_dir = os.path.join(extracted_dir, ARCHIVE_NAME.replace('.zip', ''))
|
||||
|
||||
# Get audiofile path and transcript for each sentence in tsv
|
||||
samples = []
|
||||
glob_dir = os.path.join(ogg_root_dir, '**/*.ogg')
|
||||
for record in glob(glob_dir, recursive=True):
|
||||
record_file = record.replace(ogg_root_dir + os.path.sep, '')
|
||||
if record_filter(record_file):
|
||||
samples.append((os.path.join(ogg_root_dir, record_file), os.path.splitext(os.path.basename(record_file))[0]))
|
||||
|
||||
counter = get_counter()
|
||||
num_samples = len(samples)
|
||||
rows = []
|
||||
|
||||
print("Importing ogg files...")
|
||||
pool = Pool(cpu_count())
|
||||
pool = Pool()
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, _ in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
counter += processed[0]
|
||||
rows += processed[1]
|
||||
bar.update(i)
|
||||
bar.update(num_samples)
|
||||
pool.close()
|
||||
|
@ -152,16 +153,11 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
transcript=transcript,
|
||||
))
|
||||
|
||||
print('Imported %d samples.' % (counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long']))
|
||||
if counter['failed'] > 0:
|
||||
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
|
||||
if counter['invalid_label'] > 0:
|
||||
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
|
||||
if counter['too_short'] > 0:
|
||||
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
|
||||
if counter['too_long'] > 0:
|
||||
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], MAX_SECS))
|
||||
print('Final amount of imported audio: %s.' % secs_to_hours(counter['total_time'] / SAMPLE_RATE))
|
||||
imported_samples = get_imported_samples(counter)
|
||||
assert counter['all'] == num_samples
|
||||
assert len(rows) == imported_samples
|
||||
|
||||
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
||||
|
||||
def _maybe_convert_wav(ogg_filename, wav_filename):
|
||||
if not path.exists(wav_filename):
|
||||
|
@ -173,7 +169,7 @@ def _maybe_convert_wav(ogg_filename, wav_filename):
|
|||
print('SoX processing error', ex, ogg_filename, wav_filename)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description='Importer for LinguaLibre dataset. Check https://lingualibre.fr/wiki/Help:Download_from_LinguaLibre for details.')
|
||||
parser = get_importers_parser(description='Importer for LinguaLibre dataset. Check https://lingualibre.fr/wiki/Help:Download_from_LinguaLibre for details.')
|
||||
parser.add_argument(dest='target_dir')
|
||||
parser.add_argument('--qId', type=int, required=True, help='LinguaLibre language qId')
|
||||
parser.add_argument('--iso639-3', type=str, required=True, help='ISO639-3 language code')
|
||||
|
@ -186,6 +182,7 @@ def handle_args():
|
|||
if __name__ == "__main__":
|
||||
CLI_ARGS = handle_args()
|
||||
ALPHABET = Alphabet(CLI_ARGS.filter_alphabet) if CLI_ARGS.filter_alphabet else None
|
||||
validate_label = get_validate_label(CLI_ARGS)
|
||||
|
||||
bogus_regexes = []
|
||||
if CLI_ARGS.bogus_records:
|
||||
|
|
|
@ -4,29 +4,27 @@ from __future__ import absolute_import, division, print_function
|
|||
|
||||
# Make sure we can import stuff from util/
|
||||
# This script needs to be run from the root of the DeepSpeech repository
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
from util.importers import get_importers_parser, get_validate_label, get_counter, get_imported_samples, print_import_report
|
||||
|
||||
import csv
|
||||
import subprocess
|
||||
import progressbar
|
||||
import unicodedata
|
||||
import tarfile
|
||||
|
||||
from threading import RLock
|
||||
from multiprocessing.dummy import Pool
|
||||
from multiprocessing import cpu_count
|
||||
from multiprocessing import Pool
|
||||
from util.downloader import SIMPLE_BAR
|
||||
|
||||
from os import path
|
||||
from glob import glob
|
||||
|
||||
from util.downloader import maybe_download
|
||||
from util.text import Alphabet, validate_label
|
||||
from util.helpers import secs_to_hours
|
||||
from util.text import Alphabet
|
||||
|
||||
FIELDNAMES = ['wav_filename', 'wav_filesize', 'transcript']
|
||||
SAMPLE_RATE = 16000
|
||||
|
@ -62,6 +60,38 @@ def _maybe_extract(target_dir, extracted_data, archive_path):
|
|||
print('Found directory "%s" - not extracting it from archive.' % archive_path)
|
||||
|
||||
|
||||
def one_sample(sample):
|
||||
""" Take a audio file, and optionally convert it to 16kHz WAV """
|
||||
wav_filename = sample[0]
|
||||
file_size = -1
|
||||
frames = 0
|
||||
if path.exists(wav_filename):
|
||||
file_size = path.getsize(wav_filename)
|
||||
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
|
||||
label = label_filter(sample[1])
|
||||
counter = get_counter()
|
||||
rows = []
|
||||
|
||||
if file_size == -1:
|
||||
# Excluding samples that failed upon conversion
|
||||
print("conversion failure", wav_filename)
|
||||
counter['failed'] += 1
|
||||
elif label is None:
|
||||
# Excluding samples that failed on label validation
|
||||
counter['invalid_label'] += 1
|
||||
elif int(frames/SAMPLE_RATE*1000/15/2) < len(str(label)):
|
||||
# Excluding samples that are too short to fit the transcript
|
||||
counter['too_short'] += 1
|
||||
elif frames/SAMPLE_RATE > MAX_SECS:
|
||||
# Excluding very long samples to keep a reasonable batch-size
|
||||
counter['too_long'] += 1
|
||||
else:
|
||||
# This one is good - keep it for the target CSV
|
||||
rows.append((wav_filename, file_size, label))
|
||||
counter['all'] += 1
|
||||
counter['total_time'] += frames
|
||||
return (counter, rows)
|
||||
|
||||
def _maybe_convert_sets(target_dir, extracted_data):
|
||||
extracted_dir = path.join(target_dir, extracted_data)
|
||||
# override existing CSV with normalized one
|
||||
|
@ -84,44 +114,16 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
transcript = re[2]
|
||||
samples.append((audio, transcript))
|
||||
|
||||
# Keep track of how many samples are good vs. problematic
|
||||
counter = {'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0, 'total_time': 0}
|
||||
lock = RLock()
|
||||
counter = get_counter()
|
||||
num_samples = len(samples)
|
||||
rows = []
|
||||
|
||||
def one_sample(sample):
|
||||
""" Take a audio file, and optionally convert it to 16kHz WAV """
|
||||
wav_filename = sample[0]
|
||||
file_size = -1
|
||||
frames = 0
|
||||
if path.exists(wav_filename):
|
||||
file_size = path.getsize(wav_filename)
|
||||
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
|
||||
label = label_filter(sample[1])
|
||||
with lock:
|
||||
if file_size == -1:
|
||||
# Excluding samples that failed upon conversion
|
||||
counter['failed'] += 1
|
||||
elif label is None:
|
||||
# Excluding samples that failed on label validation
|
||||
counter['invalid_label'] += 1
|
||||
elif int(frames/SAMPLE_RATE*1000/15/2) < len(str(label)):
|
||||
# Excluding samples that are too short to fit the transcript
|
||||
counter['too_short'] += 1
|
||||
elif frames/SAMPLE_RATE > MAX_SECS:
|
||||
# Excluding very long samples to keep a reasonable batch-size
|
||||
counter['too_long'] += 1
|
||||
else:
|
||||
# This one is good - keep it for the target CSV
|
||||
rows.append((wav_filename, file_size, label))
|
||||
counter['all'] += 1
|
||||
counter['total_time'] += frames
|
||||
|
||||
print("Importing WAV files...")
|
||||
pool = Pool(cpu_count())
|
||||
pool = Pool()
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, _ in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
counter += processed[0]
|
||||
rows += processed[1]
|
||||
bar.update(i)
|
||||
bar.update(num_samples)
|
||||
pool.close()
|
||||
|
@ -155,20 +157,14 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
transcript=transcript,
|
||||
))
|
||||
|
||||
print('Imported %d samples.' % (counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long']))
|
||||
if counter['failed'] > 0:
|
||||
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
|
||||
if counter['invalid_label'] > 0:
|
||||
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
|
||||
if counter['too_short'] > 0:
|
||||
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
|
||||
if counter['too_long'] > 0:
|
||||
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], MAX_SECS))
|
||||
print('Final amount of imported audio: %s.' % secs_to_hours(counter['total_time'] / SAMPLE_RATE))
|
||||
imported_samples = get_imported_samples(counter)
|
||||
assert counter['all'] == num_samples
|
||||
assert len(rows) == imported_samples
|
||||
|
||||
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description='Importer for M-AILABS dataset. https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/.')
|
||||
parser = get_importers_parser(description='Importer for M-AILABS dataset. https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/.')
|
||||
parser.add_argument(dest='target_dir')
|
||||
parser.add_argument('--filter_alphabet', help='Exclude samples with characters not in provided alphabet')
|
||||
parser.add_argument('--normalize', action='store_true', help='Converts diacritic characters to their base ones')
|
||||
|
@ -181,6 +177,7 @@ if __name__ == "__main__":
|
|||
CLI_ARGS = handle_args()
|
||||
ALPHABET = Alphabet(CLI_ARGS.filter_alphabet) if CLI_ARGS.filter_alphabet else None
|
||||
SKIP_LIST = filter(None, CLI_ARGS.skiplist.split(','))
|
||||
validate_label = get_validate_label(CLI_ARGS)
|
||||
|
||||
def label_filter(label):
|
||||
if CLI_ARGS.normalize:
|
||||
|
|
|
@ -7,7 +7,7 @@ import os
|
|||
import sys
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
import argparse
|
||||
from util.importers import get_importers_parser
|
||||
import glob
|
||||
import pandas
|
||||
import tarfile
|
||||
|
@ -99,7 +99,7 @@ def preprocess_data(folder_with_archives, target_dir):
|
|||
|
||||
def main():
|
||||
# https://openslr.org/68/
|
||||
parser = argparse.ArgumentParser(description='Import MAGICDATA corpus')
|
||||
parser = get_importers_parser(description='Import MAGICDATA corpus')
|
||||
parser.add_argument('folder_with_archives', help='Path to folder containing magicdata_{train,dev,test}.tar.gz')
|
||||
parser.add_argument('--target_dir', default='', help='Target folder to extract files into and put the resulting CSVs. Defaults to a folder called magicdata next to the archives')
|
||||
params = parser.parse_args()
|
||||
|
|
|
@ -7,7 +7,7 @@ import os
|
|||
import sys
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
import argparse
|
||||
from util.importers import get_importers_parser
|
||||
import glob
|
||||
import json
|
||||
import numpy as np
|
||||
|
@ -93,7 +93,7 @@ def preprocess_data(tgz_file, target_dir):
|
|||
|
||||
def main():
|
||||
# https://www.openslr.org/47/
|
||||
parser = argparse.ArgumentParser(description='Import Primewords Chinese corpus set 1')
|
||||
parser = get_importers_parser(description='Import Primewords Chinese corpus set 1')
|
||||
parser.add_argument('tgz_file', help='Path to primewords_md_2018_set1.tar.gz')
|
||||
parser.add_argument('--target_dir', default='', help='Target folder to extract files into and put the resulting CSVs. Defaults to same folder as the main archive.')
|
||||
params = parser.parse_args()
|
||||
|
|
|
@ -3,13 +3,12 @@ from __future__ import absolute_import, division, print_function
|
|||
|
||||
# Make sure we can import stuff from util/
|
||||
# This script needs to be run from the root of the DeepSpeech repository
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
from util.importers import get_importers_parser, get_validate_label, get_counter, get_imported_samples, print_import_report
|
||||
|
||||
import csv
|
||||
import re
|
||||
import sox
|
||||
|
@ -19,16 +18,14 @@ import progressbar
|
|||
import unicodedata
|
||||
import tarfile
|
||||
|
||||
from threading import RLock
|
||||
from multiprocessing.dummy import Pool
|
||||
from multiprocessing import cpu_count
|
||||
from multiprocessing import Pool
|
||||
from util.downloader import SIMPLE_BAR
|
||||
|
||||
from os import path
|
||||
from glob import glob
|
||||
|
||||
from util.downloader import maybe_download
|
||||
from util.text import Alphabet, validate_label
|
||||
from util.text import Alphabet
|
||||
from util.helpers import secs_to_hours
|
||||
|
||||
FIELDNAMES = ['wav_filename', 'wav_filesize', 'transcript']
|
||||
|
@ -63,6 +60,37 @@ def _maybe_extract(target_dir, extracted_data, archive_path):
|
|||
else:
|
||||
print('Found directory "%s" - not extracting it from archive.' % archive_path)
|
||||
|
||||
def one_sample(sample):
|
||||
""" Take a audio file, and optionally convert it to 16kHz WAV """
|
||||
wav_filename = sample[0]
|
||||
file_size = -1
|
||||
frames = 0
|
||||
if path.exists(wav_filename):
|
||||
file_size = path.getsize(wav_filename)
|
||||
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
|
||||
label = label_filter(sample[1])
|
||||
counter = get_counter()
|
||||
rows = []
|
||||
if file_size == -1:
|
||||
# Excluding samples that failed upon conversion
|
||||
counter['failed'] += 1
|
||||
elif label is None:
|
||||
# Excluding samples that failed on label validation
|
||||
counter['invalid_label'] += 1
|
||||
elif int(frames/SAMPLE_RATE*1000/15/2) < len(str(label)):
|
||||
# Excluding samples that are too short to fit the transcript
|
||||
counter['too_short'] += 1
|
||||
elif frames/SAMPLE_RATE > MAX_SECS:
|
||||
# Excluding very long samples to keep a reasonable batch-size
|
||||
counter['too_long'] += 1
|
||||
else:
|
||||
# This one is good - keep it for the target CSV
|
||||
rows.append((wav_filename, file_size, label))
|
||||
counter['all'] += 1
|
||||
counter['total_time'] += frames
|
||||
|
||||
return (counter, rows)
|
||||
|
||||
def _maybe_convert_sets(target_dir, extracted_data):
|
||||
extracted_dir = path.join(target_dir, extracted_data)
|
||||
# override existing CSV with normalized one
|
||||
|
@ -113,43 +141,16 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
samples.append((record, transcripts[record_file]))
|
||||
|
||||
# Keep track of how many samples are good vs. problematic
|
||||
counter = {'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0, 'total_time': 0}
|
||||
lock = RLock()
|
||||
counter = get_counter()
|
||||
num_samples = len(samples)
|
||||
rows = []
|
||||
|
||||
def one_sample(sample):
|
||||
""" Take a audio file, and optionally convert it to 16kHz WAV """
|
||||
wav_filename = sample[0]
|
||||
file_size = -1
|
||||
frames = 0
|
||||
if path.exists(wav_filename):
|
||||
file_size = path.getsize(wav_filename)
|
||||
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
|
||||
label = label_filter(sample[1])
|
||||
with lock:
|
||||
if file_size == -1:
|
||||
# Excluding samples that failed upon conversion
|
||||
counter['failed'] += 1
|
||||
elif label is None:
|
||||
# Excluding samples that failed on label validation
|
||||
counter['invalid_label'] += 1
|
||||
elif int(frames/SAMPLE_RATE*1000/15/2) < len(str(label)):
|
||||
# Excluding samples that are too short to fit the transcript
|
||||
counter['too_short'] += 1
|
||||
elif frames/SAMPLE_RATE > MAX_SECS:
|
||||
# Excluding very long samples to keep a reasonable batch-size
|
||||
counter['too_long'] += 1
|
||||
else:
|
||||
# This one is good - keep it for the target CSV
|
||||
rows.append((wav_filename, file_size, label))
|
||||
counter['all'] += 1
|
||||
counter['total_time'] += frames
|
||||
|
||||
print("Importing WAV files...")
|
||||
pool = Pool(cpu_count())
|
||||
pool = Pool()
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, _ in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
counter += processed[0]
|
||||
rows += processed[1]
|
||||
bar.update(i)
|
||||
bar.update(num_samples)
|
||||
pool.close()
|
||||
|
@ -183,19 +184,14 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
transcript=transcript,
|
||||
))
|
||||
|
||||
print('Imported %d samples.' % (counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long']))
|
||||
if counter['failed'] > 0:
|
||||
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
|
||||
if counter['invalid_label'] > 0:
|
||||
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
|
||||
if counter['too_short'] > 0:
|
||||
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
|
||||
if counter['too_long'] > 0:
|
||||
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], MAX_SECS))
|
||||
print('Final amount of imported audio: %s.' % secs_to_hours(counter['total_time'] / SAMPLE_RATE))
|
||||
imported_samples = get_imported_samples(counter)
|
||||
assert counter['all'] == num_samples
|
||||
assert len(rows) == imported_samples
|
||||
|
||||
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description='Importer for African Accented French dataset. More information on http://www.openslr.org/57/.')
|
||||
parser = get_importers_parser(description='Importer for African Accented French dataset. More information on http://www.openslr.org/57/.')
|
||||
parser.add_argument(dest='target_dir')
|
||||
parser.add_argument('--filter_alphabet', help='Exclude samples with characters not in provided alphabet')
|
||||
parser.add_argument('--normalize', action='store_true', help='Converts diacritic characters to their base ones')
|
||||
|
@ -204,6 +200,7 @@ def handle_args():
|
|||
if __name__ == "__main__":
|
||||
CLI_ARGS = handle_args()
|
||||
ALPHABET = Alphabet(CLI_ARGS.filter_alphabet) if CLI_ARGS.filter_alphabet else None
|
||||
validate_label = get_validate_label(CLI_ARGS)
|
||||
|
||||
def label_filter(label):
|
||||
if CLI_ARGS.normalize:
|
||||
|
|
|
@ -20,7 +20,7 @@ import wave
|
|||
import codecs
|
||||
import tarfile
|
||||
import requests
|
||||
from util.text import validate_label
|
||||
from util.importers import validate_label_eng as validate_label
|
||||
import librosa
|
||||
import soundfile # <= Has an external dependency on libsndfile
|
||||
|
||||
|
|
|
@ -27,7 +27,8 @@ from os import path
|
|||
from glob import glob
|
||||
from collections import Counter
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from util.text import Alphabet, validate_label
|
||||
from util.text import Alphabet
|
||||
from util.importers import validate_label_eng as validate_label
|
||||
from util.downloader import maybe_download, SIMPLE_BAR
|
||||
|
||||
SWC_URL = "https://www2.informatik.uni-hamburg.de/nats/pub/SWC/SWC_{language}.tar"
|
||||
|
|
|
@ -3,14 +3,13 @@ from __future__ import absolute_import, division, print_function
|
|||
|
||||
# Make sure we can import stuff from util/
|
||||
# This script needs to be run from the root of the DeepSpeech repository
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
||||
|
||||
from util.importers import get_importers_parser, get_validate_label, get_counter, get_imported_samples, print_import_report
|
||||
|
||||
import csv
|
||||
import unidecode
|
||||
import zipfile
|
||||
|
@ -18,16 +17,12 @@ import sox
|
|||
import subprocess
|
||||
import progressbar
|
||||
|
||||
from threading import RLock
|
||||
from multiprocessing.dummy import Pool
|
||||
from multiprocessing import cpu_count
|
||||
from multiprocessing import Pool
|
||||
from util.downloader import SIMPLE_BAR
|
||||
|
||||
from os import path
|
||||
|
||||
from util.downloader import maybe_download
|
||||
from util.text import validate_label
|
||||
from util.helpers import secs_to_hours
|
||||
|
||||
FIELDNAMES = ['wav_filename', 'wav_filesize', 'transcript']
|
||||
SAMPLE_RATE = 16000
|
||||
|
@ -61,30 +56,9 @@ def _maybe_extract(target_dir, extracted_data, archive_path):
|
|||
print('Found directory "%s" - not extracting it from archive.' % archive_path)
|
||||
|
||||
|
||||
def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
|
||||
extracted_dir = path.join(target_dir, extracted_data)
|
||||
# override existing CSV with normalized one
|
||||
target_csv_template = os.path.join(target_dir, 'ts_' + ARCHIVE_NAME + '_{}.csv')
|
||||
if os.path.isfile(target_csv_template):
|
||||
return
|
||||
path_to_original_csv = os.path.join(extracted_dir, 'data.csv')
|
||||
with open(path_to_original_csv) as csv_f:
|
||||
data = [
|
||||
d for d in csv.DictReader(csv_f, delimiter=',')
|
||||
if float(d['duration']) <= MAX_SECS
|
||||
]
|
||||
|
||||
# Keep track of how many samples are good vs. problematic
|
||||
counter = {'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0, 'total_time': 0}
|
||||
lock = RLock()
|
||||
num_samples = len(data)
|
||||
rows = []
|
||||
|
||||
wav_root_dir = extracted_dir
|
||||
|
||||
def one_sample(sample):
|
||||
""" Take a audio file, and optionally convert it to 16kHz WAV """
|
||||
orig_filename = path.join(wav_root_dir, sample['path'])
|
||||
orig_filename = sample['path']
|
||||
# Storing wav files next to the wav ones - just with a different suffix
|
||||
wav_filename = path.splitext(orig_filename)[0] + ".converted.wav"
|
||||
_maybe_convert_wav(orig_filename, wav_filename)
|
||||
|
@ -94,7 +68,11 @@ def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
|
|||
file_size = path.getsize(wav_filename)
|
||||
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
|
||||
label = sample['text']
|
||||
with lock:
|
||||
|
||||
rows = []
|
||||
|
||||
# Keep track of how many samples are good vs. problematic
|
||||
counter = get_counter()
|
||||
if file_size == -1:
|
||||
# Excluding samples that failed upon conversion
|
||||
counter['failed'] += 1
|
||||
|
@ -113,10 +91,35 @@ def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
|
|||
counter['all'] += 1
|
||||
counter['total_time'] += frames
|
||||
|
||||
print("Importing wav files...")
|
||||
pool = Pool(cpu_count())
|
||||
return (counter, rows)
|
||||
|
||||
|
||||
def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
|
||||
extracted_dir = path.join(target_dir, extracted_data)
|
||||
# override existing CSV with normalized one
|
||||
target_csv_template = os.path.join(target_dir, 'ts_' + ARCHIVE_NAME + '_{}.csv')
|
||||
if os.path.isfile(target_csv_template):
|
||||
return
|
||||
path_to_original_csv = os.path.join(extracted_dir, 'data.csv')
|
||||
with open(path_to_original_csv) as csv_f:
|
||||
data = [
|
||||
d for d in csv.DictReader(csv_f, delimiter=',')
|
||||
if float(d['duration']) <= MAX_SECS
|
||||
]
|
||||
|
||||
for line in data:
|
||||
line['path'] = os.path.join(extracted_dir, line['path'])
|
||||
|
||||
num_samples = len(data)
|
||||
rows = []
|
||||
counter = get_counter()
|
||||
|
||||
print("Importing {} wav files...".format(num_samples))
|
||||
pool = Pool()
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, _ in enumerate(pool.imap_unordered(one_sample, data), start=1):
|
||||
for i, processed in enumerate(pool.imap_unordered(one_sample, data), start=1):
|
||||
counter += processed[0]
|
||||
rows += processed[1]
|
||||
bar.update(i)
|
||||
bar.update(num_samples)
|
||||
pool.close()
|
||||
|
@ -133,7 +136,6 @@ def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
|
|||
test_writer.writeheader()
|
||||
|
||||
for i, item in enumerate(rows):
|
||||
print('item', item)
|
||||
transcript = validate_label(cleanup_transcript(item[2], english_compatible=english_compatible))
|
||||
if not transcript:
|
||||
continue
|
||||
|
@ -151,16 +153,11 @@ def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
|
|||
transcript=transcript,
|
||||
))
|
||||
|
||||
print('Imported %d samples.' % (counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long']))
|
||||
if counter['failed'] > 0:
|
||||
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
|
||||
if counter['invalid_label'] > 0:
|
||||
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
|
||||
if counter['too_short'] > 0:
|
||||
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
|
||||
if counter['too_long'] > 0:
|
||||
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], MAX_SECS))
|
||||
print('Final amount of imported audio: %s.' % secs_to_hours(counter['total_time'] / SAMPLE_RATE))
|
||||
imported_samples = get_imported_samples(counter)
|
||||
assert counter['all'] == num_samples
|
||||
assert len(rows) == imported_samples
|
||||
|
||||
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
||||
|
||||
def _maybe_convert_wav(orig_filename, wav_filename):
|
||||
if not path.exists(wav_filename):
|
||||
|
@ -186,7 +183,7 @@ def cleanup_transcript(text, english_compatible=False):
|
|||
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description='Importer for TrainingSpeech dataset.')
|
||||
parser = get_importers_parser(description='Importer for TrainingSpeech dataset.')
|
||||
parser.add_argument(dest='target_dir')
|
||||
parser.add_argument('--english-compatible', action='store_true', dest='english_compatible', help='Remove diactrics and other non-ascii chars.')
|
||||
return parser.parse_args()
|
||||
|
@ -194,4 +191,5 @@ def handle_args():
|
|||
|
||||
if __name__ == "__main__":
|
||||
cli_args = handle_args()
|
||||
validate_label = get_validate_label(cli_args)
|
||||
_download_and_preprocess_data(cli_args.target_dir, cli_args.english_compatible)
|
||||
|
|
|
@ -21,7 +21,8 @@ import xml.etree.cElementTree as ET
|
|||
|
||||
from os import path
|
||||
from collections import Counter
|
||||
from util.text import Alphabet, validate_label
|
||||
from util.text import Alphabet
|
||||
from util.importers import validate_label_eng as validate_label
|
||||
from util.downloader import maybe_download, SIMPLE_BAR
|
||||
|
||||
TUDA_VERSION = 'v2'
|
||||
|
|
|
@ -14,13 +14,14 @@ import sys
|
|||
|
||||
sys.path.insert(1, os.path.join(sys.path[0], ".."))
|
||||
|
||||
from util.importers import get_counter, get_imported_samples, print_import_report
|
||||
|
||||
import re
|
||||
import librosa
|
||||
import progressbar
|
||||
|
||||
from os import path
|
||||
from multiprocessing.dummy import Pool
|
||||
from multiprocessing import cpu_count
|
||||
from multiprocessing import Pool
|
||||
from util.downloader import maybe_download, SIMPLE_BAR
|
||||
from zipfile import ZipFile
|
||||
|
||||
|
@ -61,23 +62,27 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
|||
extracted_dir = path.join(target_dir, extracted_data, "wav48")
|
||||
txt_dir = path.join(target_dir, extracted_data, "txt")
|
||||
|
||||
cnt = 1
|
||||
directory = os.path.expanduser(extracted_dir)
|
||||
srtd = len(sorted(os.listdir(directory)))
|
||||
all_samples = []
|
||||
|
||||
for target in sorted(os.listdir(directory)):
|
||||
print(f"\nSpeaker {cnt} of {srtd}")
|
||||
_maybe_convert_set(path.join(extracted_dir, os.path.split(target)[-1]))
|
||||
cnt += 1
|
||||
all_samples += _maybe_prepare_set(path.join(extracted_dir, os.path.split(target)[-1]))
|
||||
|
||||
num_samples = len(all_samples)
|
||||
print(f"Converting wav files to {SAMPLE_RATE}hz...")
|
||||
pool = Pool()
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, _ in enumerate(pool.imap_unordered(one_sample, all_samples), start=1):
|
||||
bar.update(i)
|
||||
bar.update(num_samples)
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
_write_csv(extracted_dir, txt_dir, target_dir)
|
||||
|
||||
|
||||
def _maybe_convert_set(target_csv):
|
||||
def one_sample(sample):
|
||||
if is_audio_file(sample):
|
||||
sample = os.path.join(target_csv, sample)
|
||||
|
||||
y, sr = librosa.load(sample, sr=16000)
|
||||
|
||||
# Trim the beginning and ending silence
|
||||
|
@ -89,19 +94,14 @@ def _maybe_convert_set(target_csv):
|
|||
else:
|
||||
librosa.output.write_wav(sample, yt, sr)
|
||||
|
||||
|
||||
def _maybe_prepare_set(target_csv):
|
||||
samples = sorted(os.listdir(target_csv))
|
||||
|
||||
num_samples = len(samples)
|
||||
|
||||
print(f"Converting wav files to {SAMPLE_RATE}hz...")
|
||||
pool = Pool(cpu_count())
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, _ in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
bar.update(i)
|
||||
bar.update(num_samples)
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
new_samples = []
|
||||
for s in samples:
|
||||
new_samples.append(os.path.join(target_csv, s))
|
||||
samples = new_samples
|
||||
return samples
|
||||
|
||||
def _write_csv(extracted_dir, txt_dir, target_dir):
|
||||
print(f"Writing CSV file")
|
||||
|
@ -196,8 +196,8 @@ def load_txts(directory):
|
|||
AUDIO_EXTENSIONS = [".wav", "WAV"]
|
||||
|
||||
|
||||
def is_audio_file(filename):
|
||||
return any(filename.endswith(extension) for extension in AUDIO_EXTENSIONS)
|
||||
def is_audio_file(filepath):
|
||||
return any(os.path.basename(filepath).endswith(extension) for extension in AUDIO_EXTENSIONS)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1 +1,3 @@
|
|||
absl-py
|
||||
argparse
|
||||
semver
|
||||
|
|
|
@ -0,0 +1,77 @@
|
|||
import argparse
|
||||
import importlib
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
|
||||
from util.helpers import secs_to_hours
|
||||
from collections import Counter
|
||||
|
||||
def get_counter():
|
||||
return Counter({'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0, 'total_time': 0})
|
||||
|
||||
def get_imported_samples(counter):
|
||||
return counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long'] - counter['invalid_label']
|
||||
|
||||
def print_import_report(counter, sample_rate, max_secs):
|
||||
print('Imported %d samples.' % (get_imported_samples(counter)))
|
||||
if counter['failed'] > 0:
|
||||
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
|
||||
if counter['invalid_label'] > 0:
|
||||
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
|
||||
if counter['too_short'] > 0:
|
||||
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
|
||||
if counter['too_long'] > 0:
|
||||
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], max_secs))
|
||||
print('Final amount of imported audio: %s.' % secs_to_hours(counter['total_time'] / sample_rate))
|
||||
|
||||
def get_importers_parser(description):
|
||||
parser = argparse.ArgumentParser(description=description)
|
||||
parser.add_argument('--validate_label_locale', help='Path to a Python file defining a |validate_label| function for your locale. WARNING: THIS WILL ADD THIS FILE\'s DIRECTORY INTO PYTHONPATH.')
|
||||
return parser
|
||||
|
||||
def get_validate_label(args):
|
||||
"""
|
||||
Expects an argparse.Namespace argument to search for validate_label_locale parameter.
|
||||
If found, this will modify Python's library search path and add the directory of the
|
||||
file pointed by the validate_label_locale argument.
|
||||
|
||||
:param args: The importer's CLI argument object
|
||||
:type args: argparse.Namespace
|
||||
|
||||
:return: The user-supplied validate_label function
|
||||
:type: function
|
||||
"""
|
||||
if 'validate_label_locale' not in args or (args.validate_label_locale is None):
|
||||
print('WARNING: No --validate_label_locale specified, your might end with inconsistent dataset.')
|
||||
return validate_label_eng
|
||||
if not os.path.exists(os.path.abspath(args.validate_label_locale)):
|
||||
print('ERROR: Inexistent --validate_label_locale specified. Please check.')
|
||||
return None
|
||||
module_dir = os.path.abspath(os.path.dirname(args.validate_label_locale))
|
||||
sys.path.insert(1, module_dir)
|
||||
fname = os.path.basename(args.validate_label_locale).replace('.py', '')
|
||||
locale_module = importlib.import_module(fname, package=None)
|
||||
return locale_module.validate_label
|
||||
|
||||
# Validate and normalize transcriptions. Returns a cleaned version of the label
|
||||
# or None if it's invalid.
|
||||
def validate_label_eng(label):
|
||||
# For now we can only handle [a-z ']
|
||||
if re.search(r"[0-9]|[(<\[\]&*{]", label) is not None:
|
||||
return None
|
||||
|
||||
label = label.replace("-", " ")
|
||||
label = label.replace("_", " ")
|
||||
label = re.sub("[ ]{2,}", " ", label)
|
||||
label = label.replace(".", "")
|
||||
label = label.replace(",", "")
|
||||
label = label.replace(";", "")
|
||||
label = label.replace("?", "")
|
||||
label = label.replace("!", "")
|
||||
label = label.replace(":", "")
|
||||
label = label.replace("\"", "")
|
||||
label = label.strip()
|
||||
label = label.lower()
|
||||
|
||||
return label if label else None
|
|
@ -0,0 +1,2 @@
|
|||
def validate_label(label):
|
||||
return label
|
|
@ -0,0 +1,38 @@
|
|||
import unittest
|
||||
|
||||
from argparse import Namespace
|
||||
from .importers import validate_label_eng, get_validate_label
|
||||
|
||||
class TestValidateLabelEng(unittest.TestCase):
|
||||
|
||||
def test_numbers(self):
|
||||
label = validate_label_eng("this is a 1 2 3 test")
|
||||
self.assertEqual(label, None)
|
||||
|
||||
class TestGetValidateLabel(unittest.TestCase):
|
||||
|
||||
def test_no_validate_label_locale(self):
|
||||
f = get_validate_label(Namespace())
|
||||
self.assertEqual(f('toto'), 'toto')
|
||||
self.assertEqual(f('toto1234'), None)
|
||||
self.assertEqual(f('toto1234[{[{[]'), None)
|
||||
|
||||
def test_validate_label_locale_default(self):
|
||||
f = get_validate_label(Namespace(validate_label_locale=None))
|
||||
self.assertEqual(f('toto'), 'toto')
|
||||
self.assertEqual(f('toto1234'), None)
|
||||
self.assertEqual(f('toto1234[{[{[]'), None)
|
||||
|
||||
def test_get_validate_label_missing(self):
|
||||
args = Namespace(validate_label_locale='util/test_data/validate_locale_ger.py')
|
||||
f = get_validate_label(args)
|
||||
self.assertEqual(f, None)
|
||||
|
||||
def test_get_validate_label(self):
|
||||
args = Namespace(validate_label_locale='util/test_data/validate_locale_fra.py')
|
||||
f = get_validate_label(args)
|
||||
l = f('toto')
|
||||
self.assertEqual(l, 'toto')
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
23
util/text.py
23
util/text.py
|
@ -1,7 +1,6 @@
|
|||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import numpy as np
|
||||
import re
|
||||
import struct
|
||||
|
||||
from six.moves import range
|
||||
|
@ -166,25 +165,3 @@ def levenshtein(a, b):
|
|||
current[j] = min(add, delete, change)
|
||||
|
||||
return current[n]
|
||||
|
||||
# Validate and normalize transcriptions. Returns a cleaned version of the label
|
||||
# or None if it's invalid.
|
||||
def validate_label(label):
|
||||
# For now we can only handle [a-z ']
|
||||
if re.search(r"[0-9]|[(<\[\]&*{]", label) is not None:
|
||||
return None
|
||||
|
||||
label = label.replace("-", " ")
|
||||
label = label.replace("_", " ")
|
||||
label = re.sub("[ ]{2,}", " ", label)
|
||||
label = label.replace(".", "")
|
||||
label = label.replace(",", "")
|
||||
label = label.replace(";", "")
|
||||
label = label.replace("?", "")
|
||||
label = label.replace("!", "")
|
||||
label = label.replace(":", "")
|
||||
label = label.replace("\"", "")
|
||||
label = label.strip()
|
||||
label = label.lower()
|
||||
|
||||
return label if label else None
|
||||
|
|
Loading…
Reference in New Issue