Address review comments
This commit is contained in:
parent
f7a715d506
commit
fd3fbcaa78
@ -79,7 +79,7 @@ def dense(name, x, units, dropout_rate=None, relu=True):
|
|||||||
|
|
||||||
|
|
||||||
def rnn_impl_lstmblockfusedcell(x, seq_length, previous_state, reuse):
|
def rnn_impl_lstmblockfusedcell(x, seq_length, previous_state, reuse):
|
||||||
with tf.variable_scope('cudnn_lstm/rnn/multi_rnn_cell/cell_0'):
|
with tfv1.variable_scope('cudnn_lstm/rnn/multi_rnn_cell/cell_0'):
|
||||||
fw_cell = tf.contrib.rnn.LSTMBlockFusedCell(Config.n_cell_dim,
|
fw_cell = tf.contrib.rnn.LSTMBlockFusedCell(Config.n_cell_dim,
|
||||||
reuse=reuse,
|
reuse=reuse,
|
||||||
name='cudnn_compatible_lstm_cell')
|
name='cudnn_compatible_lstm_cell')
|
||||||
@ -95,14 +95,20 @@ def rnn_impl_lstmblockfusedcell(x, seq_length, previous_state, reuse):
|
|||||||
def rnn_impl_cudnn_rnn(x, seq_length, previous_state, _):
|
def rnn_impl_cudnn_rnn(x, seq_length, previous_state, _):
|
||||||
assert previous_state is None # 'Passing previous state not supported with CuDNN backend'
|
assert previous_state is None # 'Passing previous state not supported with CuDNN backend'
|
||||||
|
|
||||||
# Forward direction cell:
|
# Hack: CudnnLSTM works similarly to Keras layers in that when you instantiate
|
||||||
|
# the object it creates the variables, and then you just call it several times
|
||||||
|
# to enable variable re-use. Because all of our code is structure in an old
|
||||||
|
# school TensorFlow structure where you can just call tf.get_variable again with
|
||||||
|
# reuse=True to reuse variables, we can't easily make use of the object oriented
|
||||||
|
# way CudnnLSTM is implemented, so we save a singleton instance in the function,
|
||||||
|
# emulating a static function variable.
|
||||||
if not rnn_impl_cudnn_rnn.cell:
|
if not rnn_impl_cudnn_rnn.cell:
|
||||||
with tf.variable_scope('rnn'):
|
# Forward direction cell:
|
||||||
fw_cell = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers=1,
|
fw_cell = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers=1,
|
||||||
num_units=Config.n_cell_dim,
|
num_units=Config.n_cell_dim,
|
||||||
input_mode='linear_input',
|
input_mode='linear_input',
|
||||||
direction='unidirectional',
|
direction='unidirectional',
|
||||||
dtype=tf.float32)
|
dtype=tf.float32)
|
||||||
rnn_impl_cudnn_rnn.cell = fw_cell
|
rnn_impl_cudnn_rnn.cell = fw_cell
|
||||||
|
|
||||||
output, output_state = rnn_impl_cudnn_rnn.cell(inputs=x,
|
output, output_state = rnn_impl_cudnn_rnn.cell(inputs=x,
|
||||||
@ -110,18 +116,11 @@ def rnn_impl_cudnn_rnn(x, seq_length, previous_state, _):
|
|||||||
|
|
||||||
return output, output_state
|
return output, output_state
|
||||||
|
|
||||||
# Hack: CudnnLSTM works similarly to Keras layers in that when you instantiate
|
|
||||||
# the object it creates the variables, and then you just call it several times
|
|
||||||
# to enable variable re-use. Because all of our code is structure in an old
|
|
||||||
# school TensorFlow structure where you can just call tf.get_variable again with
|
|
||||||
# reuse=True to reuse variables, we can't easily make use of the object oriented
|
|
||||||
# way CudnnLSTM is implemented, so we save a singleton instance in the function,
|
|
||||||
# emulating a static function variable.
|
|
||||||
rnn_impl_cudnn_rnn.cell = None
|
rnn_impl_cudnn_rnn.cell = None
|
||||||
|
|
||||||
|
|
||||||
def rnn_impl_static_rnn(x, seq_length, previous_state, reuse):
|
def rnn_impl_static_rnn(x, seq_length, previous_state, reuse):
|
||||||
with tf.variable_scope('cudnn_lstm/rnn/multi_rnn_cell'):
|
with tfv1.variable_scope('cudnn_lstm/rnn/multi_rnn_cell'):
|
||||||
# Forward direction cell:
|
# Forward direction cell:
|
||||||
fw_cell = tfv1.nn.rnn_cell.LSTMCell(Config.n_cell_dim,
|
fw_cell = tfv1.nn.rnn_cell.LSTMCell(Config.n_cell_dim,
|
||||||
reuse=reuse,
|
reuse=reuse,
|
||||||
@ -611,7 +610,7 @@ def create_inference_graph(batch_size=1, n_steps=16, tflite=False):
|
|||||||
|
|
||||||
if batch_size <= 0:
|
if batch_size <= 0:
|
||||||
# no state management since n_step is expected to be dynamic too (see below)
|
# no state management since n_step is expected to be dynamic too (see below)
|
||||||
previous_states = None
|
previous_state = None
|
||||||
else:
|
else:
|
||||||
previous_state_c = tfv1.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_c')
|
previous_state_c = tfv1.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_c')
|
||||||
previous_state_h = tfv1.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_h')
|
previous_state_h = tfv1.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_h')
|
||||||
@ -698,16 +697,7 @@ def export():
|
|||||||
output_names = ",".join(output_names_tensors + output_names_ops)
|
output_names = ",".join(output_names_tensors + output_names_ops)
|
||||||
|
|
||||||
# Create a saver using variables from the above newly created graph
|
# Create a saver using variables from the above newly created graph
|
||||||
# Training graph uses LSTMFusedCell, but the TFLite inference graph uses
|
saver = tfv1.train.Saver()
|
||||||
# a static RNN with a normal cell, so we need to rewrite the names to
|
|
||||||
# match the training weights when restoring.
|
|
||||||
def fixup(name):
|
|
||||||
if name.startswith('rnn/lstm_cell/'):
|
|
||||||
return name.replace('rnn/lstm_cell/', 'rnn/cudnn_compatible_lstm_cell/')
|
|
||||||
return name
|
|
||||||
|
|
||||||
mapping = {fixup(v.op.name): v for v in tf.global_variables()}
|
|
||||||
saver = tfv1.train.Saver(mapping)
|
|
||||||
|
|
||||||
# Restore variables from training checkpoint
|
# Restore variables from training checkpoint
|
||||||
checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
|
checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
|
||||||
|
@ -55,7 +55,7 @@ def create_flags():
|
|||||||
|
|
||||||
f.DEFINE_integer('inter_op_parallelism_threads', 0, 'number of inter-op parallelism threads - see tf.ConfigProto for more details. USE OF THIS FLAG IS UNSUPPORTED')
|
f.DEFINE_integer('inter_op_parallelism_threads', 0, 'number of inter-op parallelism threads - see tf.ConfigProto for more details. USE OF THIS FLAG IS UNSUPPORTED')
|
||||||
f.DEFINE_integer('intra_op_parallelism_threads', 0, 'number of intra-op parallelism threads - see tf.ConfigProto for more details. USE OF THIS FLAG IS UNSUPPORTED')
|
f.DEFINE_integer('intra_op_parallelism_threads', 0, 'number of intra-op parallelism threads - see tf.ConfigProto for more details. USE OF THIS FLAG IS UNSUPPORTED')
|
||||||
f.DEFINE_boolean('use_cudnn_rnn', False, 'use CuDNN RNN backend for training on GPU')
|
f.DEFINE_boolean('use_cudnn_rnn', False, 'use CuDNN RNN backend for training on GPU. Note that checkpoints created with this flag can only be used with CuDNN RNN, i.e. fine tuning on a CPU device will not work')
|
||||||
|
|
||||||
# Sample limits
|
# Sample limits
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user