diff --git a/Dockerfile.build.tmpl b/Dockerfile.build.tmpl index d5f24344..58bea150 100644 --- a/Dockerfile.build.tmpl +++ b/Dockerfile.build.tmpl @@ -19,7 +19,6 @@ RUN apt-get update && apt-get install -y --no-install-recommends \ g++ \ gcc \ git \ - git-lfs \ libbz2-dev \ libboost-all-dev \ libgsm1-dev \ diff --git a/Dockerfile.train.tmpl b/Dockerfile.train.tmpl index cdcf1d3c..e3b47795 100644 --- a/Dockerfile.train.tmpl +++ b/Dockerfile.train.tmpl @@ -13,7 +13,6 @@ RUN apt-get update && apt-get install -y --no-install-recommends \ cmake \ curl \ git \ - git-lfs \ libboost-all-dev \ libbz2-dev \ locales \ @@ -32,7 +31,6 @@ RUN apt-get install -y --no-install-recommends libopus0 libsndfile1 RUN rm -rf /var/lib/apt/lists/* WORKDIR / -RUN git lfs install RUN git clone $DEEPSPEECH_REPO WORKDIR /DeepSpeech diff --git a/data/README.rst b/data/README.rst index 3a60ea5a..f731a31c 100644 --- a/data/README.rst +++ b/data/README.rst @@ -5,7 +5,7 @@ This directory contains language-specific data files. Most importantly, you will 1. A list of unique characters for the target language (e.g. English) in ``data/alphabet.txt``. After installing the training code, you can check ``python -m deepspeech_training.util.check_characters --help`` for a tool that creates an alphabet file from a list of training CSV files. -2. A scorer package (``data/lm/kenlm.scorer``) generated with ``generate_scorer_package`` (``native_client/generate_scorer_package.cpp``). The scorer package includes a binary n-gram language model generated with ``data/lm/generate_lm.py``. +2. A script used to generate a binary n-gram language model: ``data/lm/generate_lm.py``. For more information on how to build these resources from scratch, see the ``External scorer scripts`` section on `deepspeech.readthedocs.io `_. diff --git a/data/lm/kenlm.scorer b/data/lm/kenlm.scorer deleted file mode 100644 index d8581c05..00000000 --- a/data/lm/kenlm.scorer +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0cf926ab9cab54a8a7d70003b931b2d62ebd9105ed392d1ec9c840029867799 -size 953363776 diff --git a/doc/BUILDING.rst b/doc/BUILDING.rst index bcc4d374..4d25359a 100644 --- a/doc/BUILDING.rst +++ b/doc/BUILDING.rst @@ -282,8 +282,9 @@ Please push DeepSpeech data to ``/sdcard/deepspeech/``\ , including: * ``output_graph.tflite`` which is the TF Lite model -* ``kenlm.scorer``, if you want to use the scorer; please be aware that too big - scorer will make the device run out of memory +* External scorer file (available from one of our releases), if you want to use + the scorer; please be aware that too big scorer will make the device run out + of memory Then, push binaries from ``native_client.tar.xz`` to ``/data/local/tmp/ds``\ : diff --git a/doc/TRAINING.rst b/doc/TRAINING.rst index 0463ba26..7de40e6a 100644 --- a/doc/TRAINING.rst +++ b/doc/TRAINING.rst @@ -6,15 +6,13 @@ Training Your Own Model Prerequisites for training a model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - * `Python 3.6 `_ -* `Git Large File Storage `_ * Mac or Linux environment Getting the training code ^^^^^^^^^^^^^^^^^^^^^^^^^ -Install `Git Large File Storage `_ either manually or through a package-manager if available on your system. Then clone the DeepSpeech repository normally: +Clone the DeepSpeech repository: .. code-block:: bash diff --git a/native_client/dotnet/README.rst b/native_client/dotnet/README.rst index 9f50f446..b1025573 100644 --- a/native_client/dotnet/README.rst +++ b/native_client/dotnet/README.rst @@ -31,7 +31,6 @@ Prerequisites * Windows 10 * `Windows 10 SDK `_ * `Visual Studio 2019 Community `_ -* `Git Large File Storage `_ * `TensorFlow Windows pre-requisites `_ Inside the Visual Studio Installer enable ``MS Build Tools`` and ``VC++ 2019 v16.00 (v160) toolset for desktop``. diff --git a/training/deepspeech_training/util/flags.py b/training/deepspeech_training/util/flags.py index 128441fd..e5ad8758 100644 --- a/training/deepspeech_training/util/flags.py +++ b/training/deepspeech_training/util/flags.py @@ -157,7 +157,7 @@ def create_flags(): f.DEFINE_boolean('utf8', False, 'enable UTF-8 mode. When this is used the model outputs UTF-8 sequences directly rather than using an alphabet mapping.') f.DEFINE_string('alphabet_config_path', 'data/alphabet.txt', 'path to the configuration file specifying the alphabet used by the network. See the comment in data/alphabet.txt for a description of the format.') - f.DEFINE_string('scorer_path', 'data/lm/kenlm.scorer', 'path to the external scorer file.') + f.DEFINE_string('scorer_path', '', 'path to the external scorer file.') f.DEFINE_alias('scorer', 'scorer_path') f.DEFINE_integer('beam_width', 1024, 'beam width used in the CTC decoder when building candidate transcriptions') f.DEFINE_float('lm_alpha', 0.931289039105002, 'the alpha hyperparameter of the CTC decoder. Language Model weight.')