Fix lm_optimizer.py to use new Config/flags/logging setup
This commit is contained in:
parent
f9556d2236
commit
4c3537952a
|
@ -4,36 +4,36 @@ from __future__ import absolute_import, print_function
|
|||
|
||||
import sys
|
||||
|
||||
import absl.app
|
||||
import optuna
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
from coqui_stt_ctcdecoder import Scorer
|
||||
from coqui_stt_training.evaluate import evaluate
|
||||
from coqui_stt_training.train import create_model
|
||||
from coqui_stt_training.util.config import Config, initialize_globals_from_cli
|
||||
from coqui_stt_training.train import create_model, early_training_checks
|
||||
from coqui_stt_training.util.config import (
|
||||
Config,
|
||||
initialize_globals_from_cli,
|
||||
log_error,
|
||||
)
|
||||
from coqui_stt_training.util.evaluate_tools import wer_cer_batch
|
||||
from coqui_stt_training.util.flags import FLAGS, create_flags
|
||||
from coqui_stt_training.util.logging import log_error
|
||||
|
||||
|
||||
def character_based():
|
||||
is_character_based = False
|
||||
if FLAGS.scorer_path:
|
||||
scorer = Scorer(
|
||||
FLAGS.lm_alpha, FLAGS.lm_beta, FLAGS.scorer_path, Config.alphabet
|
||||
)
|
||||
is_character_based = scorer.is_utf8_mode()
|
||||
scorer = Scorer(
|
||||
Config.lm_alpha, Config.lm_beta, Config.scorer_path, Config.alphabet
|
||||
)
|
||||
is_character_based = scorer.is_utf8_mode()
|
||||
return is_character_based
|
||||
|
||||
|
||||
def objective(trial):
|
||||
FLAGS.lm_alpha = trial.suggest_uniform("lm_alpha", 0, FLAGS.lm_alpha_max)
|
||||
FLAGS.lm_beta = trial.suggest_uniform("lm_beta", 0, FLAGS.lm_beta_max)
|
||||
Config.lm_alpha = trial.suggest_uniform("lm_alpha", 0, Config.lm_alpha_max)
|
||||
Config.lm_beta = trial.suggest_uniform("lm_beta", 0, Config.lm_beta_max)
|
||||
|
||||
is_character_based = trial.study.user_attrs["is_character_based"]
|
||||
|
||||
samples = []
|
||||
for step, test_file in enumerate(FLAGS.test_files.split(",")):
|
||||
for step, test_file in enumerate(Config.test_files):
|
||||
tfv1.reset_default_graph()
|
||||
|
||||
current_samples = evaluate([test_file], create_model)
|
||||
|
@ -51,10 +51,18 @@ def objective(trial):
|
|||
return cer if is_character_based else wer
|
||||
|
||||
|
||||
def main(_):
|
||||
def main():
|
||||
initialize_globals_from_cli()
|
||||
early_training_checks()
|
||||
|
||||
if not FLAGS.test_files:
|
||||
if not Config.scorer_path:
|
||||
log_error(
|
||||
"Missing --scorer_path: can't optimize scorer alpha and beta "
|
||||
"parameters without a scorer!"
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
if not Config.test_files:
|
||||
log_error(
|
||||
"You need to specify what files to use for evaluation via "
|
||||
"the --test_files flag."
|
||||
|
@ -65,7 +73,7 @@ def main(_):
|
|||
|
||||
study = optuna.create_study()
|
||||
study.set_user_attr("is_character_based", is_character_based)
|
||||
study.optimize(objective, n_jobs=1, n_trials=FLAGS.n_trials)
|
||||
study.optimize(objective, n_jobs=1, n_trials=Config.n_trials)
|
||||
print(
|
||||
"Best params: lm_alpha={} and lm_beta={} with WER={}".format(
|
||||
study.best_params["lm_alpha"],
|
||||
|
@ -76,5 +84,4 @@ def main(_):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
create_flags()
|
||||
absl.app.run(main)
|
||||
main()
|
||||
|
|
Loading…
Reference in New Issue