Simplyfy dockerfile and add notebook

This commit is contained in:
Josh Meyer 2021-07-20 04:20:57 -04:00
parent d0f8eb96cd
commit a37ca2ec27
2 changed files with 53 additions and 126 deletions

View File

@ -1,132 +1,13 @@
# This is a Dockerfile useful for training models with Coqui STT in Jupyter notebooks
FROM ubuntu:20.04 AS kenlm-build
ENV DEBIAN_FRONTEND=noninteractive
FROM ghcr.io/coqui-ai/stt-train:v0.10.0-alpha.9
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential cmake libboost-system-dev \
libboost-thread-dev libboost-program-options-dev \
libboost-test-dev libeigen3-dev zlib1g-dev \
libbz2-dev liblzma-dev && \
rm -rf /var/lib/apt/lists/*
RUN python3 -m pip install --no-cache-dir jupyter jupyter_http_over_ws
RUN jupyter serverextension enable --py jupyter_http_over_ws
# Build KenLM to generate new scorers
WORKDIR /code
COPY kenlm /code/kenlm
RUN cd /code/kenlm && \
mkdir -p build && \
cd build && \
cmake .. && \
make -j $(nproc) || \
( echo "ERROR: Failed to build KenLM."; \
echo "ERROR: Make sure you update the kenlm submodule on host before building this Dockerfile."; \
echo "ERROR: $ cd STT; git submodule update --init kenlm"; \
exit 1; )
RUN mv /code /home/STT
WORKDIR /home
EXPOSE 8888
FROM ubuntu:20.04 AS wget-binaries
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y --no-install-recommends wget unzip xz-utils
# Tool to convert output graph for inference
RUN wget --no-check-certificate https://github.com/coqui-ai/STT/releases/download/v0.9.3/convert_graphdef_memmapped_format.linux.amd64.zip -O temp.zip && \
unzip temp.zip && \
rm temp.zip
RUN wget --no-check-certificate https://github.com/coqui-ai/STT/releases/download/v0.9.3/native_client.tf.Linux.tar.xz -O temp.tar.xz && \
tar -xf temp.tar.xz && \
rm temp.tar.xz
FROM nvcr.io/nvidia/tensorflow:21.05-tf1-py3
ENV DEBIAN_FRONTEND=noninteractive
# We need to purge python3-xdg because
# it's breaking STT install later with
# errors about setuptools
#
RUN apt-get update && \
apt-get install -y --no-install-recommends \
git \
wget \
libopus0 \
libopusfile0 \
libsndfile1 \
sox \
libsox-fmt-mp3 && \
apt-get purge -y python3-xdg && \
rm -rf /var/lib/apt/lists/
# Make sure pip and its dependencies are up-to-date
RUN pip3 install --upgrade pip wheel setuptools
WORKDIR /code
COPY native_client /code/native_client
COPY .git /code/.git
COPY training/coqui_stt_training/VERSION /code/training/coqui_stt_training/VERSION
COPY training/coqui_stt_training/GRAPH_VERSION /code/training/coqui_stt_training/GRAPH_VERSION
# Build CTC decoder first, to avoid clashes on incompatible versions upgrades
RUN cd native_client/ctcdecode && make NUM_PROCESSES=$(nproc) bindings
RUN pip3 install --upgrade native_client/ctcdecode/dist/*.whl
COPY setup.py /code/setup.py
COPY VERSION /code/VERSION
COPY training /code/training
# Copy files from previous build stages
RUN mkdir -p /code/kenlm/build/
COPY --from=kenlm-build /code/kenlm/build/bin /code/kenlm/build/bin
COPY --from=wget-binaries /convert_graphdef_memmapped_format /code/convert_graphdef_memmapped_format
COPY --from=wget-binaries /generate_scorer_package /code/generate_scorer_package
# Install STT
# No need for the decoder since we did it earlier
# TensorFlow GPU should already be installed on the base image,
# and we don't want to break that
RUN DS_NODECODER=y DS_NOTENSORFLOW=y pip3 install --upgrade -e .
# Copy rest of the code and test training
COPY . /code
#RUN ./bin/run-ldc93s1.sh
RUN rm -rf ~/.local/share/stt
### START OVH THINGS
##
#
RUN apt-get update && apt-get install -y \
man \
vim \
nano \
htop \
curl \
wget \
rsync \
ca-certificates \
git \
zip \
procps \
ssh \
supervisor \
gettext-base \
less \
nodejs \
npm \
&& rm -rf /var/lib/apt/lists/*
RUN pip3 install jupyterlab ipywidgets
RUN jupyter labextension install @jupyter-widgets/jupyterlab-manager
RUN jupyter nbextension enable --py widgetsnbextension #enable ipywidgets
RUN jupyter labextension install jupyterlab-plotly
EXPOSE 8080
ADD start.sh /
WORKDIR /workspace
RUN chown -R 42420:42420 /workspace
ENTRYPOINT ["/start.sh"]
CMD ["bash", "-c", "jupyter notebook --notebook-dir=/home --ip 0.0.0.0 --no-browser --allow-root"]

46
train-ldc.ipynb Normal file
View File

@ -0,0 +1,46 @@
import os
import sys
import pandas
from STT.training.coqui_stt_training.util.downloader import maybe_download
#from STT.bin.import_ldc93s1 import _download_and_preprocess_data as download_data
#download_data('/home/STT/data')
def download_and_preprocess_data(data_dir):
# Conditionally download data
LDC93S1_BASE = "LDC93S1"
LDC93S1_BASE_URL = "https://catalog.ldc.upenn.edu/desc/addenda/"
local_file = maybe_download(
LDC93S1_BASE + ".wav", data_dir, LDC93S1_BASE_URL + LDC93S1_BASE + ".wav"
)
trans_file = maybe_download(
LDC93S1_BASE + ".txt", data_dir, LDC93S1_BASE_URL + LDC93S1_BASE + ".txt"
)
with open(trans_file, "r") as fin:
transcript = " ".join(fin.read().strip().lower().split(" ")[2:]).replace(
".", ""
)
df = pandas.DataFrame(
data=[(os.path.abspath(local_file), os.path.getsize(local_file), transcript)],
columns=["wav_filename", "wav_filesize", "transcript"],
)
df.to_csv(os.path.join(data_dir, "ldc93s1.csv"), index=False)
download_and_preprocess_data('/home/STT/data')
from STT.training.coqui_stt_training.train import train, early_training_checks
from STT.training.coqui_stt_training.util.config import initialize_globals
#Config.train_files=['/home/STT/data/ldc.csv']
#Config.dev_files=['/home/STT/data/ldc.csv']
#Config.test_files=['/home/STT/data/ldc.csv']
#Config.alphabet_config_path='/home/STT/data/alphabet.txt'
initialize_globals()
early_training_checks()
train()