adding automatic mixed precision training support

This commit is contained in:
Vinh Nguyen 2019-10-14 12:34:29 +00:00
parent 909fa60601
commit e0bd1423b5

View File

@ -80,6 +80,8 @@ def create_flags():
f.DEFINE_boolean('use_cudnn_rnn', False, 'use CuDNN RNN backend for training on GPU. Note that checkpoints created with this flag can only be used with CuDNN RNN, i.e. fine tuning on a CPU device will not work')
f.DEFINE_string('cudnn_checkpoint', '', 'path to a checkpoint created using --use_cudnn_rnn. Specifying this flag allows one to convert a CuDNN RNN checkpoint to a checkpoint capable of running on a CPU graph.')
f.DEFINE_boolean('automatic_mixed_precision', False, 'whether to allow automatic mixed precision training')
# Sample limits
f.DEFINE_integer('limit_train', 0, 'maximum number of elements to use from train set - 0 means no limit')