parent
5ef0117df0
commit
b5a3e328da
|
@ -17,16 +17,6 @@ const LM_ALPHA = 0.75;
|
||||||
// The beta hyperparameter of the CTC decoder. Word insertion bonus.
|
// The beta hyperparameter of the CTC decoder. Word insertion bonus.
|
||||||
const LM_BETA = 1.85;
|
const LM_BETA = 1.85;
|
||||||
|
|
||||||
// These constants are tied to the shape of the graph used (changing them changes
|
|
||||||
// the geometry of the first layer), so make sure you use the same constants that
|
|
||||||
// were used during training
|
|
||||||
|
|
||||||
// Number of MFCC features to use
|
|
||||||
const N_FEATURES = 26;
|
|
||||||
|
|
||||||
// Size of the context window used for producing timesteps in the input vector
|
|
||||||
const N_CONTEXT = 9;
|
|
||||||
|
|
||||||
let VersionAction = function VersionAction(options) {
|
let VersionAction = function VersionAction(options) {
|
||||||
options = options || {};
|
options = options || {};
|
||||||
options.nargs = 0;
|
options.nargs = 0;
|
||||||
|
@ -55,15 +45,14 @@ function totalTime(hrtimeValue) {
|
||||||
|
|
||||||
console.error('Loading model from file %s', args['model']);
|
console.error('Loading model from file %s', args['model']);
|
||||||
const model_load_start = process.hrtime();
|
const model_load_start = process.hrtime();
|
||||||
let model = new Ds.Model(args['model'], N_FEATURES, N_CONTEXT, args['alphabet'], BEAM_WIDTH);
|
let model = new Ds.Model(args['model'], args['alphabet'], BEAM_WIDTH);
|
||||||
const model_load_end = process.hrtime(model_load_start);
|
const model_load_end = process.hrtime(model_load_start);
|
||||||
console.error('Loaded model in %ds.', totalTime(model_load_end));
|
console.error('Loaded model in %ds.', totalTime(model_load_end));
|
||||||
|
|
||||||
if (args['lm'] && args['trie']) {
|
if (args['lm'] && args['trie']) {
|
||||||
console.error('Loading language model from files %s %s', args['lm'], args['trie']);
|
console.error('Loading language model from files %s %s', args['lm'], args['trie']);
|
||||||
const lm_load_start = process.hrtime();
|
const lm_load_start = process.hrtime();
|
||||||
model.enableDecoderWithLM(args['alphabet'], args['lm'], args['trie'],
|
model.enableDecoderWithLM(args['lm'], args['trie'], LM_ALPHA, LM_BETA);
|
||||||
LM_ALPHA, LM_BETA);
|
|
||||||
const lm_load_end = process.hrtime(lm_load_start);
|
const lm_load_end = process.hrtime(lm_load_start);
|
||||||
console.error('Loaded language model in %ds.', totalTime(lm_load_end));
|
console.error('Loaded language model in %ds.', totalTime(lm_load_end));
|
||||||
}
|
}
|
||||||
|
@ -106,7 +95,7 @@ const ffmpeg = spawn('ffmpeg', [
|
||||||
]);
|
]);
|
||||||
|
|
||||||
let audioLength = 0;
|
let audioLength = 0;
|
||||||
let sctx = model.setupStream(AUDIO_SAMPLE_RATE);
|
let sctx = model.createStream(AUDIO_SAMPLE_RATE);
|
||||||
|
|
||||||
function finishStream() {
|
function finishStream() {
|
||||||
const model_load_start = process.hrtime();
|
const model_load_start = process.hrtime();
|
||||||
|
@ -119,7 +108,7 @@ function finishStream() {
|
||||||
|
|
||||||
function intermediateDecode() {
|
function intermediateDecode() {
|
||||||
finishStream();
|
finishStream();
|
||||||
sctx = model.setupStream(AUDIO_SAMPLE_RATE);
|
sctx = model.createStream(AUDIO_SAMPLE_RATE);
|
||||||
}
|
}
|
||||||
|
|
||||||
function feedAudioContent(chunk) {
|
function feedAudioContent(chunk) {
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"argparse": "^1.0.10",
|
"argparse": "^1.0.10",
|
||||||
"deepspeech": "^0.4.1",
|
"deepspeech": "^0.6.0-alpha.5",
|
||||||
"node-vad": "^1.1.1",
|
"node-vad": "^1.1.1",
|
||||||
"util": "^0.11.1"
|
"util": "^0.11.1"
|
||||||
},
|
},
|
||||||
|
|
|
@ -162,11 +162,11 @@ def main(ARGS):
|
||||||
print('Initializing model...')
|
print('Initializing model...')
|
||||||
logging.info("ARGS.model: %s", ARGS.model)
|
logging.info("ARGS.model: %s", ARGS.model)
|
||||||
logging.info("ARGS.alphabet: %s", ARGS.alphabet)
|
logging.info("ARGS.alphabet: %s", ARGS.alphabet)
|
||||||
model = deepspeech.Model(ARGS.model, ARGS.n_features, ARGS.n_context, ARGS.alphabet, ARGS.beam_width)
|
model = deepspeech.Model(ARGS.model, ARGS.alphabet, ARGS.beam_width)
|
||||||
if ARGS.lm and ARGS.trie:
|
if ARGS.lm and ARGS.trie:
|
||||||
logging.info("ARGS.lm: %s", ARGS.lm)
|
logging.info("ARGS.lm: %s", ARGS.lm)
|
||||||
logging.info("ARGS.trie: %s", ARGS.trie)
|
logging.info("ARGS.trie: %s", ARGS.trie)
|
||||||
model.enableDecoderWithLM(ARGS.alphabet, ARGS.lm, ARGS.trie, ARGS.lm_alpha, ARGS.lm_beta)
|
model.enableDecoderWithLM(ARGS.lm, ARGS.trie, ARGS.lm_alpha, ARGS.lm_beta)
|
||||||
|
|
||||||
# Start audio with VAD
|
# Start audio with VAD
|
||||||
vad_audio = VADAudio(aggressiveness=ARGS.vad_aggressiveness,
|
vad_audio = VADAudio(aggressiveness=ARGS.vad_aggressiveness,
|
||||||
|
@ -179,7 +179,7 @@ def main(ARGS):
|
||||||
# Stream from microphone to DeepSpeech using VAD
|
# Stream from microphone to DeepSpeech using VAD
|
||||||
spinner = None
|
spinner = None
|
||||||
if not ARGS.nospinner: spinner = Halo(spinner='line')
|
if not ARGS.nospinner: spinner = Halo(spinner='line')
|
||||||
stream_context = model.setupStream()
|
stream_context = model.createStream()
|
||||||
wav_data = bytearray()
|
wav_data = bytearray()
|
||||||
for frame in frames:
|
for frame in frames:
|
||||||
if frame is not None:
|
if frame is not None:
|
||||||
|
@ -195,15 +195,13 @@ def main(ARGS):
|
||||||
wav_data = bytearray()
|
wav_data = bytearray()
|
||||||
text = model.finishStream(stream_context)
|
text = model.finishStream(stream_context)
|
||||||
print("Recognized: %s" % text)
|
print("Recognized: %s" % text)
|
||||||
stream_context = model.setupStream()
|
stream_context = model.createStream()
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
BEAM_WIDTH = 500
|
BEAM_WIDTH = 500
|
||||||
DEFAULT_SAMPLE_RATE = 16000
|
DEFAULT_SAMPLE_RATE = 16000
|
||||||
LM_ALPHA = 0.75
|
LM_ALPHA = 0.75
|
||||||
LM_BETA = 1.85
|
LM_BETA = 1.85
|
||||||
N_FEATURES = 26
|
|
||||||
N_CONTEXT = 9
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
parser = argparse.ArgumentParser(description="Stream from microphone to DeepSpeech using VAD")
|
parser = argparse.ArgumentParser(description="Stream from microphone to DeepSpeech using VAD")
|
||||||
|
@ -229,10 +227,6 @@ if __name__ == '__main__':
|
||||||
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")
|
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")
|
||||||
parser.add_argument('-r', '--rate', type=int, default=DEFAULT_SAMPLE_RATE,
|
parser.add_argument('-r', '--rate', type=int, default=DEFAULT_SAMPLE_RATE,
|
||||||
help=f"Input device sample rate. Default: {DEFAULT_SAMPLE_RATE}. Your device may require 44100.")
|
help=f"Input device sample rate. Default: {DEFAULT_SAMPLE_RATE}. Your device may require 44100.")
|
||||||
parser.add_argument('-nf', '--n_features', type=int, default=N_FEATURES,
|
|
||||||
help=f"Number of MFCC features to use. Default: {N_FEATURES}")
|
|
||||||
parser.add_argument('-nc', '--n_context', type=int, default=N_CONTEXT,
|
|
||||||
help=f"Size of the context window used for producing timesteps in the input vector. Default: {N_CONTEXT}")
|
|
||||||
parser.add_argument('-la', '--lm_alpha', type=float, default=LM_ALPHA,
|
parser.add_argument('-la', '--lm_alpha', type=float, default=LM_ALPHA,
|
||||||
help=f"The alpha hyperparameter of the CTC decoder. Language Model weight. Default: {LM_ALPHA}")
|
help=f"The alpha hyperparameter of the CTC decoder. Language Model weight. Default: {LM_ALPHA}")
|
||||||
parser.add_argument('-lb', '--lm_beta', type=float, default=LM_BETA,
|
parser.add_argument('-lb', '--lm_beta', type=float, default=LM_BETA,
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
deepspeech~=0.4.1
|
deepspeech~=0.6.0a5
|
||||||
pyaudio~=0.2.11
|
pyaudio~=0.2.11
|
||||||
webrtcvad~=2.0.10
|
webrtcvad~=2.0.10
|
||||||
halo~=0.0.18
|
halo~=0.0.18
|
||||||
numpy~=1.15.1
|
numpy~=1.15.1
|
||||||
|
scipy~=1.1.0
|
||||||
|
|
|
@ -6,19 +6,17 @@ const Duplex = require('stream').Duplex;
|
||||||
const Wav = require('node-wav');
|
const Wav = require('node-wav');
|
||||||
|
|
||||||
const BEAM_WIDTH = 1024;
|
const BEAM_WIDTH = 1024;
|
||||||
const N_FEATURES = 26;
|
|
||||||
const N_CONTEXT = 9;
|
|
||||||
let modelPath = './models/output_graph.pbmm';
|
let modelPath = './models/output_graph.pbmm';
|
||||||
let alphabetPath = './models/alphabet.txt';
|
let alphabetPath = './models/alphabet.txt';
|
||||||
|
|
||||||
let model = new DeepSpeech.Model(modelPath, N_FEATURES, N_CONTEXT, alphabetPath, BEAM_WIDTH);
|
let model = new DeepSpeech.Model(modelPath, alphabetPath, BEAM_WIDTH);
|
||||||
|
|
||||||
const LM_ALPHA = 0.75;
|
const LM_ALPHA = 0.75;
|
||||||
const LM_BETA = 1.85;
|
const LM_BETA = 1.85;
|
||||||
let lmPath = './models/lm.binary';
|
let lmPath = './models/lm.binary';
|
||||||
let triePath = './models/trie';
|
let triePath = './models/trie';
|
||||||
|
|
||||||
model.enableDecoderWithLM(alphabetPath, lmPath, triePath, LM_ALPHA, LM_BETA);
|
model.enableDecoderWithLM(lmPath, triePath, LM_ALPHA, LM_BETA);
|
||||||
|
|
||||||
let audioFile = process.argv[2] || './audio/2830-3980-0043.wav';
|
let audioFile = process.argv[2] || './audio/2830-3980-0043.wav';
|
||||||
|
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"argparse": "^1.0.10",
|
"argparse": "^1.0.10",
|
||||||
"deepspeech": "^0.4.1",
|
"deepspeech": "^0.6.0-alpha.5",
|
||||||
"node-wav": "0.0.2",
|
"node-wav": "0.0.2",
|
||||||
"sox-stream": "^2.0.3",
|
"sox-stream": "^2.0.3",
|
||||||
"util": "^0.11.1"
|
"util": "^0.11.1"
|
||||||
|
|
|
@ -72,7 +72,7 @@ def main(args):
|
||||||
logging.debug("************************************************************************************************************")
|
logging.debug("************************************************************************************************************")
|
||||||
print("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, model_retval[1], model_retval[2]))
|
print("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, model_retval[1], model_retval[2]))
|
||||||
else:
|
else:
|
||||||
sctx = model_retval[0].setupStream()
|
sctx = model_retval[0].createStream()
|
||||||
subproc = subprocess.Popen(shlex.split('rec -q -V0 -e signed -L -c 1 -b 16 -r 16k -t raw - gain -2'),
|
subproc = subprocess.Popen(shlex.split('rec -q -V0 -e signed -L -c 1 -b 16 -r 16k -t raw - gain -2'),
|
||||||
stdout=subprocess.PIPE,
|
stdout=subprocess.PIPE,
|
||||||
bufsize=0)
|
bufsize=0)
|
||||||
|
|
|
@ -283,7 +283,7 @@ class App(QMainWindow):
|
||||||
logging.debug("Start Recording pressed")
|
logging.debug("Start Recording pressed")
|
||||||
logging.debug("Preparing for transcription...")
|
logging.debug("Preparing for transcription...")
|
||||||
|
|
||||||
sctx = self.model[0].setupStream()
|
sctx = self.model[0].createStream()
|
||||||
subproc = subprocess.Popen(shlex.split('rec -q -V0 -e signed -L -c 1 -b 16 -r 16k -t raw - gain -2'),
|
subproc = subprocess.Popen(shlex.split('rec -q -V0 -e signed -L -c 1 -b 16 -r 16k -t raw - gain -2'),
|
||||||
stdout=subprocess.PIPE,
|
stdout=subprocess.PIPE,
|
||||||
bufsize=0)
|
bufsize=0)
|
||||||
|
|
|
@ -1,3 +1,3 @@
|
||||||
deepspeech==0.4.1
|
deepspeech~=0.6.0a5
|
||||||
webrtcvad
|
webrtcvad
|
||||||
pyqt5
|
pyqt5
|
||||||
|
|
|
@ -16,19 +16,17 @@ Load the pre-trained model into the memory
|
||||||
Returns a list [DeepSpeech Object, Model Load Time, LM Load Time]
|
Returns a list [DeepSpeech Object, Model Load Time, LM Load Time]
|
||||||
'''
|
'''
|
||||||
def load_model(models, alphabet, lm, trie):
|
def load_model(models, alphabet, lm, trie):
|
||||||
N_FEATURES = 26
|
|
||||||
N_CONTEXT = 9
|
|
||||||
BEAM_WIDTH = 500
|
BEAM_WIDTH = 500
|
||||||
LM_ALPHA = 0.75
|
LM_ALPHA = 0.75
|
||||||
LM_BETA = 1.85
|
LM_BETA = 1.85
|
||||||
|
|
||||||
model_load_start = timer()
|
model_load_start = timer()
|
||||||
ds = Model(models, N_FEATURES, N_CONTEXT, alphabet, BEAM_WIDTH)
|
ds = Model(models, alphabet, BEAM_WIDTH)
|
||||||
model_load_end = timer() - model_load_start
|
model_load_end = timer() - model_load_start
|
||||||
logging.debug("Loaded model in %0.3fs." % (model_load_end))
|
logging.debug("Loaded model in %0.3fs." % (model_load_end))
|
||||||
|
|
||||||
lm_load_start = timer()
|
lm_load_start = timer()
|
||||||
ds.enableDecoderWithLM(alphabet, lm, trie, LM_ALPHA, LM_BETA)
|
ds.enableDecoderWithLM(lm, trie, LM_ALPHA, LM_BETA)
|
||||||
lm_load_end = timer() - lm_load_start
|
lm_load_end = timer() - lm_load_start
|
||||||
logging.debug('Loaded language model in %0.3fs.' % (lm_load_end))
|
logging.debug('Loaded language model in %0.3fs.' % (lm_load_end))
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue