Move checking logic into __post_init__()
This commit is contained in:
parent
5b4fa27467
commit
4dc565beca
@ -10,7 +10,7 @@ import tensorflow.compat.v1 as tfv1
|
||||
from coqui_stt_ctcdecoder import Scorer
|
||||
from coqui_stt_training.evaluate import evaluate
|
||||
from coqui_stt_training.train import create_model
|
||||
from coqui_stt_training.util.config import Config, _SttConfig, initialize_config_globals
|
||||
from coqui_stt_training.util.config import Config, initialize_globals_from_cli
|
||||
from coqui_stt_training.util.evaluate_tools import wer_cer_batch
|
||||
from coqui_stt_training.util.flags import FLAGS, create_flags
|
||||
from coqui_stt_training.util.logging import log_error
|
||||
@ -52,8 +52,7 @@ def objective(trial):
|
||||
|
||||
|
||||
def main(_):
|
||||
Config = _SttConfig()
|
||||
initialize_config_globals(Config)
|
||||
initialize_globals_from_cli()
|
||||
|
||||
if not FLAGS.test_files:
|
||||
log_error(
|
||||
|
@ -17,9 +17,8 @@ from .util.augmentations import NormalizeSampleRate
|
||||
from .util.checkpoints import load_graph_for_evaluation
|
||||
from .util.config import (
|
||||
Config,
|
||||
_SttConfig,
|
||||
create_progressbar,
|
||||
initialize_config_globals,
|
||||
initialize_globals_from_cli,
|
||||
log_error,
|
||||
log_progress,
|
||||
)
|
||||
@ -170,8 +169,7 @@ def evaluate(test_csvs, create_model):
|
||||
|
||||
|
||||
def main():
|
||||
Config = _SttConfig()
|
||||
initialize_config_globals(Config)
|
||||
initialize_globals_from_cli()
|
||||
|
||||
if not Config.test_files:
|
||||
log_error(
|
||||
|
@ -44,9 +44,8 @@ from .util.checkpoints import (
|
||||
)
|
||||
from .util.config import (
|
||||
Config,
|
||||
_SttConfig,
|
||||
create_progressbar,
|
||||
initialize_config_globals,
|
||||
initialize_globals_from_cli,
|
||||
log_debug,
|
||||
log_error,
|
||||
log_info,
|
||||
@ -1250,10 +1249,7 @@ def early_training_checks():
|
||||
|
||||
|
||||
def main():
|
||||
Config = _SttConfig()
|
||||
Config.parse_args(arg_prefix="") # parse CLI args
|
||||
initialize_config_globals(Config)
|
||||
|
||||
initialize_globals_from_cli()
|
||||
early_training_checks()
|
||||
|
||||
if Config.train_files:
|
||||
|
@ -36,6 +36,163 @@ Config = _ConfigSingleton() # pylint: disable=invalid-name
|
||||
|
||||
@dataclass
|
||||
class _SttConfig(Coqpit):
|
||||
def __post_init__(self):
|
||||
# Augmentations
|
||||
self.augmentations = parse_augmentations(self.augment)
|
||||
if self.augmentations:
|
||||
print(f"Parsed augmentations: {self.augmentations}")
|
||||
if self.augmentations and self.feature_cache and self.cache_for_epochs == 0:
|
||||
print(
|
||||
"Due to current feature-cache settings the exact same sample augmentations of the first "
|
||||
"epoch will be repeated on all following epochs. This could lead to unintended over-fitting. "
|
||||
"You could use --cache_for_epochs <n_epochs> to invalidate the cache after a given number of epochs."
|
||||
)
|
||||
|
||||
if self.normalize_sample_rate:
|
||||
self.augmentations = [NormalizeSampleRate(self.audio_sample_rate)] + self[
|
||||
"augmentations"
|
||||
]
|
||||
|
||||
# Caching
|
||||
if self.cache_for_epochs == 1:
|
||||
print(
|
||||
"--cache_for_epochs == 1 is (re-)creating the feature cache on every epoch but will never use it."
|
||||
"You can either set --cache_for_epochs > 1, or not use feature caching at all."
|
||||
)
|
||||
|
||||
# Read-buffer
|
||||
self.read_buffer = parse_file_size(self.read_buffer)
|
||||
|
||||
# Set default dropout rates
|
||||
if self.dropout_rate2 < 0:
|
||||
self.dropout_rate2 = self.dropout_rate
|
||||
if self.dropout_rate3 < 0:
|
||||
self.dropout_rate3 = self.dropout_rate
|
||||
if self.dropout_rate6 < 0:
|
||||
self.dropout_rate6 = self.dropout_rate
|
||||
|
||||
# Set default checkpoint dir
|
||||
if not self.checkpoint_dir:
|
||||
self.checkpoint_dir = xdg.save_data_path(os.path.join("stt", "checkpoints"))
|
||||
|
||||
if self.load_train not in ["last", "best", "init", "auto"]:
|
||||
self.load_train = "auto"
|
||||
|
||||
if self.load_evaluate not in ["last", "best", "auto"]:
|
||||
self.load_evaluate = "auto"
|
||||
|
||||
# Set default summary dir
|
||||
if not self.summary_dir:
|
||||
self.summary_dir = xdg.save_data_path(os.path.join("stt", "summaries"))
|
||||
|
||||
# Standard session configuration that'll be used for all new sessions.
|
||||
self.session_config = tfv1.ConfigProto(
|
||||
allow_soft_placement=True,
|
||||
log_device_placement=self.log_placement,
|
||||
inter_op_parallelism_threads=self.inter_op_parallelism_threads,
|
||||
intra_op_parallelism_threads=self.intra_op_parallelism_threads,
|
||||
gpu_options=tfv1.GPUOptions(allow_growth=self.use_allow_growth),
|
||||
)
|
||||
|
||||
# CPU device
|
||||
self.cpu_device = "/cpu:0"
|
||||
|
||||
# Available GPU devices
|
||||
self.available_devices = get_available_gpus(self.session_config)
|
||||
|
||||
# If there is no GPU available, we fall back to CPU based operation
|
||||
if not self.available_devices:
|
||||
self.available_devices = [self.cpu_device]
|
||||
|
||||
if self.bytes_output_mode:
|
||||
self.alphabet = UTF8Alphabet()
|
||||
elif self.alphabet_config_path:
|
||||
self.alphabet = Alphabet(os.path.abspath(self.alphabet_config_path))
|
||||
|
||||
# Geometric Constants
|
||||
# ===================
|
||||
|
||||
# For an explanation of the meaning of the geometric constants
|
||||
# please refer to doc/Geometry.md
|
||||
|
||||
# Number of MFCC features
|
||||
self.n_input = 26 # TODO: Determine this programmatically from the sample rate
|
||||
|
||||
# The number of frames in the context
|
||||
self.n_context = 9 # TODO: Determine the optimal value using a validation data set
|
||||
|
||||
# Number of units in hidden layers
|
||||
self.n_hidden = self.n_hidden
|
||||
|
||||
self.n_hidden_1 = self.n_hidden
|
||||
|
||||
self.n_hidden_2 = self.n_hidden
|
||||
|
||||
self.n_hidden_5 = self.n_hidden
|
||||
|
||||
# LSTM cell state dimension
|
||||
self.n_cell_dim = self.n_hidden
|
||||
|
||||
# The number of units in the third layer, which feeds in to the LSTM
|
||||
self.n_hidden_3 = self.n_cell_dim
|
||||
|
||||
# Dims in last layer = number of characters in alphabet plus one
|
||||
try:
|
||||
# +1 for CTC blank label
|
||||
self.n_hidden_6 = self.alphabet.GetSize() + 1
|
||||
except:
|
||||
AttributeError
|
||||
|
||||
# Size of audio window in samples
|
||||
if (self.feature_win_len * self.audio_sample_rate) % 1000 != 0:
|
||||
log_error(
|
||||
"--feature_win_len value ({}) in milliseconds ({}) multiplied "
|
||||
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
|
||||
"your --feature_win_len value or resample your audio accordingly."
|
||||
"".format(self.feature_win_len, self.feature_win_len / 1000, self.audio_sample_rate)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
self.audio_window_samples = self.audio_sample_rate * (self.feature_win_len / 1000)
|
||||
|
||||
# Stride for feature computations in samples
|
||||
if (self.feature_win_step * self.audio_sample_rate) % 1000 != 0:
|
||||
log_error(
|
||||
"--feature_win_step value ({}) in milliseconds ({}) multiplied "
|
||||
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
|
||||
"your --feature_win_step value or resample your audio accordingly."
|
||||
"".format(
|
||||
self.feature_win_step, self.feature_win_step / 1000, self.audio_sample_rate
|
||||
)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
self.audio_step_samples = self.audio_sample_rate * (self.feature_win_step / 1000)
|
||||
|
||||
if self.one_shot_infer:
|
||||
if not path_exists_remote(self.one_shot_infer):
|
||||
log_error("Path specified in --one_shot_infer is not a valid file.")
|
||||
sys.exit(1)
|
||||
|
||||
if self.train_cudnn and self.load_cudnn:
|
||||
log_error(
|
||||
"Trying to use --train_cudnn, but --load_cudnn "
|
||||
"was also specified. The --load_cudnn flag is only "
|
||||
"needed when converting a CuDNN RNN checkpoint to "
|
||||
"a CPU-capable graph. If your system is capable of "
|
||||
"using CuDNN RNN, you can just specify the CuDNN RNN "
|
||||
"checkpoint normally with --save_checkpoint_dir."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
# If separate save and load flags were not specified, default to load and save
|
||||
# from the same dir.
|
||||
if not self.save_checkpoint_dir:
|
||||
self.save_checkpoint_dir = self.checkpoint_dir
|
||||
|
||||
if not self.load_checkpoint_dir:
|
||||
self.load_checkpoint_dir = self.checkpoint_dir
|
||||
|
||||
train_files: List[str] = field(
|
||||
default_factory=list,
|
||||
metadata=dict(
|
||||
@ -541,165 +698,15 @@ class _SttConfig(Coqpit):
|
||||
)
|
||||
|
||||
|
||||
def initialize_config_globals(c):
|
||||
"""
|
||||
input: config class object (i.e. coqpit.Coqpit)
|
||||
"""
|
||||
|
||||
# Augmentations
|
||||
c.augmentations = parse_augmentations(c.augment)
|
||||
print(f"Parsed augmentations from flags: {c.augmentations}")
|
||||
if c.augmentations and c.feature_cache and c.cache_for_epochs == 0:
|
||||
print(
|
||||
"Due to current feature-cache settings the exact same sample augmentations of the first "
|
||||
"epoch will be repeated on all following epochs. This could lead to unintended over-fitting. "
|
||||
"You could use --cache_for_epochs <n_epochs> to invalidate the cache after a given number of epochs."
|
||||
)
|
||||
|
||||
if c.normalize_sample_rate:
|
||||
c.augmentations = [NormalizeSampleRate(c.audio_sample_rate)] + c[
|
||||
"augmentations"
|
||||
]
|
||||
|
||||
# Caching
|
||||
if c.cache_for_epochs == 1:
|
||||
print(
|
||||
"--cache_for_epochs == 1 is (re-)creating the feature cache on every epoch but will never use it."
|
||||
)
|
||||
|
||||
# Read-buffer
|
||||
c.read_buffer = parse_file_size(c.read_buffer)
|
||||
|
||||
# Set default dropout rates
|
||||
if c.dropout_rate2 < 0:
|
||||
c.dropout_rate2 = c.dropout_rate
|
||||
if c.dropout_rate3 < 0:
|
||||
c.dropout_rate3 = c.dropout_rate
|
||||
if c.dropout_rate6 < 0:
|
||||
c.dropout_rate6 = c.dropout_rate
|
||||
|
||||
# Set default checkpoint dir
|
||||
if not c.checkpoint_dir:
|
||||
c.checkpoint_dir = xdg.save_data_path(os.path.join("stt", "checkpoints"))
|
||||
|
||||
if c.load_train not in ["last", "best", "init", "auto"]:
|
||||
c.load_train = "auto"
|
||||
|
||||
if c.load_evaluate not in ["last", "best", "auto"]:
|
||||
c.load_evaluate = "auto"
|
||||
|
||||
# Set default summary dir
|
||||
if not c.summary_dir:
|
||||
c.summary_dir = xdg.save_data_path(os.path.join("stt", "summaries"))
|
||||
|
||||
# Standard session configuration that'll be used for all new sessions.
|
||||
c.session_config = tfv1.ConfigProto(
|
||||
allow_soft_placement=True,
|
||||
log_device_placement=c.log_placement,
|
||||
inter_op_parallelism_threads=c.inter_op_parallelism_threads,
|
||||
intra_op_parallelism_threads=c.intra_op_parallelism_threads,
|
||||
gpu_options=tfv1.GPUOptions(allow_growth=c.use_allow_growth),
|
||||
)
|
||||
|
||||
# CPU device
|
||||
c.cpu_device = "/cpu:0"
|
||||
|
||||
# Available GPU devices
|
||||
c.available_devices = get_available_gpus(c.session_config)
|
||||
|
||||
# If there is no GPU available, we fall back to CPU based operation
|
||||
if not c.available_devices:
|
||||
c.available_devices = [c.cpu_device]
|
||||
|
||||
if c.bytes_output_mode:
|
||||
c.alphabet = UTF8Alphabet()
|
||||
elif c.alphabet_config_path:
|
||||
c.alphabet = Alphabet(os.path.abspath(c.alphabet_config_path))
|
||||
|
||||
# Geometric Constants
|
||||
# ===================
|
||||
|
||||
# For an explanation of the meaning of the geometric constants, please refer to
|
||||
# doc/Geometry.md
|
||||
|
||||
# Number of MFCC features
|
||||
c.n_input = 26 # TODO: Determine this programmatically from the sample rate
|
||||
|
||||
# The number of frames in the context
|
||||
c.n_context = 9 # TODO: Determine the optimal value using a validation data set
|
||||
|
||||
# Number of units in hidden layers
|
||||
c.n_hidden = c.n_hidden
|
||||
|
||||
c.n_hidden_1 = c.n_hidden
|
||||
|
||||
c.n_hidden_2 = c.n_hidden
|
||||
|
||||
c.n_hidden_5 = c.n_hidden
|
||||
|
||||
# LSTM cell state dimension
|
||||
c.n_cell_dim = c.n_hidden
|
||||
|
||||
# The number of units in the third layer, which feeds in to the LSTM
|
||||
c.n_hidden_3 = c.n_cell_dim
|
||||
|
||||
# Units in the last layer = number of characters in the alphabet plus one
|
||||
try:
|
||||
# +1 for CTC blank label
|
||||
c.n_hidden_6 = c.alphabet.GetSize() + 1
|
||||
except:
|
||||
AttributeError
|
||||
|
||||
# Size of audio window in samples
|
||||
if (c.feature_win_len * c.audio_sample_rate) % 1000 != 0:
|
||||
log_error(
|
||||
"--feature_win_len value ({}) in milliseconds ({}) multiplied "
|
||||
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
|
||||
"your --feature_win_len value or resample your audio accordingly."
|
||||
"".format(c.feature_win_len, c.feature_win_len / 1000, c.audio_sample_rate)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
c.audio_window_samples = c.audio_sample_rate * (c.feature_win_len / 1000)
|
||||
|
||||
# Stride for feature computations in samples
|
||||
if (c.feature_win_step * c.audio_sample_rate) % 1000 != 0:
|
||||
log_error(
|
||||
"--feature_win_step value ({}) in milliseconds ({}) multiplied "
|
||||
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
|
||||
"your --feature_win_step value or resample your audio accordingly."
|
||||
"".format(
|
||||
c.feature_win_step, c.feature_win_step / 1000, c.audio_sample_rate
|
||||
)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
c.audio_step_samples = c.audio_sample_rate * (c.feature_win_step / 1000)
|
||||
|
||||
if c.one_shot_infer:
|
||||
if not path_exists_remote(c.one_shot_infer):
|
||||
log_error("Path specified in --one_shot_infer is not a valid file.")
|
||||
sys.exit(1)
|
||||
|
||||
if c.train_cudnn and c.load_cudnn:
|
||||
log_error(
|
||||
"Trying to use --train_cudnn, but --load_cudnn "
|
||||
"was also specified. The --load_cudnn flag is only "
|
||||
"needed when converting a CuDNN RNN checkpoint to "
|
||||
"a CPU-capable graph. If your system is capable of "
|
||||
"using CuDNN RNN, you can just specify the CuDNN RNN "
|
||||
"checkpoint normally with --save_checkpoint_dir."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
# If separate save and load flags were not specified, default to load and save
|
||||
# from the same dir.
|
||||
if not c.save_checkpoint_dir:
|
||||
c.save_checkpoint_dir = c.checkpoint_dir
|
||||
|
||||
if not c.load_checkpoint_dir:
|
||||
c.load_checkpoint_dir = c.checkpoint_dir
|
||||
def initialize_globals_from_cli():
|
||||
c = _SttConfig()
|
||||
c.parse_args(arg_prefix="")
|
||||
c.__post_init__()
|
||||
_ConfigSingleton._config = c # pylint: disable=protected-access
|
||||
|
||||
def initialize_globals_from_args(**override_args):
|
||||
# Update Config with new args
|
||||
c = _SttConfig(**override_args)
|
||||
_ConfigSingleton._config = c # pylint: disable=protected-access
|
||||
|
||||
|
||||
|
@ -20,7 +20,7 @@ from multiprocessing import Process, cpu_count
|
||||
|
||||
from coqui_stt_ctcdecoder import Scorer, ctc_beam_search_decoder_batch
|
||||
from coqui_stt_training.util.audio import AudioFile
|
||||
from coqui_stt_training.util.config import Config, _SttConfig, initialize_config_globals
|
||||
from coqui_stt_training.util.config import Config, initialize_globals_from_cli
|
||||
from coqui_stt_training.util.feeding import split_audio_file
|
||||
from coqui_stt_training.util.flags import FLAGS, create_flags
|
||||
from coqui_stt_training.util.logging import (
|
||||
@ -42,8 +42,8 @@ def transcribe_file(audio_path, tlog_path):
|
||||
)
|
||||
from coqui_stt_training.util.checkpoints import load_graph_for_evaluation
|
||||
|
||||
Config = _SttConfig()
|
||||
initialize_config_globals(Config)
|
||||
initialize_globals_from_cli()
|
||||
|
||||
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta, FLAGS.scorer_path, Config.alphabet)
|
||||
try:
|
||||
num_processes = cpu_count()
|
||||
|
Loading…
Reference in New Issue
Block a user