Remove broken TrainingSpeech importer temporarily

During the fork the archive URL was broken and nobody has mentioned it since.
Additionally the dependency on Unidecode (GPL) complicates licensing.

Removing it for now until both points are fixed.
This commit is contained in:
Reuben Morais 2021-05-20 17:02:35 +02:00
parent debd1d9495
commit 5ba1e4d969
1 changed files with 0 additions and 219 deletions

View File

@ -1,219 +0,0 @@
#!/usr/bin/env python3
import csv
import os
import re
import subprocess
import zipfile
from multiprocessing import Pool
import progressbar
import sox
import unidecode
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
from coqui_stt_training.util.importers import (
get_counter,
get_imported_samples,
get_importers_parser,
get_validate_label,
print_import_report,
)
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
SAMPLE_RATE = 16000
MAX_SECS = 15
ARCHIVE_NAME = "2019-04-11_fr_FR"
ARCHIVE_DIR_NAME = "ts_" + ARCHIVE_NAME
ARCHIVE_URL = (
"https://Coqui STT-storage-mirror.s3.fr-par.scw.cloud/" + ARCHIVE_NAME + ".zip"
)
def _download_and_preprocess_data(target_dir, english_compatible=False):
# Making path absolute
target_dir = os.path.abspath(target_dir)
# Conditionally download data
archive_path = maybe_download(
"ts_" + ARCHIVE_NAME + ".zip", target_dir, ARCHIVE_URL
)
# Conditionally extract archive data
_maybe_extract(target_dir, ARCHIVE_DIR_NAME, archive_path)
# Conditionally convert TrainingSpeech data to Coqui STT CSVs and wav
_maybe_convert_sets(
target_dir, ARCHIVE_DIR_NAME, english_compatible=english_compatible
)
def _maybe_extract(target_dir, extracted_data, archive_path):
# If target_dir/extracted_data does not exist, extract archive in target_dir
extracted_path = os.path.join(target_dir, extracted_data)
if not os.path.exists(extracted_path):
print('No directory "%s" - extracting archive...' % extracted_path)
if not os.path.isdir(extracted_path):
os.mkdir(extracted_path)
with zipfile.ZipFile(archive_path) as zip_f:
zip_f.extractall(extracted_path)
else:
print('Found directory "%s" - not extracting it from archive.' % archive_path)
def one_sample(sample):
""" Take a audio file, and optionally convert it to 16kHz WAV """
orig_filename = sample["path"]
# Storing wav files next to the wav ones - just with a different suffix
wav_filename = os.path.splitext(orig_filename)[0] + ".converted.wav"
_maybe_convert_wav(orig_filename, wav_filename)
file_size = -1
frames = 0
if os.path.exists(wav_filename):
file_size = os.path.getsize(wav_filename)
frames = int(
subprocess.check_output(
["soxi", "-s", wav_filename], stderr=subprocess.STDOUT
)
)
label = sample["text"]
rows = []
# Keep track of how many samples are good vs. problematic
counter = get_counter()
if file_size == -1:
# Excluding samples that failed upon conversion
counter["failed"] += 1
elif label is None:
# Excluding samples that failed on label validation
counter["invalid_label"] += 1
elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
# Excluding samples that are too short to fit the transcript
counter["too_short"] += 1
elif frames / SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter["too_long"] += 1
else:
# This one is good - keep it for the target CSV
rows.append((wav_filename, file_size, label))
counter["imported_time"] += frames
counter["all"] += 1
counter["total_time"] += frames
return (counter, rows)
def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
extracted_dir = os.path.join(target_dir, extracted_data)
# override existing CSV with normalized one
target_csv_template = os.path.join(target_dir, "ts_" + ARCHIVE_NAME + "_{}.csv")
if os.path.isfile(target_csv_template):
return
path_to_original_csv = os.path.join(extracted_dir, "data.csv")
with open(path_to_original_csv) as csv_f:
data = [
d
for d in csv.DictReader(csv_f, delimiter=",")
if float(d["duration"]) <= MAX_SECS
]
for line in data:
line["path"] = os.path.join(extracted_dir, line["path"])
num_samples = len(data)
rows = []
counter = get_counter()
print("Importing {} wav files...".format(num_samples))
pool = Pool()
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
for i, processed in enumerate(pool.imap_unordered(one_sample, data), start=1):
counter += processed[0]
rows += processed[1]
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
with open(
target_csv_template.format("train"), "w", encoding="utf-8", newline=""
) as train_csv_file: # 80%
with open(
target_csv_template.format("dev"), "w", encoding="utf-8", newline=""
) as dev_csv_file: # 10%
with open(
target_csv_template.format("test"), "w", encoding="utf-8", newline=""
) as test_csv_file: # 10%
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
train_writer.writeheader()
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
dev_writer.writeheader()
test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
test_writer.writeheader()
for i, item in enumerate(rows):
transcript = validate_label(
cleanup_transcript(
item[2], english_compatible=english_compatible
)
)
if not transcript:
continue
wav_filename = os.path.join(target_dir, extracted_data, item[0])
i_mod = i % 10
if i_mod == 0:
writer = test_writer
elif i_mod == 1:
writer = dev_writer
else:
writer = train_writer
writer.writerow(
dict(
wav_filename=wav_filename,
wav_filesize=os.path.getsize(wav_filename),
transcript=transcript,
)
)
imported_samples = get_imported_samples(counter)
assert counter["all"] == num_samples
assert len(rows) == imported_samples
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
def _maybe_convert_wav(orig_filename, wav_filename):
if not os.path.exists(wav_filename):
transformer = sox.Transformer()
transformer.convert(samplerate=SAMPLE_RATE)
try:
transformer.build(orig_filename, wav_filename)
except sox.core.SoxError as ex:
print("SoX processing error", ex, orig_filename, wav_filename)
PUNCTUATIONS_REG = re.compile(r"\-,;!?.()\[\]*…—]")
MULTIPLE_SPACES_REG = re.compile(r"\s{2,}")
def cleanup_transcript(text, english_compatible=False):
text = text.replace("", "'").replace("\u00A0", " ")
text = PUNCTUATIONS_REG.sub(" ", text)
text = MULTIPLE_SPACES_REG.sub(" ", text)
if english_compatible:
text = unidecode.unidecode(text)
return text.strip().lower()
def handle_args():
parser = get_importers_parser(description="Importer for TrainingSpeech dataset.")
parser.add_argument(dest="target_dir")
parser.add_argument(
"--english-compatible",
action="store_true",
dest="english_compatible",
help="Remove diactrics and other non-ascii chars.",
)
return parser.parse_args()
if __name__ == "__main__":
cli_args = handle_args()
validate_label = get_validate_label(cli_args)
_download_and_preprocess_data(cli_args.target_dir, cli_args.english_compatible)