Merge pull request #1716 from b-ak/master

Adding streaming API Support to the GUI Tool
This commit is contained in:
lissyx 2018-11-18 15:23:55 +01:00 committed by GitHub
commit a2ba23c3da
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 243 additions and 87 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -2,6 +2,8 @@ import sys
import os
import logging
import argparse
import subprocess
import shlex
import numpy as np
import wavTranscriber
@ -10,57 +12,80 @@ logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
def main(args):
parser = argparse.ArgumentParser(description='Transcribe long audio files using webRTC VAD')
parser.add_argument('--aggressive', type=int, choices=range(4), required=True,
parser = argparse.ArgumentParser(description='Transcribe long audio files using webRTC VAD or use the streaming interface')
parser.add_argument('--aggressive', type=int, choices=range(4), required=False,
help='Determines how aggressive filtering out non-speech is. (Interger between 0-3)')
parser.add_argument('--audio', required=True,
parser.add_argument('--audio', required=False,
help='Path to the audio file to run (WAV format)')
parser.add_argument('--model', required=True,
help='Path to directory that contains all model files (output_graph, lm, trie and alphabet)')
if len(sys.argv[1:])<6:
parser.add_argument('--stream', required=False, action='store_true',
help='To use deepspeech streaming interface')
args = parser.parse_args()
if args.stream is True and len(sys.argv[1:]) == 3:
print("Opening mic for streaming")
elif args.audio is not None and len(sys.argv[1:]) == 6:
logging.debug("Transcribing audio file @ %s" % args.audio)
else:
parser.print_help()
parser.exit()
args = parser.parse_args()
# Point to a path containing the pre-trained models & resolve ~ if used
dirName = os.path.expanduser(args.model)
title_names = ['Filename', 'Duration(s)', 'Inference Time(s)', 'Model Load Time(s)', 'LM Load Time(s)']
print("\n%-30s %-20s %-20s %-20s %s" % (title_names[0], title_names[1], title_names[2], title_names[3], title_names[4]))
# Resolve all the paths of model files
output_graph, alphabet, lm, trie = wavTranscriber.resolve_models(dirName)
# Load output_graph, alpahbet, lm and trie
model_retval = wavTranscriber.load_model(output_graph, alphabet, lm, trie)
inference_time = 0.0
# Run VAD on the input file
waveFile = args.audio
segments, sample_rate, audio_length = wavTranscriber.vad_segment_generator(waveFile, args.aggressive)
f = open(waveFile.rstrip(".wav") + ".txt", 'w')
logging.debug("Saving Transcript @: %s" % waveFile.rstrip(".wav") + ".txt")
if args.audio is not None:
title_names = ['Filename', 'Duration(s)', 'Inference Time(s)', 'Model Load Time(s)', 'LM Load Time(s)']
print("\n%-30s %-20s %-20s %-20s %s" % (title_names[0], title_names[1], title_names[2], title_names[3], title_names[4]))
for i, segment in enumerate(segments):
# Run deepspeech on the chunk that just completed VAD
logging.debug("Processing chunk %002d" % (i,))
audio = np.frombuffer(segment, dtype=np.int16)
output = wavTranscriber.stt(model_retval[0], audio, sample_rate)
inference_time += output[1]
logging.debug("Transcript: %s" % output[0])
inference_time = 0.0
f.write(output[0] + " ")
# Run VAD on the input file
waveFile = args.audio
segments, sample_rate, audio_length = wavTranscriber.vad_segment_generator(waveFile, args.aggressive)
f = open(waveFile.rstrip(".wav") + ".txt", 'w')
logging.debug("Saving Transcript @: %s" % waveFile.rstrip(".wav") + ".txt")
# Summary of the files processed
f.close()
for i, segment in enumerate(segments):
# Run deepspeech on the chunk that just completed VAD
logging.debug("Processing chunk %002d" % (i,))
audio = np.frombuffer(segment, dtype=np.int16)
output = wavTranscriber.stt(model_retval[0], audio, sample_rate)
inference_time += output[1]
logging.debug("Transcript: %s" % output[0])
# Extract filename from the full file path
filename, ext = os.path.split(os.path.basename(waveFile))
logging.debug("************************************************************************************************************")
logging.debug("%-30s %-20s %-20s %-20s %s" % (title_names[0], title_names[1], title_names[2], title_names[3], title_names[4]))
logging.debug("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, model_retval[1], model_retval[2]))
logging.debug("************************************************************************************************************")
print("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, model_retval[1], model_retval[2]))
f.write(output[0] + " ")
# Summary of the files processed
f.close()
# Extract filename from the full file path
filename, ext = os.path.split(os.path.basename(waveFile))
logging.debug("************************************************************************************************************")
logging.debug("%-30s %-20s %-20s %-20s %s" % (title_names[0], title_names[1], title_names[2], title_names[3], title_names[4]))
logging.debug("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, model_retval[1], model_retval[2]))
logging.debug("************************************************************************************************************")
print("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, model_retval[1], model_retval[2]))
else:
sctx = model_retval[0].setupStream()
subproc = subprocess.Popen(shlex.split('rec -q -V0 -e signed -L -c 1 -b 16 -r 16k -t raw - gain -2'),
stdout=subprocess.PIPE,
bufsize=0)
print('You can start speaking now. Press Control-C to stop recording.')
try:
while True:
data = subproc.stdout.read(512)
model_retval[0].feedAudioContent(sctx, np.frombuffer(data, np.int16))
except KeyboardInterrupt:
print('Transcription: ', model_retval[0].finishStream(sctx))
subproc.terminate()
subproc.wait()
if __name__ == '__main__':

View File

@ -1,6 +1,6 @@
import sys
import os
import inspect
import time
import logging
import traceback
import numpy as np
@ -8,18 +8,13 @@ import wavTranscriber
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *
import shlex
import subprocess
# Debug helpers
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
def PrintFrame():
# 0 represents this line
# 1 represents line at caller
callerframerecord = inspect.stack()[1]
frame = callerframerecord[0]
info = inspect.getframeinfo(frame)
logging.debug(info.function, info.lineno)
logging.basicConfig(stream=sys.stderr,
level=logging.DEBUG,
format='%(filename)s - %(funcName)s@%(lineno)d %(name)s:%(levelname)s %(message)s')
class WorkerSignals(QObject):
@ -102,7 +97,7 @@ class App(QMainWindow):
self.left = 10
self.top = 10
self.width = 480
self.height = 320
self.height = 400
self.initUI()
def initUI(self):
@ -111,36 +106,62 @@ class App(QMainWindow):
layout = QGridLayout()
layout.setSpacing(10)
self.textbox = QLineEdit(self, placeholderText="Wave File, Mono @ 16 kHz, 16bit Little-Endian")
self.microphone = QRadioButton("Microphone")
self.fileUpload = QRadioButton("File Upload")
self.browseBox = QLineEdit(self, placeholderText="Wave File, Mono @ 16 kHz, 16bit Little-Endian")
self.modelsBox = QLineEdit(self, placeholderText="Directory path for output_graph, alphabet, lm & trie")
self.textboxTranscript = QPlainTextEdit(self, placeholderText="Transcription")
self.button = QPushButton('Browse', self)
self.button.setToolTip('Select a wav file')
self.browseButton = QPushButton('Browse', self)
self.browseButton.setToolTip('Select a wav file')
self.modelsButton = QPushButton('Browse', self)
self.modelsButton.setToolTip('Select deepspeech models folder')
self.transcribeButton = QPushButton('Transcribe', self)
self.transcribeButton.setToolTip('Start Transcription')
self.transcribeWav = QPushButton('Transcribe Wav', self)
self.transcribeWav.setToolTip('Start Wav Transcription')
self.openMicrophone = QPushButton('Start Speaking', self)
self.openMicrophone.setToolTip('Open Microphone')
layout.addWidget(self.textbox, 0, 0)
layout.addWidget(self.button, 0, 1)
layout.addWidget(self.modelsBox, 1, 0)
layout.addWidget(self.modelsButton, 1, 1)
layout.addWidget(self.transcribeButton, 2, 0, Qt.AlignHCenter)
layout.addWidget(self.textboxTranscript, 3, 0, -1, 0)
layout.addWidget(self.microphone, 0, 1, 1, 2)
layout.addWidget(self.fileUpload, 0, 3, 1, 2)
layout.addWidget(self.browseBox, 1, 0, 1, 4)
layout.addWidget(self.browseButton, 1, 4)
layout.addWidget(self.modelsBox, 2, 0, 1, 4)
layout.addWidget(self.modelsButton, 2, 4)
layout.addWidget(self.transcribeWav, 3, 1, 1, 1)
layout.addWidget(self.openMicrophone, 3, 3, 1, 1)
layout.addWidget(self.textboxTranscript, 5, 0, -1, 0)
w = QWidget()
w.setLayout(layout)
self.setCentralWidget(w)
# Connect Button to Function on_click
self.button.clicked.connect(self.on_click)
# Microphone
self.microphone.clicked.connect(self.mic_activate)
# File Upload
self.fileUpload.clicked.connect(self.wav_activate)
# Connect Browse Button to Function on_click
self.browseButton.clicked.connect(self.browse_on_click)
# Connect the Models Button
self.modelsButton.clicked.connect(self.models_on_click)
# Connect Transcription button to threadpool
self.transcribeButton.clicked.connect(self.transcriptionStart_on_click)
self.transcribeWav.clicked.connect(self.transcriptionStart_on_click)
# Connect Microphone button to threadpool
self.openMicrophone.clicked.connect(self.openMicrophone_on_click)
self.openMicrophone.setCheckable(True)
self.openMicrophone.toggle()
self.browseButton.setEnabled(False)
self.browseBox.setEnabled(False)
self.modelsBox.setEnabled(False)
self.modelsButton.setEnabled(False)
self.transcribeWav.setEnabled(False)
self.openMicrophone.setEnabled(False)
self.show()
# Setup Threadpool
@ -148,24 +169,87 @@ class App(QMainWindow):
logging.debug("Multithreading with maximum %d threads" % self.threadpool.maxThreadCount())
@pyqtSlot()
def on_click(self):
def mic_activate(self):
logging.debug("Enable streaming widgets")
self.en_mic = True
self.browseButton.setEnabled(False)
self.browseBox.setEnabled(False)
self.modelsBox.setEnabled(True)
self.modelsButton.setEnabled(True)
self.transcribeWav.setEnabled(False)
self.openMicrophone.setStyleSheet('QPushButton {background-color: #70cc7c; color: black;}')
self.openMicrophone.setEnabled(True)
@pyqtSlot()
def wav_activate(self):
logging.debug("Enable wav transcription widgets")
self.en_mic = False
self.openMicrophone.setStyleSheet('QPushButton {background-color: #f7f7f7; color: black;}')
self.openMicrophone.setEnabled(False)
self.browseButton.setEnabled(True)
self.browseBox.setEnabled(True)
self.modelsBox.setEnabled(True)
self.modelsButton.setEnabled(True)
@pyqtSlot()
def browse_on_click(self):
logging.debug('Browse button clicked')
options = QFileDialog.Options()
options |= QFileDialog.DontUseNativeDialog
self.fileName, _ = QFileDialog.getOpenFileName(self,"Select wav file to be Transcribed", \
"","All Files (*.wav)", options=options)
self.fileName, _ = QFileDialog.getOpenFileName(self, "Select wav file to be Transcribed", "","All Files (*.wav)")
if self.fileName:
self.textbox.setText(self.fileName)
self.browseBox.setText(self.fileName)
self.transcribeWav.setEnabled(True)
logging.debug(self.fileName)
@pyqtSlot()
def models_on_click(self):
logging.debug('Models Browse Button clicked')
self.dirName = QFileDialog.getExistingDirectory(self,"Select deepspeech models directory")
self.dirName = QFileDialog.getExistingDirectory(self, "Select deepspeech models directory")
if self.dirName:
self.modelsBox.setText(self.dirName)
logging.debug(self.dirName)
# Threaded signal passing worker functions
worker = Worker(self.modelWorker, self.dirName)
worker.signals.result.connect(self.modelResult)
worker.signals.finished.connect(self.modelFinish)
worker.signals.progress.connect(self.modelProgress)
# Execute
self.threadpool.start(worker)
else:
logging.critical("*****************************************************")
logging.critical("Model path not specified..")
logging.critical("*****************************************************")
return "Transcription Failed, models path not specified"
def modelWorker(self, dirName, progress_callback):
self.textboxTranscript.setPlainText("Loading Models...")
self.openMicrophone.setStyleSheet('QPushButton {background-color: #f7f7f7; color: black;}')
self.openMicrophone.setEnabled(False)
self.show()
time.sleep(1)
return dirName
def modelProgress(self, s):
# FixMe: Write code to show progress here
pass
def modelResult(self, dirName):
# Fetch and Resolve all the paths of model files
output_graph, alphabet, lm, trie = wavTranscriber.resolve_models(dirName)
# Load output_graph, alpahbet, lm and trie
self.model = wavTranscriber.load_model(output_graph, alphabet, lm, trie)
def modelFinish(self):
# self.timer.stop()
self.textboxTranscript.setPlainText("Loaded Models, start transcribing")
if self.en_mic is True:
self.openMicrophone.setStyleSheet('QPushButton {background-color: #70cc7c; color: black;}')
self.openMicrophone.setEnabled(True)
self.show()
@pyqtSlot()
def transcriptionStart_on_click(self):
logging.debug('Transcription Start button clicked')
@ -175,20 +259,82 @@ class App(QMainWindow):
self.show()
# Threaded signal passing worker functions
worker = Worker(self.runDeepspeech, self.fileName)
worker.signals.result.connect(self.transcription)
worker.signals.finished.connect(self.threadComplete)
worker = Worker(self.wavWorker, self.fileName)
worker.signals.progress.connect(self.progress)
worker.signals.result.connect(self.transcription)
worker.signals.finished.connect(self.wavFinish)
# Execute
self.threadpool.start(worker)
@pyqtSlot()
def openMicrophone_on_click(self):
logging.debug('Preparing to open microphone...')
# Clear out older data
self.textboxTranscript.setPlainText("")
self.show()
# Threaded signal passing worker functions
# Prepare env for capturing from microphone and offload work to micWorker worker thread
if (not self.openMicrophone.isChecked()):
self.openMicrophone.setStyleSheet('QPushButton {background-color: #C60000; color: black;}')
self.openMicrophone.setText("Stop")
logging.debug("Start Recording pressed")
logging.debug("Preparing for transcription...")
sctx = self.model[0].setupStream()
subproc = subprocess.Popen(shlex.split('rec -q -V0 -e signed -L -c 1 -b 16 -r 16k -t raw - gain -2'),
stdout=subprocess.PIPE,
bufsize=0)
self.textboxTranscript.insertPlainText('You can start speaking now\n\n')
self.show()
logging.debug('You can start speaking now')
context = (sctx, subproc, self.model[0])
# Pass the state to streaming worker
worker = Worker(self.micWorker, context)
worker.signals.progress.connect(self.progress)
worker.signals.result.connect(self.transcription)
worker.signals.finished.connect(self.micFinish)
# Execute
self.threadpool.start(worker)
else:
logging.debug("Stop Recording")
'''
Capture the audio stream from the microphone.
The context is prepared by the openMicrophone_on_click()
@param Context: Is a tuple containing three objects
1. Speech samples, sctx
2. subprocess handle
3. Deepspeech model object
'''
def micWorker(self, context, progress_callback):
# Deepspeech Streaming will be run from this method
logging.debug("Recording from your microphone")
while (not self.openMicrophone.isChecked()):
data = context[1].stdout.read(512)
context[2].feedAudioContent(context[0], np.frombuffer(data, np.int16))
else:
transcript = context[2].finishStream(context[0])
context[1].terminate()
context[1].wait()
self.show()
progress_callback.emit(transcript)
return "\n*********************\nTranscription Done..."
def micFinish(self):
self.openMicrophone.setText("Start Speaking")
self.openMicrophone.setStyleSheet('QPushButton {background-color: #70cc7c; color: black;}')
def transcription(self, out):
logging.debug("Transcribed text: %s" % out)
logging.debug("%s" % out)
self.textboxTranscript.insertPlainText(out)
self.show()
def threadComplete(self):
def wavFinish(self):
logging.debug("File processed")
def progress(self, chunk):
@ -196,24 +342,9 @@ class App(QMainWindow):
self.textboxTranscript.insertPlainText(chunk)
self.show()
def runDeepspeech(self, waveFile, progress_callback):
def wavWorker(self, waveFile, progress_callback):
# Deepspeech will be run from this method
logging.debug("Preparing for transcription...")
# Go and fetch the models from the directory specified
if self.dirName:
# Resolve all the paths of model files
output_graph, alphabet, lm, trie = wavTranscriber.resolve_models(self.dirName)
else:
logging.critical("*****************************************************")
logging.critical("Model path not specified..")
logging.critical("You sure of what you're doing ?? ")
logging.critical("Trying to fetch from present working directory.")
logging.critical("*****************************************************")
return "Transcription Failed, models path not specified"
# Load output_graph, alpahbet, lm and trie
model_retval = wavTranscriber.load_model(output_graph, alphabet, lm, trie)
inference_time = 0.0
# Run VAD on the input file
@ -225,7 +356,7 @@ class App(QMainWindow):
# Run deepspeech on the chunk that just completed VAD
logging.debug("Processing chunk %002d" % (i,))
audio = np.frombuffer(segment, dtype=np.int16)
output = wavTranscriber.stt(model_retval[0], audio, sample_rate)
output = wavTranscriber.stt(self.model[0], audio, sample_rate)
inference_time += output[1]
f.write(output[0] + " ")
@ -239,10 +370,10 @@ class App(QMainWindow):
title_names = ['Filename', 'Duration(s)', 'Inference Time(s)', 'Model Load Time(s)', 'LM Load Time(s)']
logging.debug("************************************************************************************************************")
logging.debug("%-30s %-20s %-20s %-20s %s" % (title_names[0], title_names[1], title_names[2], title_names[3], title_names[4]))
logging.debug("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, model_retval[1], model_retval[2]))
logging.debug("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, self.model[1], self.model[2]))
logging.debug("************************************************************************************************************")
print("\n%-30s %-20s %-20s %-20s %s" % (title_names[0], title_names[1], title_names[2], title_names[3], title_names[4]))
print("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, model_retval[1], model_retval[2]))
print("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, self.model[1], self.model[2]))
return "\n*********************\nTranscription Done..."

View File

@ -1,3 +1,3 @@
deepspeech==0.2.0
deepspeech==0.3.0
webrtcvad
pyqt5