-data-aug via additive and multiplicative noise in feature-space

This commit is contained in:
Bernardo Henz 2019-08-01 21:00:55 -03:00 committed by Reuben Morais
parent 896ac9d6c7
commit 5d5ef15ab7
2 changed files with 16 additions and 1 deletions

View File

@ -15,7 +15,7 @@ from tensorflow.python.ops import gen_audio_ops as contrib_audio
from util.config import Config from util.config import Config
from util.logging import log_error from util.logging import log_error
from util.text import text_to_char_array from util.text import text_to_char_array
from util.flags import FLAGS
def read_csvs(csv_files): def read_csvs(csv_files):
source_data = None source_data = None
@ -47,6 +47,14 @@ def audiofile_to_features(wav_filename):
decoded = contrib_audio.decode_wav(samples, desired_channels=1) decoded = contrib_audio.decode_wav(samples, desired_channels=1)
features, features_len = samples_to_mfccs(decoded.audio, decoded.sample_rate) features, features_len = samples_to_mfccs(decoded.audio, decoded.sample_rate)
if FLAGS.data_aug_features_multiplicative > 0:
features = features*tf.random.normal(mean=1, stddev=FLAGS.data_aug_features_multiplicative, shape=tf.shape(features))
if FLAGS.data_aug_features_additive > 0:
features = features+tf.random.normal(mean=0.0, stddev=FLAGS.data_aug_features_additive, shape=tf.shape(features))
return features, features_len return features, features_len

View File

@ -21,6 +21,13 @@ def create_flags():
f.DEFINE_integer('feature_win_step', 20, 'feature extraction window step length in milliseconds') f.DEFINE_integer('feature_win_step', 20, 'feature extraction window step length in milliseconds')
f.DEFINE_integer('audio_sample_rate', 16000, 'sample rate value expected by model') f.DEFINE_integer('audio_sample_rate', 16000, 'sample rate value expected by model')
# Data Augmentation
# ================
f.DEFINE_float('data_aug_features_additive', 0, 'std of the Gaussian additive noise')
f.DEFINE_float('data_aug_features_multiplicative', 0, 'std of normal distribution around 1 for multiplicative noise')
# Global Constants # Global Constants
# ================ # ================