evaluate_tflite: Fix shared Queue

Also dump output to a file
Fixed some trivial pylint issues at the same time

Signed-off-by: Li Li <eggonlea@msn.com>
This commit is contained in:
Li Li 2019-06-11 13:19:04 -07:00
parent 94df405ec4
commit 863c5544ca

View File

@ -6,14 +6,13 @@ import argparse
import numpy as np
import wave
import csv
import sys
import os
from six.moves import zip, range
from multiprocessing import JoinableQueue, Pool, Process, Queue, cpu_count
from multiprocessing import JoinableQueue, Process, cpu_count, Manager
from deepspeech import Model
from util.evaluate_tools import process_decode_result, calculate_report
from util.evaluate_tools import calculate_report
r'''
This module should be self-contained:
@ -41,15 +40,17 @@ def tflite_worker(model, alphabet, lm, trie, queue_in, queue_out, gpu_mask):
while True:
msg = queue_in.get()
fin = wave.open(msg['filename'], 'rb')
filename = msg['filename']
wavname = os.path.splitext(os.path.basename(filename))[0]
fin = wave.open(filename, 'rb')
fs = fin.getframerate()
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
audio_length = fin.getnframes() * (1/16000)
fin.close()
decoded = ds.stt(audio, fs)
queue_out.put({'prediction': decoded, 'ground_truth': msg['transcript']})
queue_out.put({'wav': wavname, 'prediction': decoded, 'ground_truth': msg['transcript']})
print(queue_out.qsize(), end='\r') # Update the current progress
queue_in.task_done()
def main():
@ -66,10 +67,13 @@ def main():
help='Path to the CSV source file')
parser.add_argument('--proc', required=False, default=cpu_count(), type=int,
help='Number of processes to spawn, defaulting to number of CPUs')
parser.add_argument('--dump', required=False, action='store_true', default=False,
help='Dump the results as text file, with one line for each wav: "wav transcription"')
args = parser.parse_args()
manager = Manager()
work_todo = JoinableQueue() # this is where we are going to store input data
work_done = Queue() # this where we are gonna push them out
work_done = manager.Queue() # this where we are gonna push them out
processes = []
for i in range(args.proc):
@ -79,27 +83,41 @@ def main():
print([x.name for x in processes])
wavlist = []
ground_truths = []
predictions = []
losses = []
with open(args.csv, 'r') as csvfile:
csvreader = csv.DictReader(csvfile)
count = 0
for row in csvreader:
count += 1
work_todo.put({'filename': row['wav_filename'], 'transcript': row['transcript']})
print('Totally %d wav entries found in csv\n' % count)
work_todo.join()
print('\nTotally %d wav file transcripted' % work_done.qsize())
while (not work_done.empty()):
while not work_done.empty():
msg = work_done.get()
losses.append(0.0)
ground_truths.append(msg['ground_truth'])
predictions.append(msg['prediction'])
wavlist.append(msg['wav'])
wer, cer, samples = calculate_report(ground_truths, predictions, losses)
wer, cer, _ = calculate_report(ground_truths, predictions, losses)
mean_loss = np.mean(losses)
print('Test - WER: %f, CER: %f, loss: %f' %
(wer, cer, mean_loss))
if args.dump:
with open(args.csv + '.txt', 'w') as ftxt, open(args.csv + '.out', 'w') as fout:
for wav, txt, out in zip(wavlist, ground_truths, predictions):
ftxt.write('%s %s\n' % (wav, txt))
fout.write('%s %s\n' % (wav, out))
print('Reference texts dumped to %s.txt' % args.csv)
print('Transcription dumped to %s.out' % args.csv)
if __name__ == '__main__':
main()