Remove dead code
This commit is contained in:
parent
07ed417627
commit
b62fa678e6
@ -240,45 +240,28 @@ def average_gradients(tower_gradients):
|
||||
return average_grads
|
||||
|
||||
|
||||
# Logging
|
||||
# =======
|
||||
def early_training_checks():
|
||||
# Check for proper scorer early
|
||||
if Config.scorer_path:
|
||||
scorer = Scorer(
|
||||
Config.lm_alpha, Config.lm_beta, Config.scorer_path, Config.alphabet
|
||||
)
|
||||
del scorer
|
||||
|
||||
|
||||
def log_variable(variable, gradient=None):
|
||||
r"""
|
||||
We introduce a function for logging a tensor variable's current state.
|
||||
It logs scalar values for the mean, standard deviation, minimum and maximum.
|
||||
Furthermore it logs a histogram of its state and (if given) of an optimization gradient.
|
||||
"""
|
||||
name = variable.name.replace(":", "_")
|
||||
mean = tf.reduce_mean(input_tensor=variable)
|
||||
tfv1.summary.scalar(name="%s/mean" % name, tensor=mean)
|
||||
tfv1.summary.scalar(
|
||||
name="%s/sttdev" % name,
|
||||
tensor=tf.sqrt(tf.reduce_mean(input_tensor=tf.square(variable - mean))),
|
||||
)
|
||||
tfv1.summary.scalar(
|
||||
name="%s/max" % name, tensor=tf.reduce_max(input_tensor=variable)
|
||||
)
|
||||
tfv1.summary.scalar(
|
||||
name="%s/min" % name, tensor=tf.reduce_min(input_tensor=variable)
|
||||
)
|
||||
tfv1.summary.histogram(name=name, values=variable)
|
||||
if gradient is not None:
|
||||
if isinstance(gradient, tf.IndexedSlices):
|
||||
grad_values = gradient.values
|
||||
else:
|
||||
grad_values = gradient
|
||||
if grad_values is not None:
|
||||
tfv1.summary.histogram(name="%s/gradients" % name, values=grad_values)
|
||||
|
||||
|
||||
def log_grads_and_vars(grads_and_vars):
|
||||
r"""
|
||||
Let's also introduce a helper function for logging collections of gradient/variable tuples.
|
||||
"""
|
||||
for gradient, variable in grads_and_vars:
|
||||
log_variable(variable, gradient=gradient)
|
||||
if (
|
||||
Config.train_files
|
||||
and Config.test_files
|
||||
and Config.load_checkpoint_dir != Config.save_checkpoint_dir
|
||||
):
|
||||
log_warn(
|
||||
"WARNING: You specified different values for --load_checkpoint_dir "
|
||||
"and --save_checkpoint_dir, but you are running training and testing "
|
||||
"in a single invocation. The testing step will respect --load_checkpoint_dir, "
|
||||
"and thus WILL NOT TEST THE CHECKPOINT CREATED BY THE TRAINING STEP. "
|
||||
"Train and test in two separate invocations, specifying the correct "
|
||||
"--load_checkpoint_dir in both cases, or use the same location "
|
||||
"for loading and saving."
|
||||
)
|
||||
|
||||
|
||||
def train():
|
||||
@ -387,7 +370,6 @@ def train():
|
||||
|
||||
# Average tower gradients across GPUs
|
||||
avg_tower_gradients = average_gradients(gradients)
|
||||
log_grads_and_vars(avg_tower_gradients)
|
||||
|
||||
# global_step is automagically incremented by the optimizer
|
||||
global_step = tfv1.train.get_or_create_global_step()
|
||||
@ -665,30 +647,6 @@ def train():
|
||||
log_debug("Session closed.")
|
||||
|
||||
|
||||
def early_training_checks():
|
||||
# Check for proper scorer early
|
||||
if Config.scorer_path:
|
||||
scorer = Scorer(
|
||||
Config.lm_alpha, Config.lm_beta, Config.scorer_path, Config.alphabet
|
||||
)
|
||||
del scorer
|
||||
|
||||
if (
|
||||
Config.train_files
|
||||
and Config.test_files
|
||||
and Config.load_checkpoint_dir != Config.save_checkpoint_dir
|
||||
):
|
||||
log_warn(
|
||||
"WARNING: You specified different values for --load_checkpoint_dir "
|
||||
"and --save_checkpoint_dir, but you are running training and testing "
|
||||
"in a single invocation. The testing step will respect --load_checkpoint_dir, "
|
||||
"and thus WILL NOT TEST THE CHECKPOINT CREATED BY THE TRAINING STEP. "
|
||||
"Train and test in two separate invocations, specifying the correct "
|
||||
"--load_checkpoint_dir in both cases, or use the same location "
|
||||
"for loading and saving."
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
initialize_globals_from_cli()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user