Add SLR57 importer: African Accented French

This commit is contained in:
Alexandre Lissy 2019-10-01 12:55:55 +02:00
parent b888058e4e
commit e22f9787be
1 changed files with 221 additions and 0 deletions

221
bin/import_slr57.py Normal file
View File

@ -0,0 +1,221 @@
#!/usr/bin/env python3
from __future__ import absolute_import, division, print_function
# Make sure we can import stuff from util/
# This script needs to be run from the root of the DeepSpeech repository
import argparse
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import csv
import re
import sox
import zipfile
import subprocess
import progressbar
import unicodedata
import tarfile
from threading import RLock
from multiprocessing.dummy import Pool
from multiprocessing import cpu_count
from util.downloader import SIMPLE_BAR
from os import path
from glob import glob
from util.downloader import maybe_download
from util.text import Alphabet, validate_label
from util.feeding import secs_to_hours
FIELDNAMES = ['wav_filename', 'wav_filesize', 'transcript']
SAMPLE_RATE = 16000
MAX_SECS = 15
ARCHIVE_DIR_NAME = 'African_Accented_French'
ARCHIVE_NAME = 'African_Accented_French.tar.gz'
ARCHIVE_URL = 'http://www.openslr.org/resources/57/' + ARCHIVE_NAME
def _download_and_preprocess_data(target_dir):
# Making path absolute
target_dir = path.abspath(target_dir)
# Conditionally download data
archive_path = maybe_download(ARCHIVE_NAME, target_dir, ARCHIVE_URL)
# Conditionally extract data
_maybe_extract(target_dir, ARCHIVE_DIR_NAME, archive_path)
# Produce CSV files
_maybe_convert_sets(target_dir, ARCHIVE_DIR_NAME)
def _maybe_extract(target_dir, extracted_data, archive_path):
# If target_dir/extracted_data does not exist, extract archive in target_dir
extracted_path = path.join(target_dir, extracted_data)
if not path.exists(extracted_path):
print('No directory "%s" - extracting archive...' % extracted_path)
if not os.path.isdir(extracted_path):
os.mkdir(extracted_path)
tar = tarfile.open(archive_path)
tar.extractall(target_dir)
tar.close()
else:
print('Found directory "%s" - not extracting it from archive.' % archive_path)
def _maybe_convert_sets(target_dir, extracted_data):
extracted_dir = path.join(target_dir, extracted_data)
# override existing CSV with normalized one
target_csv_template = os.path.join(target_dir, ARCHIVE_DIR_NAME, ARCHIVE_NAME.replace('.tar.gz', '_{}.csv'))
if os.path.isfile(target_csv_template):
return
wav_root_dir = os.path.join(extracted_dir)
all_files = [
'transcripts/train/yaounde/fn_text.txt',
'transcripts/train/ca16_conv/transcripts.txt',
'transcripts/train/ca16_read/conditioned.txt',
'transcripts/dev/niger_west_african_fr/transcripts.txt',
'speech/dev/niger_west_african_fr/niger_wav_file_name_transcript.tsv',
'transcripts/devtest/ca16_read/conditioned.txt',
'transcripts/test/ca16/prompts.txt',
]
transcripts = {}
for tr in all_files:
with open(os.path.join(target_dir, ARCHIVE_DIR_NAME, tr), 'r') as tr_source:
for line in tr_source.readlines():
line = line.strip()
if '.tsv' in tr:
sep = ' '
else:
sep = ' '
audio = os.path.basename(line.split(sep)[0])
if not ('.wav' in audio):
if '.tdf' in audio:
audio = audio.replace('.tdf', '.wav')
else:
audio += '.wav'
transcript = ' '.join(line.split(sep)[1:])
transcripts[audio] = transcript
# Get audiofile path and transcript for each sentence in tsv
samples = []
glob_dir = os.path.join(wav_root_dir, '**/*.wav')
for record in glob(glob_dir, recursive=True):
record_file = os.path.basename(record)
if record_file in transcripts:
samples.append((record, transcripts[record_file]))
# Keep track of how many samples are good vs. problematic
counter = {'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0, 'total_time': 0}
lock = RLock()
num_samples = len(samples)
rows = []
def one_sample(sample):
""" Take a audio file, and optionally convert it to 16kHz WAV """
wav_filename = sample[0]
file_size = -1
frames = 0
if path.exists(wav_filename):
file_size = path.getsize(wav_filename)
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
label = label_filter(sample[1])
with lock:
if file_size == -1:
# Excluding samples that failed upon conversion
counter['failed'] += 1
elif label is None:
# Excluding samples that failed on label validation
counter['invalid_label'] += 1
elif int(frames/SAMPLE_RATE*1000/15/2) < len(str(label)):
# Excluding samples that are too short to fit the transcript
counter['too_short'] += 1
elif frames/SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter['too_long'] += 1
else:
# This one is good - keep it for the target CSV
rows.append((wav_filename, file_size, label))
counter['all'] += 1
counter['total_time'] += frames
print("Importing WAV files...")
pool = Pool(cpu_count())
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
for i, _ in enumerate(pool.imap_unordered(one_sample, samples), start=1):
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
with open(target_csv_template.format('train'), 'w') as train_csv_file: # 80%
with open(target_csv_template.format('dev'), 'w') as dev_csv_file: # 10%
with open(target_csv_template.format('test'), 'w') as test_csv_file: # 10%
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
train_writer.writeheader()
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
dev_writer.writeheader()
test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
test_writer.writeheader()
for i, item in enumerate(rows):
transcript = validate_label(item[2])
if not transcript:
continue
wav_filename = item[0]
i_mod = i % 10
if i_mod == 0:
writer = test_writer
elif i_mod == 1:
writer = dev_writer
else:
writer = train_writer
writer.writerow(dict(
wav_filename=wav_filename,
wav_filesize=os.path.getsize(wav_filename),
transcript=transcript,
))
print('Imported %d samples.' % (counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long']))
if counter['failed'] > 0:
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
if counter['invalid_label'] > 0:
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
if counter['too_short'] > 0:
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
if counter['too_long'] > 0:
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], MAX_SECS))
print('Final amount of imported audio: %s.' % secs_to_hours(counter['total_time'] / SAMPLE_RATE))
def handle_args():
parser = argparse.ArgumentParser(description='Importer for African Accented French dataset. More information on http://www.openslr.org/57/.')
parser.add_argument(dest='target_dir')
parser.add_argument('--filter_alphabet', help='Exclude samples with characters not in provided alphabet')
parser.add_argument('--normalize', action='store_true', help='Converts diacritic characters to their base ones')
return parser.parse_args()
if __name__ == "__main__":
CLI_ARGS = handle_args()
ALPHABET = Alphabet(CLI_ARGS.filter_alphabet) if CLI_ARGS.filter_alphabet else None
def label_filter(label):
if CLI_ARGS.normalize:
label = unicodedata.normalize("NFKD", label.strip()) \
.encode("ascii", "ignore") \
.decode("ascii", "ignore")
label = validate_label(label)
if ALPHABET and label:
try:
[ALPHABET.label_from_string(c) for c in label]
except KeyError:
label = None
return label
_download_and_preprocess_data(target_dir=CLI_ARGS.target_dir)