Add read only validation metrics
For now this is just CTC loss like a validation set, but without affecting best validation checkpoint tracking logic. Eventually this could compute WER on a smaller set, for example.
This commit is contained in:
parent
572963e7bd
commit
e069b6d61f
|
@ -450,6 +450,16 @@ def train():
|
|||
buffering=FLAGS.read_buffer) for source in dev_sources]
|
||||
dev_init_ops = [iterator.make_initializer(dev_set) for dev_set in dev_sets]
|
||||
|
||||
if FLAGS.metrics_files:
|
||||
metrics_sources = FLAGS.metrics_files.split(',')
|
||||
metrics_sets = [create_dataset([source],
|
||||
batch_size=FLAGS.dev_batch_size,
|
||||
train_phase=False,
|
||||
exception_box=exception_box,
|
||||
process_ahead=len(Config.available_devices) * FLAGS.dev_batch_size * 2,
|
||||
buffering=FLAGS.read_buffer) for source in metrics_sources]
|
||||
metrics_init_ops = [iterator.make_initializer(metrics_set) for metrics_set in metrics_sets]
|
||||
|
||||
# Dropout
|
||||
dropout_rates = [tfv1.placeholder(tf.float32, name='dropout_{}'.format(i)) for i in range(6)]
|
||||
dropout_feed_dict = {
|
||||
|
@ -488,7 +498,14 @@ def train():
|
|||
step_summaries_op = tfv1.summary.merge_all('step_summaries')
|
||||
step_summary_writers = {
|
||||
'train': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'train'), max_queue=120),
|
||||
'dev': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'dev'), max_queue=120)
|
||||
'dev': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'dev'), max_queue=120),
|
||||
'metrics': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'metrics'), max_queue=120),
|
||||
}
|
||||
|
||||
human_readable_set_names = {
|
||||
'train': 'Training',
|
||||
'dev': 'Validation',
|
||||
'metrics': 'Metrics',
|
||||
}
|
||||
|
||||
# Checkpointing
|
||||
|
@ -533,7 +550,7 @@ def train():
|
|||
data['mean_loss'] = total_loss / step_count if step_count else 0.0
|
||||
return progressbar.widgets.FormatLabel.__call__(self, progress, data, **kwargs)
|
||||
|
||||
prefix = 'Epoch {} | {:>10}'.format(epoch, 'Training' if is_train else 'Validation')
|
||||
prefix = 'Epoch {} | {:>10}'.format(epoch, human_readable_set_names[set_name])
|
||||
widgets = [' | ', progressbar.widgets.Timer(),
|
||||
' | Steps: ', progressbar.widgets.Counter(),
|
||||
' | ', LossWidget()]
|
||||
|
@ -635,6 +652,16 @@ def train():
|
|||
log_info('Encountered a plateau, reducing learning rate to {}'.format(
|
||||
current_learning_rate))
|
||||
|
||||
if FLAGS.metrics_files:
|
||||
# Read only metrics, not affecting best validation loss tracking
|
||||
for source, init_op in zip(metrics_sources, metrics_init_ops):
|
||||
log_progress('Metrics for epoch %d on %s...' % (epoch, source))
|
||||
set_loss, _ = run_set('metrics', epoch, init_op, dataset=source)
|
||||
log_progress('Metrics for epoch %d on %s - loss: %f' % (epoch, source, set_loss))
|
||||
|
||||
print('-' * 80)
|
||||
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
log_info('FINISHED optimization in {}'.format(datetime.utcnow() - train_start_time))
|
||||
|
|
|
@ -13,8 +13,9 @@ def create_flags():
|
|||
f = absl.flags
|
||||
|
||||
f.DEFINE_string('train_files', '', 'comma separated list of files specifying the dataset used for training. Multiple files will get merged. If empty, training will not be run.')
|
||||
f.DEFINE_string('dev_files', '', 'comma separated list of files specifying the dataset used for validation. Multiple files will get merged. If empty, validation will not be run.')
|
||||
f.DEFINE_string('test_files', '', 'comma separated list of files specifying the dataset used for testing. Multiple files will get merged. If empty, the model will not be tested.')
|
||||
f.DEFINE_string('dev_files', '', 'comma separated list of files specifying the datasets used for validation. Multiple files will get reported separately. If empty, validation will not be run.')
|
||||
f.DEFINE_string('test_files', '', 'comma separated list of files specifying the datasets used for testing. Multiple files will get reported separately. If empty, the model will not be tested.')
|
||||
f.DEFINE_string('metrics_files', '', 'comma separated list of files specifying the datasets used for tracking of metrics (after validation step). Currently the only metric is the CTC loss but without affecting the tracking of best validation loss. Multiple files will get reported separately. If empty, metrics will not be computed.')
|
||||
|
||||
f.DEFINE_string('read_buffer', '1MB', 'buffer-size for reading samples from datasets (supports file-size suffixes KB, MB, GB, TB)')
|
||||
f.DEFINE_string('feature_cache', '', 'cache MFCC features to disk to speed up future training runs on the same data. This flag specifies the path where cached features extracted from --train_files will be saved. If empty, or if online augmentation flags are enabled, caching will be disabled.')
|
||||
|
|
Loading…
Reference in New Issue