diff --git a/bin/run-tc-ldc93s1_new_metrics.sh b/bin/run-tc-ldc93s1_new_metrics.sh new file mode 100755 index 00000000..01403bf1 --- /dev/null +++ b/bin/run-tc-ldc93s1_new_metrics.sh @@ -0,0 +1,29 @@ +#!/bin/sh + +set -xe + +ldc93s1_dir="./data/smoke_test" +ldc93s1_csv="${ldc93s1_dir}/ldc93s1.csv" + +epoch_count=$1 +audio_sample_rate=$2 + +if [ ! -f "${ldc93s1_dir}/ldc93s1.csv" ]; then + echo "Downloading and preprocessing LDC93S1 example data, saving in ${ldc93s1_dir}." + python -u bin/import_ldc93s1.py ${ldc93s1_dir} +fi; + +# Force only one visible device because we have a single-sample dataset +# and when trying to run on multiple devices (like GPUs), this will break +export CUDA_VISIBLE_DEVICES=0 + +python -u DeepSpeech.py --noshow_progressbar --noearly_stop \ + --train_files ${ldc93s1_csv} --train_batch_size 1 \ + --dev_files ${ldc93s1_csv} --dev_batch_size 1 \ + --test_files ${ldc93s1_csv} --test_batch_size 1 \ + --metrics_files ${ldc93s1_csv} \ + --n_hidden 100 --epochs $epoch_count \ + --max_to_keep 1 --checkpoint_dir '/tmp/ckpt_metrics' \ + --learning_rate 0.001 --dropout_rate 0.05 --export_dir '/tmp/train_metrics' \ + --scorer_path 'data/smoke_test/pruned_lm.scorer' \ + --audio_sample_rate ${audio_sample_rate} diff --git a/taskcluster/tc-train-extra-tests.sh b/taskcluster/tc-train-extra-tests.sh index dfdcf9dd..62ec225e 100644 --- a/taskcluster/tc-train-extra-tests.sh +++ b/taskcluster/tc-train-extra-tests.sh @@ -51,6 +51,9 @@ pushd ${HOME}/DeepSpeech/ds/ # Testing interleaved source (SDB+CSV combination) - run twice to test preprocessed features time ./bin/run-tc-ldc93s1_new_sdb_csv.sh 109 "${sample_rate}" time ./bin/run-tc-ldc93s1_new_sdb_csv.sh 1 "${sample_rate}" + + # Test --metrics_files training argument + time ./bin/run-tc-ldc93s1_new_metrics.sh 2 "${sample_rate}" popd pushd ${HOME}/DeepSpeech/ds/