From f5e7dfc4b737fe13f3d2479f9acc1a9c760679ad Mon Sep 17 00:00:00 2001 From: Reuben Morais Date: Fri, 2 Nov 2018 13:51:55 -0300 Subject: [PATCH] Add Python/NumPy bindings to ctcdecode --- native_client/ctcdecode/COPYING | 5 + native_client/ctcdecode/LICENSE.paddlepaddle | 202 ++ .../ctcdecode/{LICENSE => LICENSE.parlance} | 3 +- native_client/ctcdecode/Makefile | 18 + native_client/ctcdecode/README.mozilla | 2 - native_client/ctcdecode/__init__.py | 106 + native_client/ctcdecode/numpy.i | 3183 +++++++++++++++++ native_client/ctcdecode/setup.cfg | 16 + native_client/ctcdecode/setup.py | 147 + native_client/ctcdecode/swigwrapper.i | 70 + 10 files changed, 3749 insertions(+), 3 deletions(-) create mode 100644 native_client/ctcdecode/COPYING create mode 100644 native_client/ctcdecode/LICENSE.paddlepaddle rename native_client/ctcdecode/{LICENSE => LICENSE.parlance} (93%) create mode 100644 native_client/ctcdecode/Makefile delete mode 100644 native_client/ctcdecode/README.mozilla create mode 100644 native_client/ctcdecode/__init__.py create mode 100644 native_client/ctcdecode/numpy.i create mode 100644 native_client/ctcdecode/setup.cfg create mode 100644 native_client/ctcdecode/setup.py create mode 100644 native_client/ctcdecode/swigwrapper.i diff --git a/native_client/ctcdecode/COPYING b/native_client/ctcdecode/COPYING new file mode 100644 index 00000000..cdd4241f --- /dev/null +++ b/native_client/ctcdecode/COPYING @@ -0,0 +1,5 @@ +Decoder sources originally imported from https://github.com/parlance/ctcdecode, commit 140b45860cec6671fb0bf6dbb675073241c0f9b0 +Decoder sources are under the MIT license (LICENSE.parlance). + +Binding code adapted from https://github.com/PaddlePaddle/DeepSpeech/tree/develop/decoders/swig, commit 3ea19973c66a6a10320888ba47a8857bebf5abfa +Binding code are under the Apache License (LICENSE.paddlepaddle). diff --git a/native_client/ctcdecode/LICENSE.paddlepaddle b/native_client/ctcdecode/LICENSE.paddlepaddle new file mode 100644 index 00000000..9f3afceb --- /dev/null +++ b/native_client/ctcdecode/LICENSE.paddlepaddle @@ -0,0 +1,202 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2018 PaddlePaddle + Copyright 2018 Mozilla Corporation + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/native_client/ctcdecode/LICENSE b/native_client/ctcdecode/LICENSE.parlance similarity index 93% rename from native_client/ctcdecode/LICENSE rename to native_client/ctcdecode/LICENSE.parlance index 4faebd01..1d113197 100644 --- a/native_client/ctcdecode/LICENSE +++ b/native_client/ctcdecode/LICENSE.parlance @@ -1,6 +1,7 @@ MIT License -Copyright (c) 2017 Ryan Leary +Copyright (c) 2017-2018 Ryan Leary +Copyright (c) 2018 Mozilla Corporation Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal diff --git a/native_client/ctcdecode/Makefile b/native_client/ctcdecode/Makefile new file mode 100644 index 00000000..98d8e753 --- /dev/null +++ b/native_client/ctcdecode/Makefile @@ -0,0 +1,18 @@ +.PHONY: bindings clean + +include ../definitions.mk + +NUM_PROCESSES ?= 1 + +all: bindings + +clean: + rm -rf dist temp_build ds_ctcdecoder.egg-info + rm -f swigwrapper_wrap.cpp swigwrapper.py + +bindings: + pip install --quiet $(PYTHON_PACKAGES) wheel==0.31.0 setuptools==39.1.0 + AS=$(AS) CC=$(CC) CXX=$(CXX) LD=$(LD) CFLAGS="$(CFLAGS) $(CXXFLAGS)" LDFLAGS="$(LDFLAGS_NEEDED)" $(PYTHON_PATH) $(NUMPY_INCLUDE) python ./setup.py build --num_processes $(NUM_PROCESSES) $(PYTHON_PLATFORM_NAME) $(SETUP_FLAGS) + find temp_build -type f -name "*.o" -delete + AS=$(AS) CC=$(CC) CXX=$(CXX) LD=$(LD) CFLAGS="$(CFLAGS) $(CXXFLAGS)" LDFLAGS="$(LDFLAGS_NEEDED)" $(PYTHON_PATH) $(NUMPY_INCLUDE) python ./setup.py bdist_wheel --num_processes $(NUM_PROCESSES) $(PYTHON_PLATFORM_NAME) $(SETUP_FLAGS) + rm -rf temp_build \ No newline at end of file diff --git a/native_client/ctcdecode/README.mozilla b/native_client/ctcdecode/README.mozilla deleted file mode 100644 index badd6e34..00000000 --- a/native_client/ctcdecode/README.mozilla +++ /dev/null @@ -1,2 +0,0 @@ -Originally imported from https://github.com/parlance/ctcdecode, commit 140b45860cec6671fb0bf6dbb675073241c0f9b0 - diff --git a/native_client/ctcdecode/__init__.py b/native_client/ctcdecode/__init__.py new file mode 100644 index 00000000..01cf7fdc --- /dev/null +++ b/native_client/ctcdecode/__init__.py @@ -0,0 +1,106 @@ +from __future__ import absolute_import, division, print_function + +from . import swigwrapper + + +class Scorer(swigwrapper.Scorer): + """Wrapper for Scorer. + + :param alpha: Parameter associated with language model. Don't use + language model when alpha = 0. + :type alpha: float + :param beta: Parameter associated with word count. Don't use word + count when beta = 0. + :type beta: float + :model_path: Path to load language model. + :trie_path: Path to trie file (optional). + :alphabet: Alphabet + :type model_path: basestring + """ + + def __init__(self, alpha, beta, model_path, trie_path, alphabet): + swigwrapper.Scorer.__init__(self, alpha, beta, model_path, trie_path, alphabet.config_file()) + + +def ctc_beam_search_decoder(probs_seq, + alphabet, + beam_size, + cutoff_prob=1.0, + cutoff_top_n=40, + ext_scoring_func=None): + """Wrapper for the CTC Beam Search Decoder. + + :param probs_seq: 2-D list of probability distributions over each time + step, with each element being a list of normalized + probabilities over alphabet and blank. + :type probs_seq: 2-D list + :param alphabet: alphabet list. + :alphabet: Alphabet + :param beam_size: Width for beam search. + :type beam_size: int + :param cutoff_prob: Cutoff probability in pruning, + default 1.0, no pruning. + :type cutoff_prob: float + :param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n + characters with highest probs in alphabet will be + used in beam search, default 40. + :type cutoff_top_n: int + :param ext_scoring_func: External scoring function for + partially decoded sentence, e.g. word count + or language model. + :type external_scoring_func: callable + :return: List of tuples of log probability and sentence as decoding + results, in descending order of the probability. + :rtype: list + """ + beam_results = swigwrapper.ctc_beam_search_decoder( + probs_seq, alphabet.config_file(), beam_size, cutoff_prob, cutoff_top_n, + ext_scoring_func) + beam_results = [(res.probability, alphabet.decode(res.tokens)) for res in beam_results] + return beam_results + + +def ctc_beam_search_decoder_batch(probs_seq, + seq_lengths, + alphabet, + beam_size, + num_processes, + cutoff_prob=1.0, + cutoff_top_n=40, + ext_scoring_func=None): + """Wrapper for the batched CTC beam search decoder. + + :param probs_seq: 3-D list with each element as an instance of 2-D list + of probabilities used by ctc_beam_search_decoder(). + :type probs_seq: 3-D list + :param alphabet: alphabet list. + :alphabet: Alphabet + :param beam_size: Width for beam search. + :type beam_size: int + :param num_processes: Number of parallel processes. + :type num_processes: int + :param cutoff_prob: Cutoff probability in alphabet pruning, + default 1.0, no pruning. + :type cutoff_prob: float + :param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n + characters with highest probs in alphabet will be + used in beam search, default 40. + :type cutoff_top_n: int + :param num_processes: Number of parallel processes. + :type num_processes: int + :param ext_scoring_func: External scoring function for + partially decoded sentence, e.g. word count + or language model. + :type external_scoring_function: callable + :return: List of tuples of log probability and sentence as decoding + results, in descending order of the probability. + :rtype: list + """ + batch_beam_results = swigwrapper.ctc_beam_search_decoder_batch( + probs_seq, seq_lengths, alphabet.config_file(), beam_size, num_processes, + cutoff_prob, cutoff_top_n, ext_scoring_func) + batch_beam_results = [ + [(res.probability, alphabet.decode(res.tokens)) for res in beam_results] + for beam_results in batch_beam_results + ] + return batch_beam_results diff --git a/native_client/ctcdecode/numpy.i b/native_client/ctcdecode/numpy.i new file mode 100644 index 00000000..36bb55c9 --- /dev/null +++ b/native_client/ctcdecode/numpy.i @@ -0,0 +1,3183 @@ +/* -*- C -*- (not really, but good for syntax highlighting) */ + +/* + * Copyright (c) 2005-2015, NumPy Developers. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * + * * Neither the name of the NumPy Developers nor the names of any + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifdef SWIGPYTHON + +%{ +#ifndef SWIG_FILE_WITH_INIT +#define NO_IMPORT_ARRAY +#endif +#include "stdio.h" +#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION +#include +%} + +/**********************************************************************/ + +%fragment("NumPy_Backward_Compatibility", "header") +{ +%#if NPY_API_VERSION < 0x00000007 +%#define NPY_ARRAY_DEFAULT NPY_DEFAULT +%#define NPY_ARRAY_FARRAY NPY_FARRAY +%#define NPY_FORTRANORDER NPY_FORTRAN +%#endif +} + +/**********************************************************************/ + +/* The following code originally appeared in + * enthought/kiva/agg/src/numeric.i written by Eric Jones. It was + * translated from C++ to C by John Hunter. Bill Spotz has modified + * it to fix some minor bugs, upgrade from Numeric to numpy (all + * versions), add some comments and functionality, and convert from + * direct code insertion to SWIG fragments. + */ + +%fragment("NumPy_Macros", "header") +{ +/* Macros to extract array attributes. + */ +%#if NPY_API_VERSION < 0x00000007 +%#define is_array(a) ((a) && PyArray_Check((PyArrayObject*)a)) +%#define array_type(a) (int)(PyArray_TYPE((PyArrayObject*)a)) +%#define array_numdims(a) (((PyArrayObject*)a)->nd) +%#define array_dimensions(a) (((PyArrayObject*)a)->dimensions) +%#define array_size(a,i) (((PyArrayObject*)a)->dimensions[i]) +%#define array_strides(a) (((PyArrayObject*)a)->strides) +%#define array_stride(a,i) (((PyArrayObject*)a)->strides[i]) +%#define array_data(a) (((PyArrayObject*)a)->data) +%#define array_descr(a) (((PyArrayObject*)a)->descr) +%#define array_flags(a) (((PyArrayObject*)a)->flags) +%#define array_clearflags(a,f) (((PyArrayObject*)a)->flags) &= ~f +%#define array_enableflags(a,f) (((PyArrayObject*)a)->flags) = f +%#define array_is_fortran(a) (PyArray_ISFORTRAN((PyArrayObject*)a)) +%#else +%#define is_array(a) ((a) && PyArray_Check(a)) +%#define array_type(a) PyArray_TYPE((PyArrayObject*)a) +%#define array_numdims(a) PyArray_NDIM((PyArrayObject*)a) +%#define array_dimensions(a) PyArray_DIMS((PyArrayObject*)a) +%#define array_strides(a) PyArray_STRIDES((PyArrayObject*)a) +%#define array_stride(a,i) PyArray_STRIDE((PyArrayObject*)a,i) +%#define array_size(a,i) PyArray_DIM((PyArrayObject*)a,i) +%#define array_data(a) PyArray_DATA((PyArrayObject*)a) +%#define array_descr(a) PyArray_DESCR((PyArrayObject*)a) +%#define array_flags(a) PyArray_FLAGS((PyArrayObject*)a) +%#define array_enableflags(a,f) PyArray_ENABLEFLAGS((PyArrayObject*)a,f) +%#define array_clearflags(a,f) PyArray_CLEARFLAGS((PyArrayObject*)a,f) +%#define array_is_fortran(a) (PyArray_IS_F_CONTIGUOUS((PyArrayObject*)a)) +%#endif +%#define array_is_contiguous(a) (PyArray_ISCONTIGUOUS((PyArrayObject*)a)) +%#define array_is_native(a) (PyArray_ISNOTSWAPPED((PyArrayObject*)a)) +} + +/**********************************************************************/ + +%fragment("NumPy_Utilities", + "header") +{ + /* Given a PyObject, return a string describing its type. + */ + const char* pytype_string(PyObject* py_obj) + { + if (py_obj == NULL ) return "C NULL value"; + if (py_obj == Py_None ) return "Python None" ; + if (PyCallable_Check(py_obj)) return "callable" ; + if (PyString_Check( py_obj)) return "string" ; + if (PyInt_Check( py_obj)) return "int" ; + if (PyFloat_Check( py_obj)) return "float" ; + if (PyDict_Check( py_obj)) return "dict" ; + if (PyList_Check( py_obj)) return "list" ; + if (PyTuple_Check( py_obj)) return "tuple" ; +%#if PY_MAJOR_VERSION < 3 + if (PyFile_Check( py_obj)) return "file" ; + if (PyModule_Check( py_obj)) return "module" ; + if (PyInstance_Check(py_obj)) return "instance" ; +%#endif + + return "unknown type"; + } + + /* Given a NumPy typecode, return a string describing the type. + */ + const char* typecode_string(int typecode) + { + static const char* type_names[25] = {"bool", + "byte", + "unsigned byte", + "short", + "unsigned short", + "int", + "unsigned int", + "long", + "unsigned long", + "long long", + "unsigned long long", + "float", + "double", + "long double", + "complex float", + "complex double", + "complex long double", + "object", + "string", + "unicode", + "void", + "ntypes", + "notype", + "char", + "unknown"}; + return typecode < 24 ? type_names[typecode] : type_names[24]; + } + + /* Make sure input has correct numpy type. This now just calls + PyArray_EquivTypenums(). + */ + int type_match(int actual_type, + int desired_type) + { + return PyArray_EquivTypenums(actual_type, desired_type); + } + +%#ifdef SWIGPY_USE_CAPSULE + void free_cap(PyObject * cap) + { + void* array = (void*) PyCapsule_GetPointer(cap,SWIGPY_CAPSULE_NAME); + if (array != NULL) free(array); + } +%#endif + + +} + +/**********************************************************************/ + +%fragment("NumPy_Object_to_Array", + "header", + fragment="NumPy_Backward_Compatibility", + fragment="NumPy_Macros", + fragment="NumPy_Utilities") +{ + /* Given a PyObject pointer, cast it to a PyArrayObject pointer if + * legal. If not, set the python error string appropriately and + * return NULL. + */ + PyArrayObject* obj_to_array_no_conversion(PyObject* input, + int typecode) + { + PyArrayObject* ary = NULL; + if (is_array(input) && (typecode == NPY_NOTYPE || + PyArray_EquivTypenums(array_type(input), typecode))) + { + ary = (PyArrayObject*) input; + } + else if is_array(input) + { + const char* desired_type = typecode_string(typecode); + const char* actual_type = typecode_string(array_type(input)); + PyErr_Format(PyExc_TypeError, + "Array of type '%s' required. Array of type '%s' given", + desired_type, actual_type); + ary = NULL; + } + else + { + const char* desired_type = typecode_string(typecode); + const char* actual_type = pytype_string(input); + PyErr_Format(PyExc_TypeError, + "Array of type '%s' required. A '%s' was given", + desired_type, + actual_type); + ary = NULL; + } + return ary; + } + + /* Convert the given PyObject to a NumPy array with the given + * typecode. On success, return a valid PyArrayObject* with the + * correct type. On failure, the python error string will be set and + * the routine returns NULL. + */ + PyArrayObject* obj_to_array_allow_conversion(PyObject* input, + int typecode, + int* is_new_object) + { + PyArrayObject* ary = NULL; + PyObject* py_obj; + if (is_array(input) && (typecode == NPY_NOTYPE || + PyArray_EquivTypenums(array_type(input),typecode))) + { + ary = (PyArrayObject*) input; + *is_new_object = 0; + } + else + { + py_obj = PyArray_FROMANY(input, typecode, 0, 0, NPY_ARRAY_DEFAULT); + /* If NULL, PyArray_FromObject will have set python error value.*/ + ary = (PyArrayObject*) py_obj; + *is_new_object = 1; + } + return ary; + } + + /* Given a PyArrayObject, check to see if it is contiguous. If so, + * return the input pointer and flag it as not a new object. If it is + * not contiguous, create a new PyArrayObject using the original data, + * flag it as a new object and return the pointer. + */ + PyArrayObject* make_contiguous(PyArrayObject* ary, + int* is_new_object, + int min_dims, + int max_dims) + { + PyArrayObject* result; + if (array_is_contiguous(ary)) + { + result = ary; + *is_new_object = 0; + } + else + { + result = (PyArrayObject*) PyArray_ContiguousFromObject((PyObject*)ary, + array_type(ary), + min_dims, + max_dims); + *is_new_object = 1; + } + return result; + } + + /* Given a PyArrayObject, check to see if it is Fortran-contiguous. + * If so, return the input pointer, but do not flag it as not a new + * object. If it is not Fortran-contiguous, create a new + * PyArrayObject using the original data, flag it as a new object + * and return the pointer. + */ + PyArrayObject* make_fortran(PyArrayObject* ary, + int* is_new_object) + { + PyArrayObject* result; + if (array_is_fortran(ary)) + { + result = ary; + *is_new_object = 0; + } + else + { + Py_INCREF(array_descr(ary)); + result = (PyArrayObject*) PyArray_FromArray(ary, + array_descr(ary), +%#if NPY_API_VERSION < 0x00000007 + NPY_FORTRANORDER); +%#else + NPY_ARRAY_F_CONTIGUOUS); +%#endif + *is_new_object = 1; + } + return result; + } + + /* Convert a given PyObject to a contiguous PyArrayObject of the + * specified type. If the input object is not a contiguous + * PyArrayObject, a new one will be created and the new object flag + * will be set. + */ + PyArrayObject* obj_to_array_contiguous_allow_conversion(PyObject* input, + int typecode, + int* is_new_object) + { + int is_new1 = 0; + int is_new2 = 0; + PyArrayObject* ary2; + PyArrayObject* ary1 = obj_to_array_allow_conversion(input, + typecode, + &is_new1); + if (ary1) + { + ary2 = make_contiguous(ary1, &is_new2, 0, 0); + if ( is_new1 && is_new2) + { + Py_DECREF(ary1); + } + ary1 = ary2; + } + *is_new_object = is_new1 || is_new2; + return ary1; + } + + /* Convert a given PyObject to a Fortran-ordered PyArrayObject of the + * specified type. If the input object is not a Fortran-ordered + * PyArrayObject, a new one will be created and the new object flag + * will be set. + */ + PyArrayObject* obj_to_array_fortran_allow_conversion(PyObject* input, + int typecode, + int* is_new_object) + { + int is_new1 = 0; + int is_new2 = 0; + PyArrayObject* ary2; + PyArrayObject* ary1 = obj_to_array_allow_conversion(input, + typecode, + &is_new1); + if (ary1) + { + ary2 = make_fortran(ary1, &is_new2); + if (is_new1 && is_new2) + { + Py_DECREF(ary1); + } + ary1 = ary2; + } + *is_new_object = is_new1 || is_new2; + return ary1; + } +} /* end fragment */ + +/**********************************************************************/ + +%fragment("NumPy_Array_Requirements", + "header", + fragment="NumPy_Backward_Compatibility", + fragment="NumPy_Macros") +{ + /* Test whether a python object is contiguous. If array is + * contiguous, return 1. Otherwise, set the python error string and + * return 0. + */ + int require_contiguous(PyArrayObject* ary) + { + int contiguous = 1; + if (!array_is_contiguous(ary)) + { + PyErr_SetString(PyExc_TypeError, + "Array must be contiguous. A non-contiguous array was given"); + contiguous = 0; + } + return contiguous; + } + + /* Test whether a python object is (C_ or F_) contiguous. If array is + * contiguous, return 1. Otherwise, set the python error string and + * return 0. + */ + int require_c_or_f_contiguous(PyArrayObject* ary) + { + int contiguous = 1; + if (!(array_is_contiguous(ary) || array_is_fortran(ary))) + { + PyErr_SetString(PyExc_TypeError, + "Array must be contiguous (C_ or F_). A non-contiguous array was given"); + contiguous = 0; + } + return contiguous; + } + + /* Require that a numpy array is not byte-swapped. If the array is + * not byte-swapped, return 1. Otherwise, set the python error string + * and return 0. + */ + int require_native(PyArrayObject* ary) + { + int native = 1; + if (!array_is_native(ary)) + { + PyErr_SetString(PyExc_TypeError, + "Array must have native byteorder. " + "A byte-swapped array was given"); + native = 0; + } + return native; + } + + /* Require the given PyArrayObject to have a specified number of + * dimensions. If the array has the specified number of dimensions, + * return 1. Otherwise, set the python error string and return 0. + */ + int require_dimensions(PyArrayObject* ary, + int exact_dimensions) + { + int success = 1; + if (array_numdims(ary) != exact_dimensions) + { + PyErr_Format(PyExc_TypeError, + "Array must have %d dimensions. Given array has %d dimensions", + exact_dimensions, + array_numdims(ary)); + success = 0; + } + return success; + } + + /* Require the given PyArrayObject to have one of a list of specified + * number of dimensions. If the array has one of the specified number + * of dimensions, return 1. Otherwise, set the python error string + * and return 0. + */ + int require_dimensions_n(PyArrayObject* ary, + int* exact_dimensions, + int n) + { + int success = 0; + int i; + char dims_str[255] = ""; + char s[255]; + for (i = 0; i < n && !success; i++) + { + if (array_numdims(ary) == exact_dimensions[i]) + { + success = 1; + } + } + if (!success) + { + for (i = 0; i < n-1; i++) + { + sprintf(s, "%d, ", exact_dimensions[i]); + strcat(dims_str,s); + } + sprintf(s, " or %d", exact_dimensions[n-1]); + strcat(dims_str,s); + PyErr_Format(PyExc_TypeError, + "Array must have %s dimensions. Given array has %d dimensions", + dims_str, + array_numdims(ary)); + } + return success; + } + + /* Require the given PyArrayObject to have a specified shape. If the + * array has the specified shape, return 1. Otherwise, set the python + * error string and return 0. + */ + int require_size(PyArrayObject* ary, + npy_intp* size, + int n) + { + int i; + int success = 1; + size_t len; + char desired_dims[255] = "["; + char s[255]; + char actual_dims[255] = "["; + for(i=0; i < n;i++) + { + if (size[i] != -1 && size[i] != array_size(ary,i)) + { + success = 0; + } + } + if (!success) + { + for (i = 0; i < n; i++) + { + if (size[i] == -1) + { + sprintf(s, "*,"); + } + else + { + sprintf(s, "%ld,", (long int)size[i]); + } + strcat(desired_dims,s); + } + len = strlen(desired_dims); + desired_dims[len-1] = ']'; + for (i = 0; i < n; i++) + { + sprintf(s, "%ld,", (long int)array_size(ary,i)); + strcat(actual_dims,s); + } + len = strlen(actual_dims); + actual_dims[len-1] = ']'; + PyErr_Format(PyExc_TypeError, + "Array must have shape of %s. Given array has shape of %s", + desired_dims, + actual_dims); + } + return success; + } + + /* Require the given PyArrayObject to to be Fortran ordered. If the + * the PyArrayObject is already Fortran ordered, do nothing. Else, + * set the Fortran ordering flag and recompute the strides. + */ + int require_fortran(PyArrayObject* ary) + { + int success = 1; + int nd = array_numdims(ary); + int i; + npy_intp * strides = array_strides(ary); + if (array_is_fortran(ary)) return success; + int n_non_one = 0; + /* Set the Fortran ordered flag */ + const npy_intp *dims = array_dimensions(ary); + for (i=0; i < nd; ++i) + n_non_one += (dims[i] != 1) ? 1 : 0; + if (n_non_one > 1) + array_clearflags(ary,NPY_ARRAY_CARRAY); + array_enableflags(ary,NPY_ARRAY_FARRAY); + /* Recompute the strides */ + strides[0] = strides[nd-1]; + for (i=1; i < nd; ++i) + strides[i] = strides[i-1] * array_size(ary,i-1); + return success; + } +} + +/* Combine all NumPy fragments into one for convenience */ +%fragment("NumPy_Fragments", + "header", + fragment="NumPy_Backward_Compatibility", + fragment="NumPy_Macros", + fragment="NumPy_Utilities", + fragment="NumPy_Object_to_Array", + fragment="NumPy_Array_Requirements") +{ +} + +/* End John Hunter translation (with modifications by Bill Spotz) + */ + +/* %numpy_typemaps() macro + * + * This macro defines a family of 75 typemaps that allow C arguments + * of the form + * + * 1. (DATA_TYPE IN_ARRAY1[ANY]) + * 2. (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) + * 3. (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) + * + * 4. (DATA_TYPE IN_ARRAY2[ANY][ANY]) + * 5. (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + * 6. (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) + * 7. (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + * 8. (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2) + * + * 9. (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) + * 10. (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + * 11. (DATA_TYPE** IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + * 12. (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3) + * 13. (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + * 14. (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3) + * + * 15. (DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY]) + * 16. (DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + * 17. (DATA_TYPE** IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + * 18. (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE* IN_ARRAY4) + * 19. (DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + * 20. (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* IN_FARRAY4) + * + * 21. (DATA_TYPE INPLACE_ARRAY1[ANY]) + * 22. (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1) + * 23. (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1) + * + * 24. (DATA_TYPE INPLACE_ARRAY2[ANY][ANY]) + * 25. (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + * 26. (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2) + * 27. (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + * 28. (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2) + * + * 29. (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY]) + * 30. (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + * 31. (DATA_TYPE** INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + * 32. (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3) + * 33. (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + * 34. (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3) + * + * 35. (DATA_TYPE INPLACE_ARRAY4[ANY][ANY][ANY][ANY]) + * 36. (DATA_TYPE* INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + * 37. (DATA_TYPE** INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + * 38. (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* INPLACE_ARRAY4) + * 39. (DATA_TYPE* INPLACE_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + * 40. (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* INPLACE_FARRAY4) + * + * 41. (DATA_TYPE ARGOUT_ARRAY1[ANY]) + * 42. (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1) + * 43. (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1) + * + * 44. (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY]) + * + * 45. (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) + * + * 46. (DATA_TYPE ARGOUT_ARRAY4[ANY][ANY][ANY][ANY]) + * + * 47. (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1) + * 48. (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1) + * + * 49. (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) + * 50. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2) + * 51. (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) + * 52. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2) + * + * 53. (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) + * 54. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3) + * 55. (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) + * 56. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3) + * + * 57. (DATA_TYPE** ARGOUTVIEW_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) + * 58. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEW_ARRAY4) + * 59. (DATA_TYPE** ARGOUTVIEW_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) + * 60. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEW_FARRAY4) + * + * 61. (DATA_TYPE** ARGOUTVIEWM_ARRAY1, DIM_TYPE* DIM1) + * 62. (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEWM_ARRAY1) + * + * 63. (DATA_TYPE** ARGOUTVIEWM_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) + * 64. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_ARRAY2) + * 65. (DATA_TYPE** ARGOUTVIEWM_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) + * 66. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_FARRAY2) + * + * 67. (DATA_TYPE** ARGOUTVIEWM_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) + * 68. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEWM_ARRAY3) + * 69. (DATA_TYPE** ARGOUTVIEWM_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) + * 70. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEWM_FARRAY3) + * + * 71. (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) + * 72. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEWM_ARRAY4) + * 73. (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) + * 74. (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEWM_FARRAY4) + * + * 75. (DATA_TYPE* INPLACE_ARRAY_FLAT, DIM_TYPE DIM_FLAT) + * + * where "DATA_TYPE" is any type supported by the NumPy module, and + * "DIM_TYPE" is any int-like type suitable for specifying dimensions. + * The difference between "ARRAY" typemaps and "FARRAY" typemaps is + * that the "FARRAY" typemaps expect Fortran ordering of + * multidimensional arrays. In python, the dimensions will not need + * to be specified (except for the "DATA_TYPE* ARGOUT_ARRAY1" + * typemaps). The IN_ARRAYs can be a numpy array or any sequence that + * can be converted to a numpy array of the specified type. The + * INPLACE_ARRAYs must be numpy arrays of the appropriate type. The + * ARGOUT_ARRAYs will be returned as new numpy arrays of the + * appropriate type. + * + * These typemaps can be applied to existing functions using the + * %apply directive. For example: + * + * %apply (double* IN_ARRAY1, int DIM1) {(double* series, int length)}; + * double prod(double* series, int length); + * + * %apply (int DIM1, int DIM2, double* INPLACE_ARRAY2) + * {(int rows, int cols, double* matrix )}; + * void floor(int rows, int cols, double* matrix, double f); + * + * %apply (double IN_ARRAY3[ANY][ANY][ANY]) + * {(double tensor[2][2][2] )}; + * %apply (double ARGOUT_ARRAY3[ANY][ANY][ANY]) + * {(double low[2][2][2] )}; + * %apply (double ARGOUT_ARRAY3[ANY][ANY][ANY]) + * {(double upp[2][2][2] )}; + * void luSplit(double tensor[2][2][2], + * double low[2][2][2], + * double upp[2][2][2] ); + * + * or directly with + * + * double prod(double* IN_ARRAY1, int DIM1); + * + * void floor(int DIM1, int DIM2, double* INPLACE_ARRAY2, double f); + * + * void luSplit(double IN_ARRAY3[ANY][ANY][ANY], + * double ARGOUT_ARRAY3[ANY][ANY][ANY], + * double ARGOUT_ARRAY3[ANY][ANY][ANY]); + */ + +%define %numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE) + +/************************/ +/* Input Array Typemaps */ +/************************/ + +/* Typemap suite for (DATA_TYPE IN_ARRAY1[ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE IN_ARRAY1[ANY]) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE IN_ARRAY1[ANY]) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[1] = { $1_dim0 }; + array = obj_to_array_contiguous_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 1) || + !require_size(array, size, 1)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(freearg) + (DATA_TYPE IN_ARRAY1[ANY]) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[1] = { -1 }; + array = obj_to_array_contiguous_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 1) || + !require_size(array, size, 1)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); +} +%typemap(freearg) + (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[1] = {-1}; + array = obj_to_array_contiguous_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 1) || + !require_size(array, size, 1)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE IN_ARRAY2[ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE IN_ARRAY2[ANY][ANY]) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE IN_ARRAY2[ANY][ANY]) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[2] = { $1_dim0, $1_dim1 }; + array = obj_to_array_contiguous_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 2) || + !require_size(array, size, 2)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(freearg) + (DATA_TYPE IN_ARRAY2[ANY][ANY]) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[2] = { -1, -1 }; + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 2) || + !require_size(array, size, 2)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); +} +%typemap(freearg) + (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[2] = { -1, -1 }; + array = obj_to_array_contiguous_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 2) || + !require_size(array, size, 2)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[2] = { -1, -1 }; + array = obj_to_array_fortran_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 2) || + !require_size(array, size, 2) || !require_fortran(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); +} +%typemap(freearg) + (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[2] = { -1, -1 }; + array = obj_to_array_fortran_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 2) || + !require_size(array, size, 2) || !require_fortran(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[3] = { $1_dim0, $1_dim1, $1_dim2 }; + array = obj_to_array_contiguous_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 3) || + !require_size(array, size, 3)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(freearg) + (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[3] = { -1, -1, -1 }; + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 3) || + !require_size(array, size, 3)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); +} +%typemap(freearg) + (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE** IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE** IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + /* for now, only concerned with lists */ + $1 = PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE** IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + (DATA_TYPE** array=NULL, PyArrayObject** object_array=NULL, int* is_new_object_array=NULL) +{ + npy_intp size[2] = { -1, -1 }; + PyArrayObject* temp_array; + Py_ssize_t i; + int is_new_object; + + /* length of the list */ + $2 = PyList_Size($input); + + /* the arrays */ + array = (DATA_TYPE **)malloc($2*sizeof(DATA_TYPE *)); + object_array = (PyArrayObject **)calloc($2,sizeof(PyArrayObject *)); + is_new_object_array = (int *)calloc($2,sizeof(int)); + + if (array == NULL || object_array == NULL || is_new_object_array == NULL) + { + SWIG_fail; + } + + for (i=0; i<$2; i++) + { + temp_array = obj_to_array_contiguous_allow_conversion(PySequence_GetItem($input,i), DATA_TYPECODE, &is_new_object); + + /* the new array must be stored so that it can be destroyed in freearg */ + object_array[i] = temp_array; + is_new_object_array[i] = is_new_object; + + if (!temp_array || !require_dimensions(temp_array, 2)) SWIG_fail; + + /* store the size of the first array in the list, then use that for comparison. */ + if (i == 0) + { + size[0] = array_size(temp_array,0); + size[1] = array_size(temp_array,1); + } + + if (!require_size(temp_array, size, 2)) SWIG_fail; + + array[i] = (DATA_TYPE*) array_data(temp_array); + } + + $1 = (DATA_TYPE**) array; + $3 = (DIM_TYPE) size[0]; + $4 = (DIM_TYPE) size[1]; +} +%typemap(freearg) + (DATA_TYPE** IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + Py_ssize_t i; + + if (array$argnum!=NULL) free(array$argnum); + + /*freeing the individual arrays if needed */ + if (object_array$argnum!=NULL) + { + if (is_new_object_array$argnum!=NULL) + { + for (i=0; i<$2; i++) + { + if (object_array$argnum[i] != NULL && is_new_object_array$argnum[i]) + { Py_DECREF(object_array$argnum[i]); } + } + free(is_new_object_array$argnum); + } + free(object_array$argnum); + } +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, + * DATA_TYPE* IN_ARRAY3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[3] = { -1, -1, -1 }; + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 3) || + !require_size(array, size, 3)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[3] = { -1, -1, -1 }; + array = obj_to_array_fortran_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 3) || + !require_size(array, size, 3) | !require_fortran(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); +} +%typemap(freearg) + (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, + * DATA_TYPE* IN_FARRAY3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[3] = { -1, -1, -1 }; + array = obj_to_array_fortran_allow_conversion($input, + DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 3) || + !require_size(array, size, 3) || !require_fortran(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY]) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY]) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[4] = { $1_dim0, $1_dim1, $1_dim2 , $1_dim3}; + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 4) || + !require_size(array, size, 4)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(freearg) + (DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY]) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3, DIM_TYPE DIM4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[4] = { -1, -1, -1, -1 }; + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 4) || + !require_size(array, size, 4)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); + $5 = (DIM_TYPE) array_size(array,3); +} +%typemap(freearg) + (DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE** IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3, DIM_TYPE DIM4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE** IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + /* for now, only concerned with lists */ + $1 = PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE** IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + (DATA_TYPE** array=NULL, PyArrayObject** object_array=NULL, int* is_new_object_array=NULL) +{ + npy_intp size[3] = { -1, -1, -1 }; + PyArrayObject* temp_array; + Py_ssize_t i; + int is_new_object; + + /* length of the list */ + $2 = PyList_Size($input); + + /* the arrays */ + array = (DATA_TYPE **)malloc($2*sizeof(DATA_TYPE *)); + object_array = (PyArrayObject **)calloc($2,sizeof(PyArrayObject *)); + is_new_object_array = (int *)calloc($2,sizeof(int)); + + if (array == NULL || object_array == NULL || is_new_object_array == NULL) + { + SWIG_fail; + } + + for (i=0; i<$2; i++) + { + temp_array = obj_to_array_contiguous_allow_conversion(PySequence_GetItem($input,i), DATA_TYPECODE, &is_new_object); + + /* the new array must be stored so that it can be destroyed in freearg */ + object_array[i] = temp_array; + is_new_object_array[i] = is_new_object; + + if (!temp_array || !require_dimensions(temp_array, 3)) SWIG_fail; + + /* store the size of the first array in the list, then use that for comparison. */ + if (i == 0) + { + size[0] = array_size(temp_array,0); + size[1] = array_size(temp_array,1); + size[2] = array_size(temp_array,2); + } + + if (!require_size(temp_array, size, 3)) SWIG_fail; + + array[i] = (DATA_TYPE*) array_data(temp_array); + } + + $1 = (DATA_TYPE**) array; + $3 = (DIM_TYPE) size[0]; + $4 = (DIM_TYPE) size[1]; + $5 = (DIM_TYPE) size[2]; +} +%typemap(freearg) + (DATA_TYPE** IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + Py_ssize_t i; + + if (array$argnum!=NULL) free(array$argnum); + + /*freeing the individual arrays if needed */ + if (object_array$argnum!=NULL) + { + if (is_new_object_array$argnum!=NULL) + { + for (i=0; i<$2; i++) + { + if (object_array$argnum[i] != NULL && is_new_object_array$argnum[i]) + { Py_DECREF(object_array$argnum[i]); } + } + free(is_new_object_array$argnum); + } + free(object_array$argnum); + } +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, + * DATA_TYPE* IN_ARRAY4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* IN_ARRAY4) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* IN_ARRAY4) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[4] = { -1, -1, -1 , -1}; + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 4) || + !require_size(array, size, 4)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DIM_TYPE) array_size(array,3); + $5 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* IN_ARRAY4) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3, DIM_TYPE DIM4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[4] = { -1, -1, -1, -1 }; + array = obj_to_array_fortran_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 4) || + !require_size(array, size, 4) | !require_fortran(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); + $5 = (DIM_TYPE) array_size(array,3); +} +%typemap(freearg) + (DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, + * DATA_TYPE* IN_FARRAY4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* IN_FARRAY4) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* IN_FARRAY4) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + npy_intp size[4] = { -1, -1, -1 , -1 }; + array = obj_to_array_fortran_allow_conversion($input, DATA_TYPECODE, + &is_new_object); + if (!array || !require_dimensions(array, 4) || + !require_size(array, size, 4) || !require_fortran(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DIM_TYPE) array_size(array,3); + $5 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* IN_FARRAY4) +{ + if (is_new_object$argnum && array$argnum) + { Py_DECREF(array$argnum); } +} + +/***************************/ +/* In-Place Array Typemaps */ +/***************************/ + +/* Typemap suite for (DATA_TYPE INPLACE_ARRAY1[ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE INPLACE_ARRAY1[ANY]) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE INPLACE_ARRAY1[ANY]) + (PyArrayObject* array=NULL) +{ + npy_intp size[1] = { $1_dim0 }; + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,1) || !require_size(array, size, 1) || + !require_contiguous(array) || !require_native(array)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1) + (PyArrayObject* array=NULL, int i=1) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,1) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = 1; + for (i=0; i < array_numdims(array); ++i) $2 *= array_size(array,i); +} + +/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1) + (PyArrayObject* array=NULL, int i=0) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,1) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = 1; + for (i=0; i < array_numdims(array); ++i) $1 *= array_size(array,i); + $2 = (DATA_TYPE*) array_data(array); +} + +/* Typemap suite for (DATA_TYPE INPLACE_ARRAY2[ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE INPLACE_ARRAY2[ANY][ANY]) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE INPLACE_ARRAY2[ANY][ANY]) + (PyArrayObject* array=NULL) +{ + npy_intp size[2] = { $1_dim0, $1_dim1 }; + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,2) || !require_size(array, size, 2) || + !require_contiguous(array) || !require_native(array)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,2) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,2) || !require_contiguous(array) || + !require_native(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DATA_TYPE*) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,2) || !require_contiguous(array) + || !require_native(array) || !require_fortran(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,2) || !require_contiguous(array) || + !require_native(array) || !require_fortran(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DATA_TYPE*) array_data(array); +} + +/* Typemap suite for (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY]) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY]) + (PyArrayObject* array=NULL) +{ + npy_intp size[3] = { $1_dim0, $1_dim1, $1_dim2 }; + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,3) || !require_size(array, size, 3) || + !require_contiguous(array) || !require_native(array)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,3) || !require_contiguous(array) || + !require_native(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); +} + +/* Typemap suite for (DATA_TYPE** INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE** INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + $1 = PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE** INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + (DATA_TYPE** array=NULL, PyArrayObject** object_array=NULL) +{ + npy_intp size[2] = { -1, -1 }; + PyArrayObject* temp_array; + Py_ssize_t i; + + /* length of the list */ + $2 = PyList_Size($input); + + /* the arrays */ + array = (DATA_TYPE **)malloc($2*sizeof(DATA_TYPE *)); + object_array = (PyArrayObject **)calloc($2,sizeof(PyArrayObject *)); + + if (array == NULL || object_array == NULL) + { + SWIG_fail; + } + + for (i=0; i<$2; i++) + { + temp_array = obj_to_array_no_conversion(PySequence_GetItem($input,i), DATA_TYPECODE); + + /* the new array must be stored so that it can be destroyed in freearg */ + object_array[i] = temp_array; + + if ( !temp_array || !require_dimensions(temp_array, 2) || + !require_contiguous(temp_array) || + !require_native(temp_array) || + !PyArray_EquivTypenums(array_type(temp_array), DATA_TYPECODE) + ) SWIG_fail; + + /* store the size of the first array in the list, then use that for comparison. */ + if (i == 0) + { + size[0] = array_size(temp_array,0); + size[1] = array_size(temp_array,1); + } + + if (!require_size(temp_array, size, 2)) SWIG_fail; + + array[i] = (DATA_TYPE*) array_data(temp_array); + } + + $1 = (DATA_TYPE**) array; + $3 = (DIM_TYPE) size[0]; + $4 = (DIM_TYPE) size[1]; +} +%typemap(freearg) + (DATA_TYPE** INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + if (array$argnum!=NULL) free(array$argnum); + if (object_array$argnum!=NULL) free(object_array$argnum); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, + * DATA_TYPE* INPLACE_ARRAY3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,3) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DATA_TYPE*) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,3) || !require_contiguous(array) || + !require_native(array) || !require_fortran(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, + * DATA_TYPE* INPLACE_FARRAY3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,3) || !require_contiguous(array) + || !require_native(array) || !require_fortran(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DATA_TYPE*) array_data(array); +} + +/* Typemap suite for (DATA_TYPE INPLACE_ARRAY4[ANY][ANY][ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE INPLACE_ARRAY4[ANY][ANY][ANY][ANY]) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE INPLACE_ARRAY4[ANY][ANY][ANY][ANY]) + (PyArrayObject* array=NULL) +{ + npy_intp size[4] = { $1_dim0, $1_dim1, $1_dim2 , $1_dim3 }; + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,4) || !require_size(array, size, 4) || + !require_contiguous(array) || !require_native(array)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3, DIM_TYPE DIM4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,4) || !require_contiguous(array) || + !require_native(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); + $5 = (DIM_TYPE) array_size(array,3); +} + +/* Typemap suite for (DATA_TYPE** INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3, DIM_TYPE DIM4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE** INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + $1 = PySequence_Check($input); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE** INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + (DATA_TYPE** array=NULL, PyArrayObject** object_array=NULL) +{ + npy_intp size[3] = { -1, -1, -1 }; + PyArrayObject* temp_array; + Py_ssize_t i; + + /* length of the list */ + $2 = PyList_Size($input); + + /* the arrays */ + array = (DATA_TYPE **)malloc($2*sizeof(DATA_TYPE *)); + object_array = (PyArrayObject **)calloc($2,sizeof(PyArrayObject *)); + + if (array == NULL || object_array == NULL) + { + SWIG_fail; + } + + for (i=0; i<$2; i++) + { + temp_array = obj_to_array_no_conversion(PySequence_GetItem($input,i), DATA_TYPECODE); + + /* the new array must be stored so that it can be destroyed in freearg */ + object_array[i] = temp_array; + + if ( !temp_array || !require_dimensions(temp_array, 3) || + !require_contiguous(temp_array) || + !require_native(temp_array) || + !PyArray_EquivTypenums(array_type(temp_array), DATA_TYPECODE) + ) SWIG_fail; + + /* store the size of the first array in the list, then use that for comparison. */ + if (i == 0) + { + size[0] = array_size(temp_array,0); + size[1] = array_size(temp_array,1); + size[2] = array_size(temp_array,2); + } + + if (!require_size(temp_array, size, 3)) SWIG_fail; + + array[i] = (DATA_TYPE*) array_data(temp_array); + } + + $1 = (DATA_TYPE**) array; + $3 = (DIM_TYPE) size[0]; + $4 = (DIM_TYPE) size[1]; + $5 = (DIM_TYPE) size[2]; +} +%typemap(freearg) + (DATA_TYPE** INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + if (array$argnum!=NULL) free(array$argnum); + if (object_array$argnum!=NULL) free(object_array$argnum); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, + * DATA_TYPE* INPLACE_ARRAY4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* INPLACE_ARRAY4) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* INPLACE_ARRAY4) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,4) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DIM_TYPE) array_size(array,3); + $5 = (DATA_TYPE*) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3, DIM_TYPE DIM4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* INPLACE_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* INPLACE_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,4) || !require_contiguous(array) || + !require_native(array) || !require_fortran(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); + $5 = (DIM_TYPE) array_size(array,3); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, + * DATA_TYPE* INPLACE_FARRAY4) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* INPLACE_FARRAY4) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* INPLACE_FARRAY4) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,4) || !require_contiguous(array) + || !require_native(array) || !require_fortran(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DIM_TYPE) array_size(array,3); + $5 = (DATA_TYPE*) array_data(array); +} + +/*************************/ +/* Argout Array Typemaps */ +/*************************/ + +/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY1[ANY]) + */ +%typemap(in,numinputs=0, + fragment="NumPy_Backward_Compatibility,NumPy_Macros") + (DATA_TYPE ARGOUT_ARRAY1[ANY]) + (PyObject* array = NULL) +{ + npy_intp dims[1] = { $1_dim0 }; + array = PyArray_SimpleNew(1, dims, DATA_TYPECODE); + if (!array) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(argout) + (DATA_TYPE ARGOUT_ARRAY1[ANY]) +{ + $result = SWIG_Python_AppendOutput($result,(PyObject*)array$argnum); +} + +/* Typemap suite for (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1) + */ +%typemap(in,numinputs=1, + fragment="NumPy_Fragments") + (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1) + (PyObject* array = NULL) +{ + npy_intp dims[1]; + if (!PyInt_Check($input)) + { + const char* typestring = pytype_string($input); + PyErr_Format(PyExc_TypeError, + "Int dimension expected. '%s' given.", + typestring); + SWIG_fail; + } + $2 = (DIM_TYPE) PyInt_AsLong($input); + dims[0] = (npy_intp) $2; + array = PyArray_SimpleNew(1, dims, DATA_TYPECODE); + if (!array) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); +} +%typemap(argout) + (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1) +{ + $result = SWIG_Python_AppendOutput($result,(PyObject*)array$argnum); +} + +/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1) + */ +%typemap(in,numinputs=1, + fragment="NumPy_Fragments") + (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1) + (PyObject* array = NULL) +{ + npy_intp dims[1]; + if (!PyInt_Check($input)) + { + const char* typestring = pytype_string($input); + PyErr_Format(PyExc_TypeError, + "Int dimension expected. '%s' given.", + typestring); + SWIG_fail; + } + $1 = (DIM_TYPE) PyInt_AsLong($input); + dims[0] = (npy_intp) $1; + array = PyArray_SimpleNew(1, dims, DATA_TYPECODE); + if (!array) SWIG_fail; + $2 = (DATA_TYPE*) array_data(array); +} +%typemap(argout) + (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1) +{ + $result = SWIG_Python_AppendOutput($result,(PyObject*)array$argnum); +} + +/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY]) + */ +%typemap(in,numinputs=0, + fragment="NumPy_Backward_Compatibility,NumPy_Macros") + (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY]) + (PyObject* array = NULL) +{ + npy_intp dims[2] = { $1_dim0, $1_dim1 }; + array = PyArray_SimpleNew(2, dims, DATA_TYPECODE); + if (!array) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(argout) + (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY]) +{ + $result = SWIG_Python_AppendOutput($result,(PyObject*)array$argnum); +} + +/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) + */ +%typemap(in,numinputs=0, + fragment="NumPy_Backward_Compatibility,NumPy_Macros") + (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) + (PyObject* array = NULL) +{ + npy_intp dims[3] = { $1_dim0, $1_dim1, $1_dim2 }; + array = PyArray_SimpleNew(3, dims, DATA_TYPECODE); + if (!array) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(argout) + (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) +{ + $result = SWIG_Python_AppendOutput($result,(PyObject*)array$argnum); +} + +/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY4[ANY][ANY][ANY][ANY]) + */ +%typemap(in,numinputs=0, + fragment="NumPy_Backward_Compatibility,NumPy_Macros") + (DATA_TYPE ARGOUT_ARRAY4[ANY][ANY][ANY][ANY]) + (PyObject* array = NULL) +{ + npy_intp dims[4] = { $1_dim0, $1_dim1, $1_dim2, $1_dim3 }; + array = PyArray_SimpleNew(4, dims, DATA_TYPECODE); + if (!array) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(argout) + (DATA_TYPE ARGOUT_ARRAY4[ANY][ANY][ANY][ANY]) +{ + $result = SWIG_Python_AppendOutput($result,(PyObject*)array$argnum); +} + +/*****************************/ +/* Argoutview Array Typemaps */ +/*****************************/ + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim_temp) +{ + $1 = &data_temp; + $2 = &dim_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility") + (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1) +{ + npy_intp dims[1] = { *$2 }; + PyObject* obj = PyArray_SimpleNewFromData(1, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DATA_TYPE** ARGOUTVIEW_ARRAY1) + (DIM_TYPE dim_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim_temp; + $2 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility") + (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1) +{ + npy_intp dims[1] = { *$1 }; + PyObject* obj = PyArray_SimpleNewFromData(1, dims, DATA_TYPECODE, (void*)(*$2)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility") + (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) +{ + npy_intp dims[2] = { *$2, *$3 }; + PyObject* obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DATA_TYPE** ARGOUTVIEW_ARRAY2) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2) +{ + npy_intp dims[2] = { *$1, *$2 }; + PyObject* obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$3)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements") + (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) +{ + npy_intp dims[2] = { *$2, *$3 }; + PyObject* obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DATA_TYPE** ARGOUTVIEW_FARRAY2) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2) +{ + npy_intp dims[2] = { *$1, *$2 }; + PyObject* obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$3)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility") + (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) +{ + npy_intp dims[3] = { *$2, *$3, *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, + DATA_TYPE** ARGOUTVIEW_ARRAY3) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DATA_TYPE* data_temp = NULL) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3) +{ + npy_intp dims[3] = { *$1, *$2, *$3 }; + PyObject* obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$4)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements") + (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) +{ + npy_intp dims[3] = { *$2, *$3, *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, + DATA_TYPE** ARGOUTVIEW_FARRAY3) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DATA_TYPE** ARGOUTVIEW_FARRAY3) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3) +{ + npy_intp dims[3] = { *$1, *$2, *$3 }; + PyObject* obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$4)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3, DIM_TYPE* DIM4) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEW_ARRAY4, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; + $5 = &dim4_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility") + (DATA_TYPE** ARGOUTVIEW_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) +{ + npy_intp dims[4] = { *$2, *$3, *$4 , *$5 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, + DATA_TYPE** ARGOUTVIEW_ARRAY4) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 , DATA_TYPE** ARGOUTVIEW_ARRAY4) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &dim4_temp; + $5 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEW_ARRAY4) +{ + npy_intp dims[4] = { *$1, *$2, *$3 , *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$5)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3, DIM_TYPE* DIM4) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEW_FARRAY4, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; + $5 = &dim4_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements") + (DATA_TYPE** ARGOUTVIEW_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) +{ + npy_intp dims[4] = { *$2, *$3, *$4 , *$5 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, + DATA_TYPE** ARGOUTVIEW_FARRAY4) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 , DATA_TYPE** ARGOUTVIEW_FARRAY4) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &dim4_temp; + $5 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEW_FARRAY4) +{ + npy_intp dims[4] = { *$1, *$2, *$3 , *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$5)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + $result = SWIG_Python_AppendOutput($result,obj); +} + +/*************************************/ +/* Managed Argoutview Array Typemaps */ +/*************************************/ + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_ARRAY1, DIM_TYPE* DIM1) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_ARRAY1, DIM_TYPE* DIM1 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim_temp) +{ + $1 = &data_temp; + $2 = &dim_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_ARRAY1, DIM_TYPE* DIM1) +{ + npy_intp dims[1] = { *$2 }; + PyObject* obj = PyArray_SimpleNewFromData(1, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEWM_ARRAY1) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DATA_TYPE** ARGOUTVIEWM_ARRAY1) + (DIM_TYPE dim_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim_temp; + $2 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEWM_ARRAY1) +{ + npy_intp dims[1] = { *$1 }; + PyObject* obj = PyArray_SimpleNewFromData(1, dims, DATA_TYPECODE, (void*)(*$2)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_ARRAY2, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) +{ + npy_intp dims[2] = { *$2, *$3 }; + PyObject* obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_ARRAY2) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DATA_TYPE** ARGOUTVIEWM_ARRAY2) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_ARRAY2) +{ + npy_intp dims[2] = { *$1, *$2 }; + PyObject* obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$3)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_FARRAY2, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2) +{ + npy_intp dims[2] = { *$2, *$3 }; + PyObject* obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_FARRAY2) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DATA_TYPE** ARGOUTVIEWM_FARRAY2) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements,NumPy_Utilities") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_FARRAY2) +{ + npy_intp dims[2] = { *$1, *$2 }; + PyObject* obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$3)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_ARRAY3, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) +{ + npy_intp dims[3] = { *$2, *$3, *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, + DATA_TYPE** ARGOUTVIEWM_ARRAY3) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DATA_TYPE** ARGOUTVIEWM_ARRAY3) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEWM_ARRAY3) +{ + npy_intp dims[3] = { *$1, *$2, *$3 }; + PyObject* obj= PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$4)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_FARRAY3, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) +{ + npy_intp dims[3] = { *$2, *$3, *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, + DATA_TYPE** ARGOUTVIEWM_FARRAY3) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DATA_TYPE** ARGOUTVIEWM_FARRAY3) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements,NumPy_Utilities") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEWM_FARRAY3) +{ + npy_intp dims[3] = { *$1, *$2, *$3 }; + PyObject* obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$4)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3, DIM_TYPE* DIM4) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; + $5 = &dim4_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) +{ + npy_intp dims[4] = { *$2, *$3, *$4 , *$5 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, + DATA_TYPE** ARGOUTVIEWM_ARRAY4) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 , DATA_TYPE** ARGOUTVIEWM_ARRAY4) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &dim4_temp; + $5 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEWM_ARRAY4) +{ + npy_intp dims[4] = { *$1, *$2, *$3 , *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$5)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3, DIM_TYPE* DIM4) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; + $5 = &dim4_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3) +{ + npy_intp dims[4] = { *$2, *$3, *$4 , *$5 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, + DATA_TYPE** ARGOUTVIEWM_FARRAY4) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 , DATA_TYPE** ARGOUTVIEWM_FARRAY4) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &dim4_temp; + $5 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements,NumPy_Utilities") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEWM_FARRAY4) +{ + npy_intp dims[4] = { *$1, *$2, *$3 , *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$5)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3, DIM_TYPE* DIM4) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; + $5 = &dim4_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) +{ + npy_intp dims[4] = { *$2, *$3, *$4 , *$5 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, + DATA_TYPE** ARGOUTVIEWM_ARRAY4) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 , DATA_TYPE** ARGOUTVIEWM_ARRAY4) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &dim4_temp; + $5 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Utilities") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEWM_ARRAY4) +{ + npy_intp dims[4] = { *$1, *$2, *$3 , *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$5)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, + DIM_TYPE* DIM3, DIM_TYPE* DIM4) + */ +%typemap(in,numinputs=0) + (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 ) + (DATA_TYPE* data_temp = NULL , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp) +{ + $1 = &data_temp; + $2 = &dim1_temp; + $3 = &dim2_temp; + $4 = &dim3_temp; + $5 = &dim4_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements,NumPy_Utilities") + (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4) +{ + npy_intp dims[4] = { *$2, *$3, *$4 , *$5 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$1)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, + DATA_TYPE** ARGOUTVIEWM_FARRAY4) + */ +%typemap(in,numinputs=0) + (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DIM_TYPE* DIM3 , DIM_TYPE* DIM4 , DATA_TYPE** ARGOUTVIEWM_FARRAY4) + (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DIM_TYPE dim4_temp, DATA_TYPE* data_temp = NULL ) +{ + $1 = &dim1_temp; + $2 = &dim2_temp; + $3 = &dim3_temp; + $4 = &dim4_temp; + $5 = &data_temp; +} +%typemap(argout, + fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements,NumPy_Utilities") + (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEWM_FARRAY4) +{ + npy_intp dims[4] = { *$1, *$2, *$3 , *$4 }; + PyObject* obj = PyArray_SimpleNewFromData(4, dims, DATA_TYPECODE, (void*)(*$5)); + PyArrayObject* array = (PyArrayObject*) obj; + + if (!array || !require_fortran(array)) SWIG_fail; + +%#ifdef SWIGPY_USE_CAPSULE + PyObject* cap = PyCapsule_New((void*)(*$1), SWIGPY_CAPSULE_NAME, free_cap); +%#else + PyObject* cap = PyCObject_FromVoidPtr((void*)(*$1), free); +%#endif + +%#if NPY_API_VERSION < 0x00000007 + PyArray_BASE(array) = cap; +%#else + PyArray_SetBaseObject(array,cap); +%#endif + + $result = SWIG_Python_AppendOutput($result,obj); +} + +/**************************************/ +/* In-Place Array Typemap - flattened */ +/**************************************/ + +/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY_FLAT, DIM_TYPE DIM_FLAT) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY, + fragment="NumPy_Macros") + (DATA_TYPE* INPLACE_ARRAY_FLAT, DIM_TYPE DIM_FLAT) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input), + DATA_TYPECODE); +} +%typemap(in, + fragment="NumPy_Fragments") + (DATA_TYPE* INPLACE_ARRAY_FLAT, DIM_TYPE DIM_FLAT) + (PyArrayObject* array=NULL, int i=1) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_c_or_f_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = 1; + for (i=0; i < array_numdims(array); ++i) $2 *= array_size(array,i); +} + +%enddef /* %numpy_typemaps() macro */ +/* *************************************************************** */ + +/* Concrete instances of the %numpy_typemaps() macro: Each invocation + * below applies all of the typemaps above to the specified data type. + */ +%numpy_typemaps(signed char , NPY_BYTE , int) +%numpy_typemaps(unsigned char , NPY_UBYTE , int) +%numpy_typemaps(short , NPY_SHORT , int) +%numpy_typemaps(unsigned short , NPY_USHORT , int) +%numpy_typemaps(int , NPY_INT , int) +%numpy_typemaps(unsigned int , NPY_UINT , int) +%numpy_typemaps(long , NPY_LONG , int) +%numpy_typemaps(unsigned long , NPY_ULONG , int) +%numpy_typemaps(long long , NPY_LONGLONG , int) +%numpy_typemaps(unsigned long long, NPY_ULONGLONG, int) +%numpy_typemaps(float , NPY_FLOAT , int) +%numpy_typemaps(double , NPY_DOUBLE , int) +%numpy_typemaps(int8_t , NPY_INT8 , int) +%numpy_typemaps(int16_t , NPY_INT16 , int) +%numpy_typemaps(int32_t , NPY_INT32 , int) +%numpy_typemaps(int64_t , NPY_INT64 , int) +%numpy_typemaps(uint8_t , NPY_UINT8 , int) +%numpy_typemaps(uint16_t , NPY_UINT16 , int) +%numpy_typemaps(uint32_t , NPY_UINT32 , int) +%numpy_typemaps(uint64_t , NPY_UINT64 , int) + + +/* *************************************************************** + * The follow macro expansion does not work, because C++ bool is 4 + * bytes and NPY_BOOL is 1 byte + * + * %numpy_typemaps(bool, NPY_BOOL, int) + */ + +/* *************************************************************** + * On my Mac, I get the following warning for this macro expansion: + * 'swig/python detected a memory leak of type 'long double *', no destructor found.' + * + * %numpy_typemaps(long double, NPY_LONGDOUBLE, int) + */ + +#ifdef __cplusplus + +%include + +%numpy_typemaps(std::complex, NPY_CFLOAT , int) +%numpy_typemaps(std::complex, NPY_CDOUBLE, int) + +#endif + +#endif /* SWIGPYTHON */ diff --git a/native_client/ctcdecode/setup.cfg b/native_client/ctcdecode/setup.cfg new file mode 100644 index 00000000..ebfde62b --- /dev/null +++ b/native_client/ctcdecode/setup.cfg @@ -0,0 +1,16 @@ +# temp_build is two deep because SWIG does not clean relative paths when +# building, so ../kenlm pollutes the source directory. + +[build_ext] +build-lib=temp_build/temp_build +build-temp=temp_build/temp_build + +[build_py] +build-lib=temp_build/temp_build + +[bdist_wheel] +bdist-dir=temp_build/temp_build + +[install_lib] +build-dir=temp_build/temp_build + diff --git a/native_client/ctcdecode/setup.py b/native_client/ctcdecode/setup.py new file mode 100644 index 00000000..5389a53f --- /dev/null +++ b/native_client/ctcdecode/setup.py @@ -0,0 +1,147 @@ +#!/usr/bin/env python +from __future__ import absolute_import, division, print_function + +from distutils.command.build import build +from setuptools import setup, Extension, distutils + +import argparse +import glob +import multiprocessing.pool +import os +import platform +import sys + +try: + import numpy + try: + numpy_include = numpy.get_include() + except AttributeError: + numpy_include = numpy.get_numpy_include() +except ImportError: + numpy_include = '' + assert 'NUMPY_INCLUDE' in os.environ + +numpy_include = os.getenv('NUMPY_INCLUDE', numpy_include) +numpy_min_ver = os.getenv('NUMPY_DEP_VERSION', '') + +parser = argparse.ArgumentParser(description=__doc__) +parser.add_argument( + "--num_processes", + default=1, + type=int, + help="Number of cpu processes to build package. (default: %(default)d)") +args = parser.parse_known_args() + +# reconstruct sys.argv to pass to setup below +sys.argv = [sys.argv[0]] + args[1] + +def read(fname): + return open(os.path.join(os.path.dirname(__file__), fname)).read() + +project_version = read('../../VERSION').strip() + +# monkey-patch for parallel compilation +# See: https://stackoverflow.com/a/13176803 +def parallelCCompile(self, + sources, + output_dir=None, + macros=None, + include_dirs=None, + debug=0, + extra_preargs=None, + extra_postargs=None, + depends=None): + # those lines are copied from distutils.ccompiler.CCompiler directly + macros, objects, extra_postargs, pp_opts, build = self._setup_compile( + output_dir, macros, include_dirs, sources, depends, extra_postargs) + cc_args = self._get_cc_args(pp_opts, debug, extra_preargs) + + # parallel code + def _single_compile(obj): + try: + src, ext = build[obj] + except KeyError: + return + self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) + + # convert to list, imap is evaluated on-demand + thread_pool = multiprocessing.pool.ThreadPool(args[0].num_processes) + list(thread_pool.imap(_single_compile, objects)) + return objects + + +def compile_test(header, library): + dummy_path = os.path.join(os.path.dirname(__file__), "dummy") + command = "bash -c \"g++ -include " + header \ + + " -l" + library + " -x c++ - <<<'int main() {}' -o " \ + + dummy_path + " >/dev/null 2>/dev/null && rm " \ + + dummy_path + " 2>/dev/null\"" + return os.system(command) == 0 + + +# hack compile to support parallel compiling +distutils.ccompiler.CCompiler.compile = parallelCCompile + +FILES = glob.glob('../kenlm/util/*.cc') \ + + glob.glob('../kenlm/lm/*.cc') \ + + glob.glob('../kenlm/util/double-conversion/*.cc') + +FILES += glob.glob('third_party/openfst-1.6.7/src/lib/*.cc') + +FILES = [ + fn for fn in FILES + if not (fn.endswith('main.cc') or fn.endswith('test.cc') or fn.endswith( + 'unittest.cc')) +] + +LIBS = ['stdc++'] +if platform.system() != 'Darwin': + LIBS.append('rt') + +ARGS = ['-O3', '-DNDEBUG', '-DKENLM_MAX_ORDER=6', '-std=c++11', + '-Wno-unused-local-typedef', '-Wno-sign-compare'] + +if compile_test('zlib.h', 'z'): + ARGS.append('-DHAVE_ZLIB') + LIBS.append('z') + +if compile_test('bzlib.h', 'bz2'): + ARGS.append('-DHAVE_BZLIB') + LIBS.append('bz2') + +if compile_test('lzma.h', 'lzma'): + ARGS.append('-DHAVE_XZLIB') + LIBS.append('lzma') + +decoder_module = Extension( + name='ds_ctcdecoder._swigwrapper', + sources=['swigwrapper.i'] + FILES + glob.glob('*.cpp'), + swig_opts=['-c++', '-extranative'], + language='c++', + include_dirs=[ + numpy_include, + '..', + '../kenlm', + 'third_party/openfst-1.6.7/src/include', + 'third_party/ThreadPool', + ], + libraries=LIBS, + extra_compile_args=ARGS +) + +class BuildExtFirst(build): + sub_commands = [('build_ext', build.has_ext_modules), + ('build_py', build.has_pure_modules), + ('build_clib', build.has_c_libraries), + ('build_scripts', build.has_scripts)] + +setup( + name='ds_ctcdecoder', + version=project_version, + description="""DS CTC decoder""", + cmdclass = {'build': BuildExtFirst}, + ext_modules=[decoder_module], + package_dir = {'ds_ctcdecoder': '.'}, + py_modules=['ds_ctcdecoder', 'ds_ctcdecoder.swigwrapper'], + install_requires = ['numpy%s' % numpy_min_ver], +) diff --git a/native_client/ctcdecode/swigwrapper.i b/native_client/ctcdecode/swigwrapper.i new file mode 100644 index 00000000..7cba3ac6 --- /dev/null +++ b/native_client/ctcdecode/swigwrapper.i @@ -0,0 +1,70 @@ +%module swigwrapper + +%{ +#include "ctc_beam_search_decoder.h" +#define SWIG_FILE_WITH_INIT +%} + +%include "pyabc.i" +%include "std_vector.i" +%include "numpy.i" + +%init %{ +import_array(); +%} + +// Convert NumPy arrays to pointer+lengths +%apply (double* IN_ARRAY2, int DIM1, int DIM2) {(const double *probs, int time_dim, int class_dim)}; +%apply (double* IN_ARRAY3, int DIM1, int DIM2, int DIM3) {(const double *probs, int batch_dim, int time_dim, int class_dim)}; +%apply (int* IN_ARRAY1, int DIM1) {(const int *seq_lengths, int seq_lengths_size)}; + +// Convert char* to Alphabet +%rename (ctc_beam_search_decoder) mod_decoder; +%inline %{ +std::vector +mod_decoder(const double *probs, + int time_dim, + int class_dim, + char* alphabet_config_path, + size_t beam_size, + double cutoff_prob, + size_t cutoff_top_n, + Scorer *ext_scorer) +{ + Alphabet a(alphabet_config_path); + return ctc_beam_search_decoder(probs, time_dim, class_dim, a, beam_size, + cutoff_prob, cutoff_top_n, ext_scorer); +} +%} + +%rename (ctc_beam_search_decoder_batch) mod_decoder_batch; +%inline %{ +std::vector> +mod_decoder_batch(const double *probs, + int batch_dim, + int time_dim, + int class_dim, + const int *seq_lengths, + int seq_lengths_size, + char* alphabet_config_path, + size_t beam_size, + size_t num_processes, + double cutoff_prob, + size_t cutoff_top_n, + Scorer *ext_scorer) +{ + Alphabet a(alphabet_config_path); + return ctc_beam_search_decoder_batch(probs, batch_dim, time_dim, class_dim, + seq_lengths, seq_lengths_size, a, beam_size, + num_processes, cutoff_prob, cutoff_top_n, + ext_scorer); +} +%} + +%include "output.h" +%include "scorer.h" +%include "ctc_beam_search_decoder.h" + +%template(IntVector) std::vector; +%template(OutputVector) std::vector; +%template(OutputVectorVector) std::vector>;