Merge pull request #1945 from coqui-ai/alphabet-loading-generation
Convenience features for alphabet loading/saving/generation
This commit is contained in:
commit
66b8a56454
|
@ -69,6 +69,39 @@ Alphabet::init(const char *config_file)
|
|||
return 0;
|
||||
}
|
||||
|
||||
void
|
||||
Alphabet::InitFromLabels(const std::vector<std::string>& labels)
|
||||
{
|
||||
space_label_ = -2;
|
||||
size_ = labels.size();
|
||||
for (int i = 0; i < size_; ++i) {
|
||||
const std::string& label = labels[i];
|
||||
if (label == " ") {
|
||||
space_label_ = i;
|
||||
}
|
||||
label_to_str_[i] = label;
|
||||
str_to_label_[label] = i;
|
||||
}
|
||||
}
|
||||
|
||||
std::string
|
||||
Alphabet::SerializeText()
|
||||
{
|
||||
std::stringstream out;
|
||||
|
||||
out << "# Each line in this file represents the Unicode codepoint (UTF-8 encoded)\n"
|
||||
<< "# associated with a numeric label.\n"
|
||||
<< "# A line that starts with # is a comment. You can escape it with \\# if you wish\n"
|
||||
<< "# to use '#' as a label.\n";
|
||||
|
||||
for (int label = 0; label < size_; ++label) {
|
||||
out << label_to_str_[label] << "\n";
|
||||
}
|
||||
|
||||
out << "# The last (non-comment) line needs to end with a newline.\n";
|
||||
return out.str();
|
||||
}
|
||||
|
||||
std::string
|
||||
Alphabet::Serialize()
|
||||
{
|
||||
|
|
|
@ -19,9 +19,15 @@ public:
|
|||
|
||||
virtual int init(const char *config_file);
|
||||
|
||||
// Initialize directly from sequence of labels.
|
||||
void InitFromLabels(const std::vector<std::string>& labels);
|
||||
|
||||
// Serialize alphabet into a binary buffer.
|
||||
std::string Serialize();
|
||||
|
||||
// Serialize alphabet into a text representation (ie. config file read by `init`)
|
||||
std::string SerializeText();
|
||||
|
||||
// Deserialize alphabet from a binary buffer.
|
||||
int Deserialize(const char* buffer, const int buffer_size);
|
||||
|
||||
|
|
|
@ -45,14 +45,18 @@ class Scorer(swigwrapper.Scorer):
|
|||
class Alphabet(swigwrapper.Alphabet):
|
||||
"""Convenience wrapper for Alphabet which calls init in the constructor"""
|
||||
|
||||
def __init__(self, config_path):
|
||||
def __init__(self, config_path=None):
|
||||
super(Alphabet, self).__init__()
|
||||
if config_path:
|
||||
err = self.init(config_path.encode("utf-8"))
|
||||
if err != 0:
|
||||
raise ValueError(
|
||||
"Alphabet initialization failed with error code 0x{:X}".format(err)
|
||||
)
|
||||
|
||||
def InitFromLabels(self, data):
|
||||
return super(Alphabet, self).InitFromLabels([c.encode("utf-8") for c in data])
|
||||
|
||||
def CanEncodeSingle(self, input):
|
||||
"""
|
||||
Returns true if the single character/output class has a corresponding label
|
||||
|
|
|
@ -429,6 +429,11 @@ def train():
|
|||
with open_remote(flags_file, "w") as fout:
|
||||
json.dump(Config.serialize(), fout, indent=2)
|
||||
|
||||
# Serialize alphabet alongside checkpoint
|
||||
preserved_alphabet_file = os.path.join(Config.save_checkpoint_dir, "alphabet.txt")
|
||||
with open_remote(preserved_alphabet_file, "wb") as fout:
|
||||
fout.write(Config.alphabet.SerializeText())
|
||||
|
||||
with tfv1.Session(config=Config.session_config) as session:
|
||||
log_debug("Session opened.")
|
||||
|
||||
|
@ -683,9 +688,6 @@ def early_training_checks():
|
|||
"for loading and saving."
|
||||
)
|
||||
|
||||
if not Config.alphabet_config_path and not Config.bytes_output_mode:
|
||||
raise RuntimeError("Missing --alphabet_config_path flag, can't continue")
|
||||
|
||||
|
||||
def main():
|
||||
initialize_globals_from_cli()
|
||||
|
|
|
@ -11,11 +11,13 @@ from attrdict import AttrDict
|
|||
from coqpit import MISSING, Coqpit, check_argument
|
||||
from coqui_stt_ctcdecoder import Alphabet, UTF8Alphabet
|
||||
from xdg import BaseDirectory as xdg
|
||||
from tqdm import tqdm
|
||||
|
||||
from .augmentations import NormalizeSampleRate, parse_augmentations
|
||||
from .gpu import get_available_gpus
|
||||
from .helpers import parse_file_size
|
||||
from .io import path_exists_remote
|
||||
from .sample_collections import samples_from_sources
|
||||
|
||||
|
||||
class _ConfigSingleton:
|
||||
|
@ -118,6 +120,15 @@ class _SttConfig(Coqpit):
|
|||
if not self.available_devices:
|
||||
self.available_devices = [self.cpu_device]
|
||||
|
||||
# If neither `--alphabet_config_path` nor `--bytes_output_mode` were specified,
|
||||
# look for alphabet file alongside loaded checkpoint.
|
||||
loaded_checkpoint_alphabet_file = os.path.join(
|
||||
self.load_checkpoint_dir, "alphabet.txt"
|
||||
)
|
||||
saved_checkpoint_alphabet_file = os.path.join(
|
||||
self.save_checkpoint_dir, "alphabet.txt"
|
||||
)
|
||||
|
||||
if self.bytes_output_mode and self.alphabet_config_path:
|
||||
raise RuntimeError(
|
||||
"You cannot set --alphabet_config_path *and* --bytes_output_mode"
|
||||
|
@ -126,6 +137,42 @@ class _SttConfig(Coqpit):
|
|||
self.alphabet = UTF8Alphabet()
|
||||
elif self.alphabet_config_path:
|
||||
self.alphabet = Alphabet(os.path.abspath(self.alphabet_config_path))
|
||||
elif os.path.exists(loaded_checkpoint_alphabet_file):
|
||||
print(
|
||||
"I --alphabet_config_path not specified, but found an alphabet file "
|
||||
f"alongside specified checkpoint ({loaded_checkpoint_alphabet_file}). "
|
||||
"Will use this alphabet file for this run."
|
||||
)
|
||||
self.alphabet = Alphabet(loaded_checkpoint_alphabet_file)
|
||||
elif self.train_files and self.dev_files and self.test_files:
|
||||
# Generate alphabet automatically from input dataset, but only if
|
||||
# fully specified, to avoid confusion in case a missing set has extra
|
||||
# characters.
|
||||
print(
|
||||
"I --alphabet_config_path not specified, but all input datasets are "
|
||||
"present (--train_files, --dev_files, --test_files). An alphabet "
|
||||
"will be generated automatically from the data and placed alongside "
|
||||
f"the checkpoint ({saved_checkpoint_alphabet_file})."
|
||||
)
|
||||
characters = set()
|
||||
for sample in tqdm(
|
||||
samples_from_sources(
|
||||
self.train_files + self.dev_files + self.test_files
|
||||
)
|
||||
):
|
||||
characters |= set(sample.transcript)
|
||||
characters = list(sorted(characters))
|
||||
print(f"I Generated alphabet characters: {characters}.")
|
||||
self.alphabet = Alphabet()
|
||||
self.alphabet.InitFromLabels(characters)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Missing --alphabet_config_path flag. Couldn't find an alphabet file\n"
|
||||
"alongside checkpoint, and input datasets are not fully specified\n"
|
||||
"(--train_files, --dev_files, --test_files), so can't generate an alphabet.\n"
|
||||
"Either specify an alphabet file or fully specify the dataset, so one will\n"
|
||||
"be generated automatically."
|
||||
)
|
||||
|
||||
# Geometric Constants
|
||||
# ===================
|
||||
|
@ -157,15 +204,12 @@ class _SttConfig(Coqpit):
|
|||
self.n_hidden_3 = self.n_cell_dim
|
||||
|
||||
# Dims in last layer = number of characters in alphabet plus one
|
||||
try:
|
||||
# +1 for CTC blank label
|
||||
self.n_hidden_6 = self.alphabet.GetSize() + 1
|
||||
except:
|
||||
AttributeError
|
||||
|
||||
# Size of audio window in samples
|
||||
if (self.feature_win_len * self.audio_sample_rate) % 1000 != 0:
|
||||
log_error(
|
||||
raise RuntimeError(
|
||||
"--feature_win_len value ({}) in milliseconds ({}) multiplied "
|
||||
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
|
||||
"your --feature_win_len value or resample your audio accordingly."
|
||||
|
@ -175,7 +219,6 @@ class _SttConfig(Coqpit):
|
|||
self.audio_sample_rate,
|
||||
)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
self.audio_window_samples = self.audio_sample_rate * (
|
||||
self.feature_win_len / 1000
|
||||
|
@ -183,7 +226,7 @@ class _SttConfig(Coqpit):
|
|||
|
||||
# Stride for feature computations in samples
|
||||
if (self.feature_win_step * self.audio_sample_rate) % 1000 != 0:
|
||||
log_error(
|
||||
raise RuntimeError(
|
||||
"--feature_win_step value ({}) in milliseconds ({}) multiplied "
|
||||
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
|
||||
"your --feature_win_step value or resample your audio accordingly."
|
||||
|
@ -193,19 +236,18 @@ class _SttConfig(Coqpit):
|
|||
self.audio_sample_rate,
|
||||
)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
self.audio_step_samples = self.audio_sample_rate * (
|
||||
self.feature_win_step / 1000
|
||||
)
|
||||
|
||||
if self.one_shot_infer:
|
||||
if not path_exists_remote(self.one_shot_infer):
|
||||
log_error("Path specified in --one_shot_infer is not a valid file.")
|
||||
sys.exit(1)
|
||||
if self.one_shot_infer and not path_exists_remote(self.one_shot_infer):
|
||||
raise RuntimeError(
|
||||
"Path specified in --one_shot_infer is not a valid file."
|
||||
)
|
||||
|
||||
if self.train_cudnn and self.load_cudnn:
|
||||
log_error(
|
||||
raise RuntimeError(
|
||||
"Trying to use --train_cudnn, but --load_cudnn "
|
||||
"was also specified. The --load_cudnn flag is only "
|
||||
"needed when converting a CuDNN RNN checkpoint to "
|
||||
|
@ -213,7 +255,6 @@ class _SttConfig(Coqpit):
|
|||
"using CuDNN RNN, you can just specify the CuDNN RNN "
|
||||
"checkpoint normally with --save_checkpoint_dir."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
# sphinx-doc: training_ref_flags_start
|
||||
train_files: List[str] = field(
|
||||
|
@ -727,9 +768,7 @@ class _SttConfig(Coqpit):
|
|||
|
||||
|
||||
def initialize_globals_from_cli():
|
||||
c = _SttConfig()
|
||||
c.parse_args(arg_prefix="")
|
||||
c.__post_init__()
|
||||
c = _SttConfig.init_from_argparse(arg_prefix="")
|
||||
_ConfigSingleton._config = c # pylint: disable=protected-access
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue