Merge pull request #1908 from JRMeyer/config-logic

This commit is contained in:
Josh Meyer 2021-07-22 08:15:14 -04:00 committed by GitHub
commit c19faeb5d0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 275 additions and 185 deletions

View File

@ -14,7 +14,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false --early_stop false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_csv} --train_batch_size 1 \
--scorer "" \
--augment dropout \

View File

@ -14,7 +14,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false --early_stop false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_csv} --train_batch_size 1 \
--dev_files ${ldc93s1_csv} --dev_batch_size 1 \
--test_files ${ldc93s1_csv} --test_batch_size 1 \

View File

@ -20,7 +20,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false --early_stop false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_sdb} --train_batch_size 1 \
--dev_files ${ldc93s1_sdb} --dev_batch_size 1 \
--test_files ${ldc93s1_sdb} --test_batch_size 1 \

View File

@ -17,7 +17,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false --early_stop false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_csv} --train_batch_size 1 \
--feature_cache '/tmp/ldc93s1_cache' \
--dev_files ${ldc93s1_csv} --dev_batch_size 1 \

View File

@ -17,7 +17,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false --early_stop false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_csv} --train_batch_size 1 \
--dev_files ${ldc93s1_csv} --dev_batch_size 1 \
--test_files ${ldc93s1_csv} --test_batch_size 1 \

View File

@ -23,7 +23,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false --early_stop false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_sdb} --train_batch_size 1 \
--dev_files ${ldc93s1_sdb} --dev_batch_size 1 \
--test_files ${ldc93s1_sdb} --test_batch_size 1 \

View File

@ -23,7 +23,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false --early_stop false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_sdb} ${ldc93s1_csv} --train_batch_size 1 \
--feature_cache '/tmp/ldc93s1_cache_sdb_csv' \
--dev_files ${ldc93s1_sdb} ${ldc93s1_csv} --dev_batch_size 1 \

View File

@ -14,7 +14,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false --early_stop false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_csv} --train_batch_size 1 \
--dev_files ${ldc93s1_csv} --dev_batch_size 1 \
--test_files ${ldc93s1_csv} --test_batch_size 1 \
@ -23,7 +24,7 @@ python -u train.py --show_progressbar false --early_stop false \
--learning_rate 0.001 --dropout_rate 0.05 \
--scorer_path 'data/smoke_test/pruned_lm.scorer'
python -u train.py \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--n_hidden 100 \
--checkpoint_dir '/tmp/ckpt' \
--scorer_path 'data/smoke_test/pruned_lm.scorer' \

View File

@ -16,7 +16,8 @@ fi;
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false \
--n_hidden 100 \
--checkpoint_dir '/tmp/ckpt' \
--export_dir '/tmp/train_tflite' \
@ -26,7 +27,8 @@ python -u train.py --show_progressbar false \
mkdir /tmp/train_tflite/en-us
python -u train.py --show_progressbar false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false \
--n_hidden 100 \
--checkpoint_dir '/tmp/ckpt' \
--export_dir '/tmp/train_tflite/en-us' \

28
bin/run-ldc93s1.py Executable file
View File

@ -0,0 +1,28 @@
#!/usr/bin/env python
import os
from import_ldc93s1 import _download_and_preprocess_data as download_ldc
from coqui_stt_training.util.config import initialize_globals_from_args
from coqui_stt_training.train import train, test, early_training_checks
import tensorflow.compat.v1 as tfv1
# only one GPU for only one training sample
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
download_ldc("data/ldc93s1")
initialize_globals_from_args(
load_train="init",
alphabet_config_path="data/alphabet.txt",
train_files=["data/ldc93s1/ldc93s1.csv"],
dev_files=["data/ldc93s1/ldc93s1.csv"],
test_files=["data/ldc93s1/ldc93s1.csv"],
augment=["time_mask"],
n_hidden=100,
epochs=200,
)
early_training_checks()
train()
tfv1.reset_default_graph()
test()

View File

@ -20,7 +20,8 @@ fi
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --show_progressbar false \
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false \
--train_files data/ldc93s1/ldc93s1.csv \
--test_files data/ldc93s1/ldc93s1.csv \
--train_batch_size 1 \

View File

@ -66,3 +66,6 @@ time ./bin/run-ci-ldc93s1_checkpoint_sdb.sh
# Bytes output mode, resuming from checkpoint
time ./bin/run-ci-ldc93s1_checkpoint_bytes.sh
# Training with args set via initialize_globals_from_args()
time python ./bin/run-ldc93s1.py

View File

@ -10,7 +10,7 @@ import tensorflow.compat.v1 as tfv1
from coqui_stt_ctcdecoder import Scorer
from coqui_stt_training.evaluate import evaluate
from coqui_stt_training.train import create_model
from coqui_stt_training.util.config import Config, initialize_globals
from coqui_stt_training.util.config import Config, initialize_globals_from_cli
from coqui_stt_training.util.evaluate_tools import wer_cer_batch
from coqui_stt_training.util.flags import FLAGS, create_flags
from coqui_stt_training.util.logging import log_error
@ -52,7 +52,7 @@ def objective(trial):
def main(_):
initialize_globals()
initialize_globals_from_cli()
if not FLAGS.test_files:
log_error(

View File

@ -18,7 +18,7 @@ from .util.checkpoints import load_graph_for_evaluation
from .util.config import (
Config,
create_progressbar,
initialize_globals,
initialize_globals_from_cli,
log_error,
log_progress,
)
@ -169,7 +169,7 @@ def evaluate(test_csvs, create_model):
def main():
initialize_globals()
initialize_globals_from_cli()
if not Config.test_files:
log_error(

View File

@ -45,7 +45,7 @@ from .util.checkpoints import (
from .util.config import (
Config,
create_progressbar,
initialize_globals,
initialize_globals_from_cli,
log_debug,
log_error,
log_info,
@ -1249,7 +1249,7 @@ def early_training_checks():
def main():
initialize_globals()
initialize_globals_from_cli()
early_training_checks()
if Config.train_files:

View File

@ -36,10 +36,201 @@ Config = _ConfigSingleton() # pylint: disable=invalid-name
@dataclass
class _SttConfig(Coqpit):
def __post_init__(self):
# Augmentations
self.augmentations = parse_augmentations(self.augment)
if self.augmentations:
print(f"Parsed augmentations: {self.augmentations}")
if self.augmentations and self.feature_cache and self.cache_for_epochs == 0:
print(
"Due to your feature-cache settings, augmentations of "
"the first epoch will be repeated on all following epochs. "
"This may lead to unintended over-fitting. "
"You can use --cache_for_epochs <n_epochs> to invalidate "
"the cache after a given number of epochs."
)
if self.normalize_sample_rate:
self.augmentations = [NormalizeSampleRate(self.audio_sample_rate)] + self[
"augmentations"
]
# Caching
if self.cache_for_epochs == 1:
print(
"--cache_for_epochs == 1 is (re-)creating the feature cache "
"on every epoch but will never use it. You can either set "
"--cache_for_epochs > 1, or not use feature caching at all."
)
# Read-buffer
self.read_buffer = parse_file_size(self.read_buffer)
# Set default dropout rates
if self.dropout_rate2 < 0:
self.dropout_rate2 = self.dropout_rate
if self.dropout_rate3 < 0:
self.dropout_rate3 = self.dropout_rate
if self.dropout_rate6 < 0:
self.dropout_rate6 = self.dropout_rate
# Set default checkpoint dir
# If separate save and load flags were not specified, default to load and save
# from the same dir.
# if save_checkpoint_dir hasn't been set, or checkpoint_dir is new
if (not self.save_checkpoint_dir) or (
self.save_checkpoint_dir is not self.checkpoint_dir
):
if not self.checkpoint_dir:
self.checkpoint_dir = xdg.save_data_path(
os.path.join("stt", "checkpoints")
)
self.save_checkpoint_dir = self.checkpoint_dir
else:
self.save_checkpoint_dir = self.checkpoint_dir
# if load_checkpoint_dir hasn't been set, or checkpoint_dir is new
if (not self.load_checkpoint_dir) or (
self.load_checkpoint_dir is not self.checkpoint_dir
):
if not self.checkpoint_dir:
self.checkpoint_dir = xdg.load_data_path(
os.path.join("stt", "checkpoints")
)
self.load_checkpoint_dir = self.checkpoint_dir
else:
self.load_checkpoint_dir = self.checkpoint_dir
if self.load_train not in ["last", "best", "init", "auto"]:
self.load_train = "auto"
if self.load_evaluate not in ["last", "best", "auto"]:
self.load_evaluate = "auto"
# Set default summary dir
if not self.summary_dir:
self.summary_dir = xdg.save_data_path(os.path.join("stt", "summaries"))
# Standard session configuration that'll be used for all new sessions.
self.session_config = tfv1.ConfigProto(
allow_soft_placement=True,
log_device_placement=self.log_placement,
inter_op_parallelism_threads=self.inter_op_parallelism_threads,
intra_op_parallelism_threads=self.intra_op_parallelism_threads,
gpu_options=tfv1.GPUOptions(allow_growth=self.use_allow_growth),
)
# CPU device
self.cpu_device = "/cpu:0"
# Available GPU devices
self.available_devices = get_available_gpus(self.session_config)
# If there is no GPU available, we fall back to CPU based operation
if not self.available_devices:
self.available_devices = [self.cpu_device]
if self.bytes_output_mode and self.alphabet_config_path:
raise RuntimeError(
"You cannot set --alphabet_config_path *and* --bytes_output_mode"
)
elif self.bytes_output_mode:
self.alphabet = UTF8Alphabet()
elif self.alphabet_config_path:
self.alphabet = Alphabet(os.path.abspath(self.alphabet_config_path))
# Geometric Constants
# ===================
# For an explanation of the meaning of the geometric constants
# please refer to doc/Geometry.md
# Number of MFCC features
self.n_input = 26 # TODO: Determine this programmatically from the sample rate
# The number of frames in the context
self.n_context = (
9 # TODO: Determine the optimal value using a validation data set
)
# Number of units in hidden layers
self.n_hidden = self.n_hidden
self.n_hidden_1 = self.n_hidden
self.n_hidden_2 = self.n_hidden
self.n_hidden_5 = self.n_hidden
# LSTM cell state dimension
self.n_cell_dim = self.n_hidden
# The number of units in the third layer, which feeds in to the LSTM
self.n_hidden_3 = self.n_cell_dim
# Dims in last layer = number of characters in alphabet plus one
try:
# +1 for CTC blank label
self.n_hidden_6 = self.alphabet.GetSize() + 1
except:
AttributeError
# Size of audio window in samples
if (self.feature_win_len * self.audio_sample_rate) % 1000 != 0:
log_error(
"--feature_win_len value ({}) in milliseconds ({}) multiplied "
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
"your --feature_win_len value or resample your audio accordingly."
"".format(
self.feature_win_len,
self.feature_win_len / 1000,
self.audio_sample_rate,
)
)
sys.exit(1)
self.audio_window_samples = self.audio_sample_rate * (
self.feature_win_len / 1000
)
# Stride for feature computations in samples
if (self.feature_win_step * self.audio_sample_rate) % 1000 != 0:
log_error(
"--feature_win_step value ({}) in milliseconds ({}) multiplied "
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
"your --feature_win_step value or resample your audio accordingly."
"".format(
self.feature_win_step,
self.feature_win_step / 1000,
self.audio_sample_rate,
)
)
sys.exit(1)
self.audio_step_samples = self.audio_sample_rate * (
self.feature_win_step / 1000
)
if self.one_shot_infer:
if not path_exists_remote(self.one_shot_infer):
log_error("Path specified in --one_shot_infer is not a valid file.")
sys.exit(1)
if self.train_cudnn and self.load_cudnn:
log_error(
"Trying to use --train_cudnn, but --load_cudnn "
"was also specified. The --load_cudnn flag is only "
"needed when converting a CuDNN RNN checkpoint to "
"a CPU-capable graph. If your system is capable of "
"using CuDNN RNN, you can just specify the CuDNN RNN "
"checkpoint normally with --save_checkpoint_dir."
)
sys.exit(1)
train_files: List[str] = field(
default_factory=list,
metadata=dict(
help="space-separated list of files specifying the dataset used for training. Multiple files will get merged. If empty, training will not be run."
help="space-separated list of files specifying the datasets used for training. Multiple files will get merged. If empty, training will not be run."
),
)
dev_files: List[str] = field(
@ -472,7 +663,7 @@ class _SttConfig(Coqpit):
),
)
alphabet_config_path: str = field(
default="data/alphabet.txt",
default="",
metadata=dict(
help="path to the configuration file specifying the alphabet used by the network. See the comment in data/alphabet.txt for a description of the format."
),
@ -540,166 +731,17 @@ class _SttConfig(Coqpit):
),
)
def check_values(self):
c = asdict(self)
check_argument("alphabet_config_path", c, is_path=True)
check_argument("one_shot_infer", c, is_path=True)
def initialize_globals():
def initialize_globals_from_cli():
c = _SttConfig()
c.parse_args(arg_prefix="")
c.__post_init__()
_ConfigSingleton._config = c # pylint: disable=protected-access
# Augmentations
c.augmentations = parse_augmentations(c.augment)
print(f"Parsed augmentations from flags: {c.augmentations}")
if c.augmentations and c.feature_cache and c.cache_for_epochs == 0:
print(
"Due to current feature-cache settings the exact same sample augmentations of the first "
"epoch will be repeated on all following epochs. This could lead to unintended over-fitting. "
"You could use --cache_for_epochs <n_epochs> to invalidate the cache after a given number of epochs."
)
if c.normalize_sample_rate:
c.augmentations = [NormalizeSampleRate(c.audio_sample_rate)] + c[
"augmentations"
]
# Caching
if c.cache_for_epochs == 1:
print(
"--cache_for_epochs == 1 is (re-)creating the feature cache on every epoch but will never use it."
)
# Read-buffer
c.read_buffer = parse_file_size(c.read_buffer)
# Set default dropout rates
if c.dropout_rate2 < 0:
c.dropout_rate2 = c.dropout_rate
if c.dropout_rate3 < 0:
c.dropout_rate3 = c.dropout_rate
if c.dropout_rate6 < 0:
c.dropout_rate6 = c.dropout_rate
# Set default checkpoint dir
if not c.checkpoint_dir:
c.checkpoint_dir = xdg.save_data_path(os.path.join("stt", "checkpoints"))
if c.load_train not in ["last", "best", "init", "auto"]:
c.load_train = "auto"
if c.load_evaluate not in ["last", "best", "auto"]:
c.load_evaluate = "auto"
# Set default summary dir
if not c.summary_dir:
c.summary_dir = xdg.save_data_path(os.path.join("stt", "summaries"))
# Standard session configuration that'll be used for all new sessions.
c.session_config = tfv1.ConfigProto(
allow_soft_placement=True,
log_device_placement=c.log_placement,
inter_op_parallelism_threads=c.inter_op_parallelism_threads,
intra_op_parallelism_threads=c.intra_op_parallelism_threads,
gpu_options=tfv1.GPUOptions(allow_growth=c.use_allow_growth),
)
# CPU device
c.cpu_device = "/cpu:0"
# Available GPU devices
c.available_devices = get_available_gpus(c.session_config)
# If there is no GPU available, we fall back to CPU based operation
if not c.available_devices:
c.available_devices = [c.cpu_device]
if c.bytes_output_mode:
c.alphabet = UTF8Alphabet()
else:
c.alphabet = Alphabet(os.path.abspath(c.alphabet_config_path))
# Geometric Constants
# ===================
# For an explanation of the meaning of the geometric constants, please refer to
# doc/Geometry.md
# Number of MFCC features
c.n_input = 26 # TODO: Determine this programmatically from the sample rate
# The number of frames in the context
c.n_context = 9 # TODO: Determine the optimal value using a validation data set
# Number of units in hidden layers
c.n_hidden = c.n_hidden
c.n_hidden_1 = c.n_hidden
c.n_hidden_2 = c.n_hidden
c.n_hidden_5 = c.n_hidden
# LSTM cell state dimension
c.n_cell_dim = c.n_hidden
# The number of units in the third layer, which feeds in to the LSTM
c.n_hidden_3 = c.n_cell_dim
# Units in the sixth layer = number of characters in the target language plus one
c.n_hidden_6 = c.alphabet.GetSize() + 1 # +1 for CTC blank label
# Size of audio window in samples
if (c.feature_win_len * c.audio_sample_rate) % 1000 != 0:
log_error(
"--feature_win_len value ({}) in milliseconds ({}) multiplied "
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
"your --feature_win_len value or resample your audio accordingly."
"".format(c.feature_win_len, c.feature_win_len / 1000, c.audio_sample_rate)
)
sys.exit(1)
c.audio_window_samples = c.audio_sample_rate * (c.feature_win_len / 1000)
# Stride for feature computations in samples
if (c.feature_win_step * c.audio_sample_rate) % 1000 != 0:
log_error(
"--feature_win_step value ({}) in milliseconds ({}) multiplied "
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
"your --feature_win_step value or resample your audio accordingly."
"".format(
c.feature_win_step, c.feature_win_step / 1000, c.audio_sample_rate
)
)
sys.exit(1)
c.audio_step_samples = c.audio_sample_rate * (c.feature_win_step / 1000)
if c.one_shot_infer:
if not path_exists_remote(c.one_shot_infer):
log_error("Path specified in --one_shot_infer is not a valid file.")
sys.exit(1)
if c.train_cudnn and c.load_cudnn:
log_error(
"Trying to use --train_cudnn, but --load_cudnn "
"was also specified. The --load_cudnn flag is only "
"needed when converting a CuDNN RNN checkpoint to "
"a CPU-capable graph. If your system is capable of "
"using CuDNN RNN, you can just specify the CuDNN RNN "
"checkpoint normally with --save_checkpoint_dir."
)
sys.exit(1)
# If separate save and load flags were not specified, default to load and save
# from the same dir.
if not c.save_checkpoint_dir:
c.save_checkpoint_dir = c.checkpoint_dir
if not c.load_checkpoint_dir:
c.load_checkpoint_dir = c.checkpoint_dir
def initialize_globals_from_args(**override_args):
# Update Config with new args
c = _SttConfig(**override_args)
_ConfigSingleton._config = c # pylint: disable=protected-access

View File

@ -19,14 +19,19 @@ ValueRange = namedtuple("ValueRange", "start end r")
def parse_file_size(file_size):
file_size = file_size.lower().strip()
if len(file_size) == 0:
return 0
n = int(keep_only_digits(file_size))
if file_size[-1] == "b":
file_size = file_size[:-1]
e = file_size[-1]
return SIZE_PREFIX_LOOKUP[e] * n if e in SIZE_PREFIX_LOOKUP else n
if type(file_size) is str:
file_size = file_size.lower().strip()
if len(file_size) == 0:
return 0
n = int(keep_only_digits(file_size))
if file_size[-1] == "b":
file_size = file_size[:-1]
e = file_size[-1]
return SIZE_PREFIX_LOOKUP[e] * n if e in SIZE_PREFIX_LOOKUP else n
elif type(file_size) is int:
return file_size
else:
raise ValueError("file_size not of type 'int' or 'str'")
def keep_only_digits(txt):

View File

@ -20,7 +20,7 @@ from multiprocessing import Process, cpu_count
from coqui_stt_ctcdecoder import Scorer, ctc_beam_search_decoder_batch
from coqui_stt_training.util.audio import AudioFile
from coqui_stt_training.util.config import Config, initialize_globals
from coqui_stt_training.util.config import Config, initialize_globals_from_cli
from coqui_stt_training.util.feeding import split_audio_file
from coqui_stt_training.util.flags import FLAGS, create_flags
from coqui_stt_training.util.logging import (
@ -42,7 +42,8 @@ def transcribe_file(audio_path, tlog_path):
)
from coqui_stt_training.util.checkpoints import load_graph_for_evaluation
initialize_globals()
initialize_globals_from_cli()
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta, FLAGS.scorer_path, Config.alphabet)
try:
num_processes = cpu_count()