Run pre-commit hooks on all files
This commit is contained in:
parent
14aee5d35b
commit
43a6c3e62a
@ -22,7 +22,3 @@ repos:
|
||||
- id: isort
|
||||
name: isort (pyi)
|
||||
types: [pyi]
|
||||
- repo: https://github.com/pycqa/pylint
|
||||
rev: v2.8.2
|
||||
hooks:
|
||||
- id: pylint
|
||||
|
@ -67,4 +67,3 @@ Links & Resources
|
||||
- `see the latest release on GitHub <https://github.com/coqui-ai/STT/releases/latest>`_
|
||||
* - 🤝 **Contribution Guidelines**
|
||||
- `CONTRIBUTING.rst <CONTRIBUTING.rst>`_
|
||||
|
||||
|
@ -2,10 +2,10 @@
|
||||
"""
|
||||
Tool for comparing two wav samples
|
||||
"""
|
||||
import sys
|
||||
import argparse
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
from coqui_stt_training.util.audio import AUDIO_TYPE_NP, mean_dbfs
|
||||
from coqui_stt_training.util.sample_collections import load_sample
|
||||
|
||||
@ -19,9 +19,17 @@ def compare_samples():
|
||||
sample1 = load_sample(CLI_ARGS.sample1).unpack()
|
||||
sample2 = load_sample(CLI_ARGS.sample2).unpack()
|
||||
if sample1.audio_format != sample2.audio_format:
|
||||
fail('Samples differ on: audio-format ({} and {})'.format(sample1.audio_format, sample2.audio_format))
|
||||
fail(
|
||||
"Samples differ on: audio-format ({} and {})".format(
|
||||
sample1.audio_format, sample2.audio_format
|
||||
)
|
||||
)
|
||||
if abs(sample1.duration - sample2.duration) > 0.001:
|
||||
fail('Samples differ on: duration ({} and {})'.format(sample1.duration, sample2.duration))
|
||||
fail(
|
||||
"Samples differ on: duration ({} and {})".format(
|
||||
sample1.duration, sample2.duration
|
||||
)
|
||||
)
|
||||
sample1.change_audio_type(AUDIO_TYPE_NP)
|
||||
sample2.change_audio_type(AUDIO_TYPE_NP)
|
||||
samples = [sample1, sample2]
|
||||
@ -30,8 +38,10 @@ def compare_samples():
|
||||
samples[largest].audio = samples[largest].audio[: len(samples[smallest].audio)]
|
||||
audio_diff = samples[largest].audio - samples[smallest].audio
|
||||
diff_dbfs = mean_dbfs(audio_diff)
|
||||
differ_msg = 'Samples differ on: sample data ({:0.2f} dB difference) '.format(diff_dbfs)
|
||||
equal_msg = 'Samples are considered equal ({:0.2f} dB difference)'.format(diff_dbfs)
|
||||
differ_msg = "Samples differ on: sample data ({:0.2f} dB difference) ".format(
|
||||
diff_dbfs
|
||||
)
|
||||
equal_msg = "Samples are considered equal ({:0.2f} dB difference)".format(diff_dbfs)
|
||||
if CLI_ARGS.if_differ:
|
||||
if diff_dbfs <= CLI_ARGS.threshold:
|
||||
fail(equal_msg)
|
||||
@ -50,8 +60,12 @@ def handle_args():
|
||||
)
|
||||
parser.add_argument("sample1", help="Filename of sample 1 to compare")
|
||||
parser.add_argument("sample2", help="Filename of sample 2 to compare")
|
||||
parser.add_argument("--threshold", type=float, default=-60.0,
|
||||
help="dB of sample deltas above which they are considered different")
|
||||
parser.add_argument(
|
||||
"--threshold",
|
||||
type=float,
|
||||
default=-60.0,
|
||||
help="dB of sample deltas above which they are considered different",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--if-differ",
|
||||
action="store_true",
|
||||
|
@ -1,19 +1,24 @@
|
||||
#!/usr/bin/env python
|
||||
'''
|
||||
"""
|
||||
Tool for building a combined SDB or CSV sample-set from other sets
|
||||
Use 'python3 data_set_tool.py -h' for help
|
||||
'''
|
||||
import sys
|
||||
"""
|
||||
import argparse
|
||||
import progressbar
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import progressbar
|
||||
from coqui_stt_training.util.audio import (
|
||||
AUDIO_TYPE_PCM,
|
||||
AUDIO_TYPE_OPUS,
|
||||
AUDIO_TYPE_PCM,
|
||||
AUDIO_TYPE_WAV,
|
||||
change_audio_types,
|
||||
)
|
||||
from coqui_stt_training.util.augmentations import (
|
||||
SampleAugmentation,
|
||||
apply_sample_augmentations,
|
||||
parse_augmentations,
|
||||
)
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR
|
||||
from coqui_stt_training.util.sample_collections import (
|
||||
CSVWriter,
|
||||
@ -21,101 +26,110 @@ from coqui_stt_training.util.sample_collections import (
|
||||
TarWriter,
|
||||
samples_from_sources,
|
||||
)
|
||||
from coqui_stt_training.util.augmentations import (
|
||||
parse_augmentations,
|
||||
apply_sample_augmentations,
|
||||
SampleAugmentation
|
||||
)
|
||||
|
||||
AUDIO_TYPE_LOOKUP = {'wav': AUDIO_TYPE_WAV, 'opus': AUDIO_TYPE_OPUS}
|
||||
AUDIO_TYPE_LOOKUP = {"wav": AUDIO_TYPE_WAV, "opus": AUDIO_TYPE_OPUS}
|
||||
|
||||
|
||||
def build_data_set():
|
||||
audio_type = AUDIO_TYPE_LOOKUP[CLI_ARGS.audio_type]
|
||||
augmentations = parse_augmentations(CLI_ARGS.augment)
|
||||
if any(not isinstance(a, SampleAugmentation) for a in augmentations):
|
||||
print('Warning: Some of the specified augmentations will not get applied, as this tool only supports '
|
||||
'overlay, codec, reverb, resample and volume.')
|
||||
print(
|
||||
"Warning: Some of the specified augmentations will not get applied, as this tool only supports "
|
||||
"overlay, codec, reverb, resample and volume."
|
||||
)
|
||||
extension = Path(CLI_ARGS.target).suffix.lower()
|
||||
labeled = not CLI_ARGS.unlabeled
|
||||
if extension == '.csv':
|
||||
writer = CSVWriter(CLI_ARGS.target, absolute_paths=CLI_ARGS.absolute_paths, labeled=labeled)
|
||||
elif extension == '.sdb':
|
||||
writer = DirectSDBWriter(CLI_ARGS.target, audio_type=audio_type, labeled=labeled)
|
||||
elif extension == '.tar':
|
||||
writer = TarWriter(CLI_ARGS.target, labeled=labeled, gz=False, include=CLI_ARGS.include)
|
||||
elif extension == '.tgz' or CLI_ARGS.target.lower().endswith('.tar.gz'):
|
||||
writer = TarWriter(CLI_ARGS.target, labeled=labeled, gz=True, include=CLI_ARGS.include)
|
||||
if extension == ".csv":
|
||||
writer = CSVWriter(
|
||||
CLI_ARGS.target, absolute_paths=CLI_ARGS.absolute_paths, labeled=labeled
|
||||
)
|
||||
elif extension == ".sdb":
|
||||
writer = DirectSDBWriter(
|
||||
CLI_ARGS.target, audio_type=audio_type, labeled=labeled
|
||||
)
|
||||
elif extension == ".tar":
|
||||
writer = TarWriter(
|
||||
CLI_ARGS.target, labeled=labeled, gz=False, include=CLI_ARGS.include
|
||||
)
|
||||
elif extension == ".tgz" or CLI_ARGS.target.lower().endswith(".tar.gz"):
|
||||
writer = TarWriter(
|
||||
CLI_ARGS.target, labeled=labeled, gz=True, include=CLI_ARGS.include
|
||||
)
|
||||
else:
|
||||
print('Unknown extension of target file - has to be either .csv, .sdb, .tar, .tar.gz or .tgz')
|
||||
print(
|
||||
"Unknown extension of target file - has to be either .csv, .sdb, .tar, .tar.gz or .tgz"
|
||||
)
|
||||
sys.exit(1)
|
||||
with writer:
|
||||
samples = samples_from_sources(CLI_ARGS.sources, labeled=not CLI_ARGS.unlabeled)
|
||||
num_samples = len(samples)
|
||||
if augmentations:
|
||||
samples = apply_sample_augmentations(samples, audio_type=AUDIO_TYPE_PCM, augmentations=augmentations)
|
||||
samples = apply_sample_augmentations(
|
||||
samples, audio_type=AUDIO_TYPE_PCM, augmentations=augmentations
|
||||
)
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for sample in bar(change_audio_types(
|
||||
for sample in bar(
|
||||
change_audio_types(
|
||||
samples,
|
||||
audio_type=audio_type,
|
||||
bitrate=CLI_ARGS.bitrate,
|
||||
processes=CLI_ARGS.workers)):
|
||||
processes=CLI_ARGS.workers,
|
||||
)
|
||||
):
|
||||
writer.add(sample)
|
||||
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Tool for building a combined SDB or CSV sample-set from other sets'
|
||||
description="Tool for building a combined SDB or CSV sample-set from other sets"
|
||||
)
|
||||
parser.add_argument(
|
||||
'sources',
|
||||
nargs='+',
|
||||
help='Source CSV and/or SDB files - '
|
||||
'Note: For getting a correctly ordered target set, source SDBs have to have their samples '
|
||||
'already ordered from shortest to longest.',
|
||||
"sources",
|
||||
nargs="+",
|
||||
help="Source CSV and/or SDB files - "
|
||||
"Note: For getting a correctly ordered target set, source SDBs have to have their samples "
|
||||
"already ordered from shortest to longest.",
|
||||
)
|
||||
parser.add_argument("target", help="SDB, CSV or TAR(.gz) file to create")
|
||||
parser.add_argument(
|
||||
'target',
|
||||
help='SDB, CSV or TAR(.gz) file to create'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--audio-type',
|
||||
default='opus',
|
||||
"--audio-type",
|
||||
default="opus",
|
||||
choices=AUDIO_TYPE_LOOKUP.keys(),
|
||||
help='Audio representation inside target SDB',
|
||||
help="Audio representation inside target SDB",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--bitrate',
|
||||
"--bitrate",
|
||||
type=int,
|
||||
help='Bitrate for lossy compressed SDB samples like in case of --audio-type opus',
|
||||
help="Bitrate for lossy compressed SDB samples like in case of --audio-type opus",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--workers', type=int, default=None, help='Number of encoding SDB workers'
|
||||
"--workers", type=int, default=None, help="Number of encoding SDB workers"
|
||||
)
|
||||
parser.add_argument(
|
||||
'--unlabeled',
|
||||
action='store_true',
|
||||
help='If to build an data-set with unlabeled (audio only) samples - '
|
||||
'typically used for building noise augmentation corpora',
|
||||
"--unlabeled",
|
||||
action="store_true",
|
||||
help="If to build an data-set with unlabeled (audio only) samples - "
|
||||
"typically used for building noise augmentation corpora",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--absolute-paths',
|
||||
action='store_true',
|
||||
help='If to reference samples by their absolute paths when writing CSV files',
|
||||
"--absolute-paths",
|
||||
action="store_true",
|
||||
help="If to reference samples by their absolute paths when writing CSV files",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--augment',
|
||||
action='append',
|
||||
help='Add an augmentation operation',
|
||||
"--augment",
|
||||
action="append",
|
||||
help="Add an augmentation operation",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--include',
|
||||
action='append',
|
||||
help='Adds a file to the root directory of .tar(.gz) targets',
|
||||
"--include",
|
||||
action="append",
|
||||
help="Adds a file to the root directory of .tar(.gz) targets",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
CLI_ARGS = handle_args()
|
||||
build_data_set()
|
||||
|
@ -3,9 +3,10 @@
|
||||
|
||||
import sys
|
||||
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
from google.protobuf import text_format
|
||||
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
|
||||
|
||||
def main():
|
||||
# Load and export as string
|
||||
|
@ -4,7 +4,6 @@ import os
|
||||
import tarfile
|
||||
|
||||
import pandas
|
||||
|
||||
from coqui_stt_training.util.importers import get_importers_parser
|
||||
|
||||
COLUMN_NAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
|
@ -4,7 +4,6 @@ import os
|
||||
import tarfile
|
||||
|
||||
import pandas
|
||||
|
||||
from coqui_stt_training.util.importers import get_importers_parser
|
||||
|
||||
COLUMNNAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
|
@ -5,21 +5,21 @@ Ministère de l'Économie, des Finances et de la Relance
|
||||
"""
|
||||
|
||||
import csv
|
||||
import sys
|
||||
import decimal
|
||||
import hashlib
|
||||
import math
|
||||
import os
|
||||
import progressbar
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
import unicodedata
|
||||
import xml.etree.ElementTree as ET
|
||||
import zipfile
|
||||
from glob import glob
|
||||
from multiprocessing import Pool
|
||||
|
||||
import hashlib
|
||||
import decimal
|
||||
import math
|
||||
import unicodedata
|
||||
import re
|
||||
import progressbar
|
||||
import sox
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
try:
|
||||
from num2words import num2words
|
||||
@ -27,19 +27,19 @@ except ImportError as ex:
|
||||
print("pip install num2words")
|
||||
sys.exit(1)
|
||||
|
||||
import requests
|
||||
import json
|
||||
|
||||
import requests
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.helpers import secs_to_hours
|
||||
from coqui_stt_training.util.importers import (
|
||||
get_counter,
|
||||
get_importers_parser,
|
||||
get_imported_samples,
|
||||
get_importers_parser,
|
||||
get_validate_label,
|
||||
print_import_report,
|
||||
)
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
|
||||
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
SAMPLE_RATE = 16000
|
||||
@ -50,58 +50,187 @@ MIN_SECS = 0.85
|
||||
|
||||
DATASET_RELEASE_CSV = "https://data.economie.gouv.fr/explore/dataset/transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020/download/?format=csv&timezone=Europe/Berlin&lang=fr&use_labels_for_header=true&csv_separator=%3B"
|
||||
DATASET_RELEASE_SHA = [
|
||||
("863d39a06a388c6491c6ff2f6450b151f38f1b57", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.001"),
|
||||
("2f3a0305aa04c61220bb00b5a4e553e45dbf12e1", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.002"),
|
||||
("5e55e9f1f844097349188ac875947e5a3d7fe9f1", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.003"),
|
||||
("8bf54842cf07948ca5915e27a8bd5fa5139c06ae", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.004"),
|
||||
("c8963504aadc015ac48f9af80058a0bb3440b94f", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.005"),
|
||||
("d95e225e908621d83ce4e9795fd108d9d310e244", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.006"),
|
||||
("de6ed9c2b0ee80ca879aae8ba7923cc93217d811", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.007"),
|
||||
("234283c47dacfcd4450d836c52c25f3e807fc5f2", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.008"),
|
||||
("4e6b67a688639bb72f8cd81782eaba604a8d32a6", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.009"),
|
||||
("4165a51389777c8af8e6253d87bdacb877e8b3b0", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.010"),
|
||||
("34322e7009780d97ef5bd02bf2f2c7a31f00baff", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.011"),
|
||||
("48c5be3b2ca9d6108d525da6a03e91d93a95dbac", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.012"),
|
||||
("87573172f506a189c2ebc633856fe11a2e9cd213", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.013"),
|
||||
("6ab2c9e508e9278d5129f023e018725c4a7c69e8", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.014"),
|
||||
("4f84df831ef46dce5d3ab3e21817687a2d8c12d0", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.015"),
|
||||
("e69bfb079885c299cb81080ef88b1b8b57158aa6", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.016"),
|
||||
("5f764ba788ee273981cf211b242c29b49ca22c5e", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.017"),
|
||||
("b6aa81a959525363223494830c1e7307d4c4bae6", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.018"),
|
||||
("91ddcf43c7bf113a6f2528b857c7ec22a50a148a", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.019"),
|
||||
("fa1b29273dd77b9a7494983a2f9ae52654b931d7", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.020"),
|
||||
("1113aef4f5e2be2f7fbf2d54b6c710c1c0e7135f", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.021"),
|
||||
("ce6420d5d0b6b5135ba559f83e1a82d4d615c470", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.022"),
|
||||
("d0976ed292ac24fcf1590d1ea195077c74b05471", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.023"),
|
||||
("ec746cd6af066f62d9bf8d3b2f89174783ff4e3c", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.024"),
|
||||
("570d9e1e84178e32fd867171d4b3aaecda1fd4fb", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.025"),
|
||||
("c29ccc7467a75b2cae3d7f2e9fbbb2ab276cb8ac", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.026"),
|
||||
("08406a51146d88e208704ce058c060a1e44efa50", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.027"),
|
||||
("199aedad733a78ea1e7d47def9c71c6fd5795e02", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.028"),
|
||||
("db856a068f92fb4f01f410bba42c7271de0f231a", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.029"),
|
||||
("e3c0135f16c6c9d25a09dcb4f99a685438a84740", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.030"),
|
||||
("e51b8bb9c0ae4339f98b4f21e6d29b825109f0ac", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.031"),
|
||||
("be5e80cbc49b59b31ae33c30576ef0e1a162d84e", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.032"),
|
||||
("501df58e3ff55fcfd75b93dab57566dc536948b8", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.033"),
|
||||
("1a114875811a8cdcb8d85a9f6dbee78be3e05131", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.034"),
|
||||
("465d824e7ee46448369182c0c28646d155a2249b", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.035"),
|
||||
("37f341b1b266d143eb73138c31cfff3201b9d619", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.036"),
|
||||
("9e7d8255987a8a77a90e0d4b55c8fd38b9fb5694", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.037"),
|
||||
("54886755630cb080a53098cb1b6c951c6714a143", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.038"),
|
||||
("4b7cbb0154697be795034f7a49712e882a97197a", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.039"),
|
||||
("c8e1e565a0e7a1f6ff1dbfcefe677aa74a41d2f2", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.040"),
|
||||
(
|
||||
"863d39a06a388c6491c6ff2f6450b151f38f1b57",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.001",
|
||||
),
|
||||
(
|
||||
"2f3a0305aa04c61220bb00b5a4e553e45dbf12e1",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.002",
|
||||
),
|
||||
(
|
||||
"5e55e9f1f844097349188ac875947e5a3d7fe9f1",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.003",
|
||||
),
|
||||
(
|
||||
"8bf54842cf07948ca5915e27a8bd5fa5139c06ae",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.004",
|
||||
),
|
||||
(
|
||||
"c8963504aadc015ac48f9af80058a0bb3440b94f",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.005",
|
||||
),
|
||||
(
|
||||
"d95e225e908621d83ce4e9795fd108d9d310e244",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.006",
|
||||
),
|
||||
(
|
||||
"de6ed9c2b0ee80ca879aae8ba7923cc93217d811",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.007",
|
||||
),
|
||||
(
|
||||
"234283c47dacfcd4450d836c52c25f3e807fc5f2",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.008",
|
||||
),
|
||||
(
|
||||
"4e6b67a688639bb72f8cd81782eaba604a8d32a6",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.009",
|
||||
),
|
||||
(
|
||||
"4165a51389777c8af8e6253d87bdacb877e8b3b0",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.010",
|
||||
),
|
||||
(
|
||||
"34322e7009780d97ef5bd02bf2f2c7a31f00baff",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.011",
|
||||
),
|
||||
(
|
||||
"48c5be3b2ca9d6108d525da6a03e91d93a95dbac",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.012",
|
||||
),
|
||||
(
|
||||
"87573172f506a189c2ebc633856fe11a2e9cd213",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.013",
|
||||
),
|
||||
(
|
||||
"6ab2c9e508e9278d5129f023e018725c4a7c69e8",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.014",
|
||||
),
|
||||
(
|
||||
"4f84df831ef46dce5d3ab3e21817687a2d8c12d0",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.015",
|
||||
),
|
||||
(
|
||||
"e69bfb079885c299cb81080ef88b1b8b57158aa6",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.016",
|
||||
),
|
||||
(
|
||||
"5f764ba788ee273981cf211b242c29b49ca22c5e",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.017",
|
||||
),
|
||||
(
|
||||
"b6aa81a959525363223494830c1e7307d4c4bae6",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.018",
|
||||
),
|
||||
(
|
||||
"91ddcf43c7bf113a6f2528b857c7ec22a50a148a",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.019",
|
||||
),
|
||||
(
|
||||
"fa1b29273dd77b9a7494983a2f9ae52654b931d7",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.020",
|
||||
),
|
||||
(
|
||||
"1113aef4f5e2be2f7fbf2d54b6c710c1c0e7135f",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.021",
|
||||
),
|
||||
(
|
||||
"ce6420d5d0b6b5135ba559f83e1a82d4d615c470",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.022",
|
||||
),
|
||||
(
|
||||
"d0976ed292ac24fcf1590d1ea195077c74b05471",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.023",
|
||||
),
|
||||
(
|
||||
"ec746cd6af066f62d9bf8d3b2f89174783ff4e3c",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.024",
|
||||
),
|
||||
(
|
||||
"570d9e1e84178e32fd867171d4b3aaecda1fd4fb",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.025",
|
||||
),
|
||||
(
|
||||
"c29ccc7467a75b2cae3d7f2e9fbbb2ab276cb8ac",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.026",
|
||||
),
|
||||
(
|
||||
"08406a51146d88e208704ce058c060a1e44efa50",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.027",
|
||||
),
|
||||
(
|
||||
"199aedad733a78ea1e7d47def9c71c6fd5795e02",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.028",
|
||||
),
|
||||
(
|
||||
"db856a068f92fb4f01f410bba42c7271de0f231a",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.029",
|
||||
),
|
||||
(
|
||||
"e3c0135f16c6c9d25a09dcb4f99a685438a84740",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.030",
|
||||
),
|
||||
(
|
||||
"e51b8bb9c0ae4339f98b4f21e6d29b825109f0ac",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.031",
|
||||
),
|
||||
(
|
||||
"be5e80cbc49b59b31ae33c30576ef0e1a162d84e",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.032",
|
||||
),
|
||||
(
|
||||
"501df58e3ff55fcfd75b93dab57566dc536948b8",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.033",
|
||||
),
|
||||
(
|
||||
"1a114875811a8cdcb8d85a9f6dbee78be3e05131",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.034",
|
||||
),
|
||||
(
|
||||
"465d824e7ee46448369182c0c28646d155a2249b",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.035",
|
||||
),
|
||||
(
|
||||
"37f341b1b266d143eb73138c31cfff3201b9d619",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.036",
|
||||
),
|
||||
(
|
||||
"9e7d8255987a8a77a90e0d4b55c8fd38b9fb5694",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.037",
|
||||
),
|
||||
(
|
||||
"54886755630cb080a53098cb1b6c951c6714a143",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.038",
|
||||
),
|
||||
(
|
||||
"4b7cbb0154697be795034f7a49712e882a97197a",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.039",
|
||||
),
|
||||
(
|
||||
"c8e1e565a0e7a1f6ff1dbfcefe677aa74a41d2f2",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip.040",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def _download_and_preprocess_data(csv_url, target_dir):
|
||||
dataset_sources = os.path.join(target_dir, "transcriptionsXML_audioMP3_MEFR_CCPMF_2012-2020", "data.txt")
|
||||
dataset_sources = os.path.join(
|
||||
target_dir, "transcriptionsXML_audioMP3_MEFR_CCPMF_2012-2020", "data.txt"
|
||||
)
|
||||
if os.path.exists(dataset_sources):
|
||||
return dataset_sources
|
||||
|
||||
# Making path absolute
|
||||
target_dir = os.path.abspath(target_dir)
|
||||
csv_ref = requests.get(csv_url).text.split('\r\n')[1:-1]
|
||||
csv_ref = requests.get(csv_url).text.split("\r\n")[1:-1]
|
||||
for part in csv_ref:
|
||||
part_filename = requests.head(part).headers.get("Content-Disposition").split(" ")[1].split("=")[1].replace('"', "")
|
||||
part_filename = (
|
||||
requests.head(part)
|
||||
.headers.get("Content-Disposition")
|
||||
.split(" ")[1]
|
||||
.split("=")[1]
|
||||
.replace('"', "")
|
||||
)
|
||||
if not os.path.exists(os.path.join(target_dir, part_filename)):
|
||||
part_path = maybe_download(part_filename, target_dir, part)
|
||||
|
||||
@ -126,10 +255,18 @@ def _download_and_preprocess_data(csv_url, target_dir):
|
||||
assert csum == sha1
|
||||
|
||||
# Conditionally extract data
|
||||
_maybe_extract(target_dir, "transcriptionsXML_audioMP3_MEFR_CCPMF_2012-2020", "transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip", "transcriptionsXML_audioMP3_MEFR_CCPMF_2012-2020.zip")
|
||||
_maybe_extract(
|
||||
target_dir,
|
||||
"transcriptionsXML_audioMP3_MEFR_CCPMF_2012-2020",
|
||||
"transcriptionsxml_audiomp3_mefr_ccpmf_2012-2020_2.zip",
|
||||
"transcriptionsXML_audioMP3_MEFR_CCPMF_2012-2020.zip",
|
||||
)
|
||||
|
||||
# Produce source text for extraction / conversion
|
||||
return _maybe_create_sources(os.path.join(target_dir, "transcriptionsXML_audioMP3_MEFR_CCPMF_2012-2020"))
|
||||
return _maybe_create_sources(
|
||||
os.path.join(target_dir, "transcriptionsXML_audioMP3_MEFR_CCPMF_2012-2020")
|
||||
)
|
||||
|
||||
|
||||
def _maybe_extract(target_dir, extracted_data, archive, final):
|
||||
# If target_dir/extracted_data does not exist, extract archive in target_dir
|
||||
@ -147,7 +284,10 @@ def _maybe_extract(target_dir, extracted_data, archive, final):
|
||||
subprocess.check_call(cmdline, shell=True, cwd=target_dir)
|
||||
assert os.path.exists(archive_path)
|
||||
|
||||
print('No directory "%s" - extracting archive %s ...' % (extracted_path, archive_path))
|
||||
print(
|
||||
'No directory "%s" - extracting archive %s ...'
|
||||
% (extracted_path, archive_path)
|
||||
)
|
||||
with zipfile.ZipFile(archive_path) as zip_f:
|
||||
zip_f.extractall(extracted_path)
|
||||
|
||||
@ -156,6 +296,7 @@ def _maybe_extract(target_dir, extracted_data, archive, final):
|
||||
else:
|
||||
print('Found directory "%s" - not extracting it from archive.' % extracted_path)
|
||||
|
||||
|
||||
def _maybe_create_sources(dir):
|
||||
dataset_sources = os.path.join(dir, "data.txt")
|
||||
MP3 = glob(os.path.join(dir, "**", "*.mp3"))
|
||||
@ -168,8 +309,8 @@ def _maybe_create_sources(dir):
|
||||
for f_xml in XML:
|
||||
b_mp3 = os.path.splitext(os.path.basename(f_mp3))[0]
|
||||
b_xml = os.path.splitext(os.path.basename(f_xml))[0]
|
||||
a_mp3 = b_mp3.split('_')
|
||||
a_xml = b_xml.split('_')
|
||||
a_mp3 = b_mp3.split("_")
|
||||
a_xml = b_xml.split("_")
|
||||
score = 0
|
||||
date_mp3 = a_mp3[0]
|
||||
date_xml = a_xml[0]
|
||||
@ -178,7 +319,7 @@ def _maybe_create_sources(dir):
|
||||
continue
|
||||
|
||||
for i in range(min(len(a_mp3), len(a_xml))):
|
||||
if (a_mp3[i] == a_xml[i]):
|
||||
if a_mp3[i] == a_xml[i]:
|
||||
score += 1
|
||||
|
||||
if score >= 1:
|
||||
@ -208,13 +349,14 @@ def _maybe_create_sources(dir):
|
||||
if os.path.getsize(mp3) > 0 and os.path.getsize(xml) > 0:
|
||||
mp3 = os.path.relpath(mp3, dir)
|
||||
xml = os.path.relpath(xml, dir)
|
||||
ds.write('{},{},{:0.2e}\n'.format(xml, mp3, 2.5e-4))
|
||||
ds.write("{},{},{:0.2e}\n".format(xml, mp3, 2.5e-4))
|
||||
else:
|
||||
print("Empty file {} or {}".format(mp3, xml), file=sys.stderr)
|
||||
|
||||
print("Missing XML pairs:", MP3, file=sys.stderr)
|
||||
return dataset_sources
|
||||
|
||||
|
||||
def maybe_normalize_for_digits(label):
|
||||
# first, try to identify numbers like "50 000", "260 000"
|
||||
if " " in label:
|
||||
@ -238,22 +380,36 @@ def maybe_normalize_for_digits(label):
|
||||
maybe_minutes = maybe_date_or_time[0][1]
|
||||
maybe_seconds = maybe_date_or_time[0][2]
|
||||
if len(maybe_seconds) > 0:
|
||||
label = label.replace("{}:{}:{}".format(maybe_hours, maybe_minutes, maybe_seconds), "{} heures {} minutes et {} secondes".format(maybe_hours, maybe_minutes, maybe_seconds))
|
||||
label = label.replace(
|
||||
"{}:{}:{}".format(
|
||||
maybe_hours, maybe_minutes, maybe_seconds
|
||||
),
|
||||
"{} heures {} minutes et {} secondes".format(
|
||||
maybe_hours, maybe_minutes, maybe_seconds
|
||||
),
|
||||
)
|
||||
else:
|
||||
label = label.replace("{}:{}".format(maybe_hours, maybe_minutes), "{} heures et {} minutes".format(maybe_hours, maybe_minutes))
|
||||
label = label.replace(
|
||||
"{}:{}".format(maybe_hours, maybe_minutes),
|
||||
"{} heures et {} minutes".format(
|
||||
maybe_hours, maybe_minutes
|
||||
),
|
||||
)
|
||||
|
||||
new_label = []
|
||||
# pylint: disable=too-many-nested-blocks
|
||||
for s in label.split(" "):
|
||||
if any(i.isdigit() for i in s):
|
||||
s = s.replace(",", ".") # num2words requires "." for floats
|
||||
s = s.replace("\"", "") # clean some data, num2words would choke on 1959"
|
||||
s = s.replace('"', "") # clean some data, num2words would choke on 1959"
|
||||
|
||||
last_c = s[-1]
|
||||
if not last_c.isdigit(): # num2words will choke on "0.6.", "24 ?"
|
||||
s = s[:-1]
|
||||
|
||||
if any(i.isalpha() for i in s): # So we have any(isdigit()) **and** any(sialpha), like "3D"
|
||||
if any(
|
||||
i.isalpha() for i in s
|
||||
): # So we have any(isdigit()) **and** any(sialpha), like "3D"
|
||||
ns = []
|
||||
for c in s:
|
||||
nc = c
|
||||
@ -274,22 +430,36 @@ def maybe_normalize_for_digits(label):
|
||||
new_label.append(s)
|
||||
return " ".join(new_label)
|
||||
|
||||
|
||||
def maybe_normalize_for_specials_chars(label):
|
||||
label = label.replace("%", "pourcents")
|
||||
label = label.replace("/", ", ") # clean intervals like 2019/2022 to "2019 2022"
|
||||
label = label.replace("-", ", ") # clean intervals like 70-80 to "70 80"
|
||||
label = label.replace("+", " plus ") # clean + and make it speakable
|
||||
label = label.replace("€", " euros ") # clean euro symbol and make it speakable
|
||||
label = label.replace("., ", ", ") # clean some strange "4.0., " (20181017_Innovation.xml)
|
||||
label = label.replace("°", " degré ") # clean some strange "°5" (20181210_EtatsGeneraux-1000_fre_750_und.xml)
|
||||
label = label.replace(
|
||||
"., ", ", "
|
||||
) # clean some strange "4.0., " (20181017_Innovation.xml)
|
||||
label = label.replace(
|
||||
"°", " degré "
|
||||
) # clean some strange "°5" (20181210_EtatsGeneraux-1000_fre_750_und.xml)
|
||||
label = label.replace("...", ".") # remove ellipsis
|
||||
label = label.replace("..", ".") # remove broken ellipsis
|
||||
label = label.replace("m²", "mètre-carrés") # 20150616_Defi_Climat_3_wmv_0_fre_minefi.xml
|
||||
label = label.replace("[end]", "") # broken tag in 20150123_Entretiens_Tresor_PGM_wmv_0_fre_minefi.xml
|
||||
label = label.replace(u'\xB8c', " ç") # strange cedilla in 20150417_Printemps_Economie_2_wmv_0_fre_minefi.xml
|
||||
label = label.replace("C0²", "CO 2") # 20121016_Syteme_sante_copie_wmv_0_fre_minefi.xml
|
||||
label = label.replace(
|
||||
"m²", "mètre-carrés"
|
||||
) # 20150616_Defi_Climat_3_wmv_0_fre_minefi.xml
|
||||
label = label.replace(
|
||||
"[end]", ""
|
||||
) # broken tag in 20150123_Entretiens_Tresor_PGM_wmv_0_fre_minefi.xml
|
||||
label = label.replace(
|
||||
u"\xB8c", " ç"
|
||||
) # strange cedilla in 20150417_Printemps_Economie_2_wmv_0_fre_minefi.xml
|
||||
label = label.replace(
|
||||
"C0²", "CO 2"
|
||||
) # 20121016_Syteme_sante_copie_wmv_0_fre_minefi.xml
|
||||
return label
|
||||
|
||||
|
||||
def maybe_normalize_for_anglicisms(label):
|
||||
label = label.replace("B2B", "B to B")
|
||||
label = label.replace("B2C", "B to C")
|
||||
@ -297,12 +467,14 @@ def maybe_normalize_for_anglicisms(label):
|
||||
label = label.replace("@", "at ")
|
||||
return label
|
||||
|
||||
|
||||
def maybe_normalize(label):
|
||||
label = maybe_normalize_for_specials_chars(label)
|
||||
label = maybe_normalize_for_anglicisms(label)
|
||||
label = maybe_normalize_for_digits(label)
|
||||
return label
|
||||
|
||||
|
||||
def one_sample(sample):
|
||||
file_size = -1
|
||||
frames = 0
|
||||
@ -316,14 +488,33 @@ def one_sample(sample):
|
||||
label = label_filter_fun(sample[5])
|
||||
sample_id = sample[6]
|
||||
|
||||
_wav_filename = os.path.basename(audio_source.replace(".wav", "_{:06}.wav".format(sample_id)))
|
||||
_wav_filename = os.path.basename(
|
||||
audio_source.replace(".wav", "_{:06}.wav".format(sample_id))
|
||||
)
|
||||
wav_fullname = os.path.join(target_dir, dataset_basename, _wav_filename)
|
||||
|
||||
if not os.path.exists(wav_fullname):
|
||||
subprocess.check_output(["ffmpeg", "-i", audio_source, "-ss", str(start_time), "-t", str(duration), "-c", "copy", wav_fullname], stdin=subprocess.DEVNULL, stderr=subprocess.STDOUT)
|
||||
subprocess.check_output(
|
||||
[
|
||||
"ffmpeg",
|
||||
"-i",
|
||||
audio_source,
|
||||
"-ss",
|
||||
str(start_time),
|
||||
"-t",
|
||||
str(duration),
|
||||
"-c",
|
||||
"copy",
|
||||
wav_fullname,
|
||||
],
|
||||
stdin=subprocess.DEVNULL,
|
||||
stderr=subprocess.STDOUT,
|
||||
)
|
||||
|
||||
file_size = os.path.getsize(wav_fullname)
|
||||
frames = int(subprocess.check_output(["soxi", "-s", wav_fullname], stderr=subprocess.STDOUT))
|
||||
frames = int(
|
||||
subprocess.check_output(["soxi", "-s", wav_fullname], stderr=subprocess.STDOUT)
|
||||
)
|
||||
|
||||
_counter = get_counter()
|
||||
_rows = []
|
||||
@ -352,13 +543,16 @@ def one_sample(sample):
|
||||
|
||||
return (_counter, _rows)
|
||||
|
||||
|
||||
def _maybe_import_data(xml_file, audio_source, target_dir, rel_tol=1e-1):
|
||||
dataset_basename = os.path.splitext(os.path.split(xml_file)[1])[0]
|
||||
wav_root = os.path.join(target_dir, dataset_basename)
|
||||
if not os.path.exists(wav_root):
|
||||
os.makedirs(wav_root)
|
||||
|
||||
source_frames = int(subprocess.check_output(["soxi", "-s", audio_source], stderr=subprocess.STDOUT))
|
||||
source_frames = int(
|
||||
subprocess.check_output(["soxi", "-s", audio_source], stderr=subprocess.STDOUT)
|
||||
)
|
||||
print("Source audio length: %s" % secs_to_hours(source_frames / SAMPLE_RATE))
|
||||
|
||||
# Get audiofile path and transcript for each sentence in tsv
|
||||
@ -384,16 +578,28 @@ def _maybe_import_data(xml_file, audio_source, target_dir, rel_tol=1e-1):
|
||||
# rel_tol value is made from trial/error to try and compromise between:
|
||||
# - cutting enough to skip missing words
|
||||
# - not too short, not too long sentences
|
||||
is_close = math.isclose(cur_time, this_time + this_duration, rel_tol=rel_tol)
|
||||
is_short = ((this_duration + cur_duration + delta) < MAX_SECS)
|
||||
is_close = math.isclose(
|
||||
cur_time, this_time + this_duration, rel_tol=rel_tol
|
||||
)
|
||||
is_short = (this_duration + cur_duration + delta) < MAX_SECS
|
||||
|
||||
# when the previous element is close enough **and** this does not
|
||||
# go over MAX_SECS, we append content
|
||||
if (is_close and is_short):
|
||||
if is_close and is_short:
|
||||
this_duration += cur_duration + delta
|
||||
this_text += cur_text
|
||||
else:
|
||||
samples.append((audio_source, target_dir, dataset_basename, this_time, this_duration, this_text, seq_id))
|
||||
samples.append(
|
||||
(
|
||||
audio_source,
|
||||
target_dir,
|
||||
dataset_basename,
|
||||
this_time,
|
||||
this_duration,
|
||||
this_text,
|
||||
seq_id,
|
||||
)
|
||||
)
|
||||
|
||||
this_time = cur_time
|
||||
this_duration = cur_duration
|
||||
@ -425,21 +631,27 @@ def _maybe_import_data(xml_file, audio_source, target_dir, rel_tol=1e-1):
|
||||
assert len(_rows) == imported_samples
|
||||
|
||||
print_import_report(_counter, SAMPLE_RATE, MAX_SECS)
|
||||
print("Import efficiency: %.1f%%" % ((_counter["total_time"] / source_frames)*100))
|
||||
print(
|
||||
"Import efficiency: %.1f%%" % ((_counter["total_time"] / source_frames) * 100)
|
||||
)
|
||||
print("")
|
||||
|
||||
return _counter, _rows
|
||||
|
||||
|
||||
def _maybe_convert_wav(mp3_filename, _wav_filename):
|
||||
if not os.path.exists(_wav_filename):
|
||||
print("Converting {} to WAV file: {}".format(mp3_filename, _wav_filename))
|
||||
transformer = sox.Transformer()
|
||||
transformer.convert(samplerate=SAMPLE_RATE, n_channels=CHANNELS, bitdepth=BIT_DEPTH)
|
||||
transformer.convert(
|
||||
samplerate=SAMPLE_RATE, n_channels=CHANNELS, bitdepth=BIT_DEPTH
|
||||
)
|
||||
try:
|
||||
transformer.build(mp3_filename, _wav_filename)
|
||||
except sox.core.SoxError:
|
||||
pass
|
||||
|
||||
|
||||
def write_general_csv(target_dir, _rows, _counter):
|
||||
target_csv_template = os.path.join(target_dir, "ccpmf_{}.csv")
|
||||
with open(target_csv_template.format("train"), "w") as train_csv_file: # 80%
|
||||
@ -461,7 +673,13 @@ def write_general_csv(target_dir, _rows, _counter):
|
||||
writer = dev_writer
|
||||
else:
|
||||
writer = train_writer
|
||||
writer.writerow({"wav_filename": item[0], "wav_filesize": item[1], "transcript": item[2]})
|
||||
writer.writerow(
|
||||
{
|
||||
"wav_filename": item[0],
|
||||
"wav_filesize": item[1],
|
||||
"transcript": item[2],
|
||||
}
|
||||
)
|
||||
|
||||
print("")
|
||||
print("~~~~ FINAL STATISTICS ~~~~")
|
||||
@ -469,11 +687,21 @@ def write_general_csv(target_dir, _rows, _counter):
|
||||
print("~~~~ (FINAL STATISTICS) ~~~~")
|
||||
print("")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
PARSER = get_importers_parser(description="Import XML from Conference Centre for Economics, France")
|
||||
PARSER = get_importers_parser(
|
||||
description="Import XML from Conference Centre for Economics, France"
|
||||
)
|
||||
PARSER.add_argument("target_dir", help="Destination directory")
|
||||
PARSER.add_argument("--filter_alphabet", help="Exclude samples with characters not in provided alphabet")
|
||||
PARSER.add_argument("--normalize", action="store_true", help="Converts diacritic characters to their base ones")
|
||||
PARSER.add_argument(
|
||||
"--filter_alphabet",
|
||||
help="Exclude samples with characters not in provided alphabet",
|
||||
)
|
||||
PARSER.add_argument(
|
||||
"--normalize",
|
||||
action="store_true",
|
||||
help="Converts diacritic characters to their base ones",
|
||||
)
|
||||
|
||||
PARAMS = PARSER.parse_args()
|
||||
validate_label = get_validate_label(PARAMS)
|
||||
@ -481,9 +709,11 @@ if __name__ == "__main__":
|
||||
|
||||
def label_filter_fun(label):
|
||||
if PARAMS.normalize:
|
||||
label = unicodedata.normalize("NFKD", label.strip()) \
|
||||
.encode("ascii", "ignore") \
|
||||
label = (
|
||||
unicodedata.normalize("NFKD", label.strip())
|
||||
.encode("ascii", "ignore")
|
||||
.decode("ascii", "ignore")
|
||||
)
|
||||
label = maybe_normalize(label)
|
||||
label = validate_label(label)
|
||||
if ALPHABET and label:
|
||||
@ -493,7 +723,9 @@ if __name__ == "__main__":
|
||||
label = None
|
||||
return label
|
||||
|
||||
dataset_sources = _download_and_preprocess_data(csv_url=DATASET_RELEASE_CSV, target_dir=PARAMS.target_dir)
|
||||
dataset_sources = _download_and_preprocess_data(
|
||||
csv_url=DATASET_RELEASE_CSV, target_dir=PARAMS.target_dir
|
||||
)
|
||||
sources_root_dir = os.path.dirname(dataset_sources)
|
||||
all_counter = get_counter()
|
||||
all_rows = []
|
||||
@ -504,9 +736,14 @@ if __name__ == "__main__":
|
||||
this_mp3 = os.path.join(sources_root_dir, d[1])
|
||||
this_rel = float(d[2])
|
||||
|
||||
wav_filename = os.path.join(sources_root_dir, os.path.splitext(os.path.basename(this_mp3))[0] + ".wav")
|
||||
wav_filename = os.path.join(
|
||||
sources_root_dir,
|
||||
os.path.splitext(os.path.basename(this_mp3))[0] + ".wav",
|
||||
)
|
||||
_maybe_convert_wav(this_mp3, wav_filename)
|
||||
counter, rows = _maybe_import_data(this_xml, wav_filename, sources_root_dir, this_rel)
|
||||
counter, rows = _maybe_import_data(
|
||||
this_xml, wav_filename, sources_root_dir, this_rel
|
||||
)
|
||||
|
||||
all_counter += counter
|
||||
all_rows += rows
|
||||
|
@ -1,15 +1,14 @@
|
||||
#!/usr/bin/env python
|
||||
import csv
|
||||
import os
|
||||
import sys
|
||||
import subprocess
|
||||
import sys
|
||||
import tarfile
|
||||
from glob import glob
|
||||
from multiprocessing import Pool
|
||||
|
||||
import progressbar
|
||||
import sox
|
||||
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.importers import (
|
||||
get_counter,
|
||||
|
@ -14,7 +14,7 @@ from multiprocessing import Pool
|
||||
|
||||
import progressbar
|
||||
import sox
|
||||
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR
|
||||
from coqui_stt_training.util.importers import (
|
||||
get_counter,
|
||||
@ -23,7 +23,6 @@ from coqui_stt_training.util.importers import (
|
||||
get_validate_label,
|
||||
print_import_report,
|
||||
)
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
|
||||
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
SAMPLE_RATE = 16000
|
||||
@ -41,7 +40,11 @@ class LabelFilter:
|
||||
|
||||
def filter(self, label):
|
||||
if self.normalize:
|
||||
label = unicodedata.normalize("NFKD", label.strip()).encode("ascii", "ignore").decode("ascii", "ignore")
|
||||
label = (
|
||||
unicodedata.normalize("NFKD", label.strip())
|
||||
.encode("ascii", "ignore")
|
||||
.decode("ascii", "ignore")
|
||||
)
|
||||
label = self.validate_fun(label)
|
||||
if self.alphabet and label and not self.alphabet.CanEncode(label):
|
||||
label = None
|
||||
@ -97,7 +100,15 @@ def one_sample(sample):
|
||||
return (counter, rows)
|
||||
|
||||
|
||||
def _maybe_convert_set(dataset, tsv_dir, audio_dir, filter_obj, space_after_every_character=None, rows=None, exclude=None):
|
||||
def _maybe_convert_set(
|
||||
dataset,
|
||||
tsv_dir,
|
||||
audio_dir,
|
||||
filter_obj,
|
||||
space_after_every_character=None,
|
||||
rows=None,
|
||||
exclude=None,
|
||||
):
|
||||
exclude_transcripts = set()
|
||||
exclude_speakers = set()
|
||||
if exclude is not None:
|
||||
@ -116,7 +127,13 @@ def _maybe_convert_set(dataset, tsv_dir, audio_dir, filter_obj, space_after_ever
|
||||
with open(input_tsv, encoding="utf-8") as input_tsv_file:
|
||||
reader = csv.DictReader(input_tsv_file, delimiter="\t")
|
||||
for row in reader:
|
||||
samples.append((os.path.join(audio_dir, row["path"]), row["sentence"], row["client_id"]))
|
||||
samples.append(
|
||||
(
|
||||
os.path.join(audio_dir, row["path"]),
|
||||
row["sentence"],
|
||||
row["client_id"],
|
||||
)
|
||||
)
|
||||
|
||||
counter = get_counter()
|
||||
num_samples = len(samples)
|
||||
@ -124,7 +141,9 @@ def _maybe_convert_set(dataset, tsv_dir, audio_dir, filter_obj, space_after_ever
|
||||
print("Importing mp3 files...")
|
||||
pool = Pool(initializer=init_worker, initargs=(PARAMS,))
|
||||
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
|
||||
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
|
||||
for i, processed in enumerate(
|
||||
pool.imap_unordered(one_sample, samples), start=1
|
||||
):
|
||||
counter += processed[0]
|
||||
rows += processed[1]
|
||||
bar.update(i)
|
||||
@ -169,12 +188,20 @@ def _maybe_convert_set(dataset, tsv_dir, audio_dir, filter_obj, space_after_ever
|
||||
def _preprocess_data(tsv_dir, audio_dir, space_after_every_character=False):
|
||||
exclude = []
|
||||
for dataset in ["test", "dev", "train", "validated", "other"]:
|
||||
set_samples = _maybe_convert_set(dataset, tsv_dir, audio_dir, space_after_every_character)
|
||||
set_samples = _maybe_convert_set(
|
||||
dataset, tsv_dir, audio_dir, space_after_every_character
|
||||
)
|
||||
if dataset in ["test", "dev"]:
|
||||
exclude += set_samples
|
||||
if dataset == "validated":
|
||||
_maybe_convert_set("train-all", tsv_dir, audio_dir, space_after_every_character,
|
||||
rows=set_samples, exclude=exclude)
|
||||
_maybe_convert_set(
|
||||
"train-all",
|
||||
tsv_dir,
|
||||
audio_dir,
|
||||
space_after_every_character,
|
||||
rows=set_samples,
|
||||
exclude=exclude,
|
||||
)
|
||||
|
||||
|
||||
def _maybe_convert_wav(mp3_filename, wav_filename):
|
||||
@ -212,7 +239,9 @@ def parse_args():
|
||||
|
||||
|
||||
def main():
|
||||
audio_dir = PARAMS.audio_dir if PARAMS.audio_dir else os.path.join(PARAMS.tsv_dir, "clips")
|
||||
audio_dir = (
|
||||
PARAMS.audio_dir if PARAMS.audio_dir else os.path.join(PARAMS.tsv_dir, "clips")
|
||||
)
|
||||
_preprocess_data(PARAMS.tsv_dir, audio_dir, PARAMS.space_after_every_character)
|
||||
|
||||
|
||||
|
@ -10,7 +10,6 @@ import unicodedata
|
||||
import librosa
|
||||
import pandas
|
||||
import soundfile # <= Has an external dependency on libsndfile
|
||||
|
||||
from coqui_stt_training.util.importers import validate_label_eng as validate_label
|
||||
|
||||
# Prerequisite: Having the sph2pipe tool in your PATH:
|
||||
@ -261,8 +260,7 @@ def _split_sets(filelist):
|
||||
|
||||
|
||||
def get_sample_size(population_size):
|
||||
"""calculates the sample size for a 99% confidence and 1% margin of error
|
||||
"""
|
||||
"""calculates the sample size for a 99% confidence and 1% margin of error"""
|
||||
margin_of_error = 0.01
|
||||
fraction_picking = 0.50
|
||||
z_score = 2.58 # Corresponds to confidence level 99%
|
||||
|
@ -5,7 +5,6 @@ import tarfile
|
||||
|
||||
import numpy as np
|
||||
import pandas
|
||||
|
||||
from coqui_stt_training.util.importers import get_importers_parser
|
||||
|
||||
COLUMN_NAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
|
@ -9,10 +9,9 @@ import urllib
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
from sox import Transformer
|
||||
|
||||
import swifter
|
||||
from coqui_stt_training.util.importers import get_importers_parser, get_validate_label
|
||||
from sox import Transformer
|
||||
|
||||
__version__ = "0.1.0"
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
@ -3,7 +3,6 @@ import os
|
||||
import sys
|
||||
|
||||
import pandas
|
||||
|
||||
from coqui_stt_training.util.downloader import maybe_download
|
||||
|
||||
|
||||
|
@ -9,10 +9,10 @@ import unicodedata
|
||||
|
||||
import pandas
|
||||
import progressbar
|
||||
from sox import Transformer
|
||||
from tensorflow.python.platform import gfile
|
||||
|
||||
from coqui_stt_training.util.downloader import maybe_download
|
||||
from sox import Transformer
|
||||
|
||||
from tensorflow.python.platform import gfile
|
||||
|
||||
SAMPLE_RATE = 16000
|
||||
|
||||
|
@ -11,7 +11,7 @@ from multiprocessing import Pool
|
||||
|
||||
import progressbar
|
||||
import sox
|
||||
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.importers import (
|
||||
get_counter,
|
||||
@ -20,7 +20,6 @@ from coqui_stt_training.util.importers import (
|
||||
get_validate_label,
|
||||
print_import_report,
|
||||
)
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
|
||||
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
SAMPLE_RATE = 16000
|
||||
@ -137,9 +136,15 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file: # 80%
|
||||
with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file: # 10%
|
||||
with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file: # 10%
|
||||
with open(
|
||||
target_csv_template.format("train"), "w", encoding="utf-8", newline=""
|
||||
) as train_csv_file: # 80%
|
||||
with open(
|
||||
target_csv_template.format("dev"), "w", encoding="utf-8", newline=""
|
||||
) as dev_csv_file: # 10%
|
||||
with open(
|
||||
target_csv_template.format("test"), "w", encoding="utf-8", newline=""
|
||||
) as test_csv_file: # 10%
|
||||
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
|
||||
train_writer.writeheader()
|
||||
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
|
||||
@ -179,7 +184,9 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
||||
def _maybe_convert_wav(ogg_filename, wav_filename):
|
||||
if not os.path.exists(wav_filename):
|
||||
transformer = sox.Transformer()
|
||||
transformer.convert(samplerate=SAMPLE_RATE, n_channels=N_CHANNELS, bitdepth=BITDEPTH)
|
||||
transformer.convert(
|
||||
samplerate=SAMPLE_RATE, n_channels=N_CHANNELS, bitdepth=BITDEPTH
|
||||
)
|
||||
try:
|
||||
transformer.build(ogg_filename, wav_filename)
|
||||
except sox.core.SoxError as ex:
|
||||
|
@ -9,7 +9,7 @@ from glob import glob
|
||||
from multiprocessing import Pool
|
||||
|
||||
import progressbar
|
||||
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.importers import (
|
||||
get_counter,
|
||||
@ -18,7 +18,6 @@ from coqui_stt_training.util.importers import (
|
||||
get_validate_label,
|
||||
print_import_report,
|
||||
)
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
|
||||
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
SAMPLE_RATE = 16000
|
||||
@ -60,9 +59,20 @@ def one_sample(sample):
|
||||
file_size = -1
|
||||
frames = 0
|
||||
if os.path.exists(wav_filename):
|
||||
tmp_filename = os.path.splitext(wav_filename)[0]+'.tmp.wav'
|
||||
tmp_filename = os.path.splitext(wav_filename)[0] + ".tmp.wav"
|
||||
subprocess.check_call(
|
||||
['sox', wav_filename, '-r', str(SAMPLE_RATE), '-c', '1', '-b', '16', tmp_filename], stderr=subprocess.STDOUT
|
||||
[
|
||||
"sox",
|
||||
wav_filename,
|
||||
"-r",
|
||||
str(SAMPLE_RATE),
|
||||
"-c",
|
||||
"1",
|
||||
"-b",
|
||||
"16",
|
||||
tmp_filename,
|
||||
],
|
||||
stderr=subprocess.STDOUT,
|
||||
)
|
||||
os.rename(tmp_filename, wav_filename)
|
||||
file_size = os.path.getsize(wav_filename)
|
||||
@ -138,9 +148,15 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file: # 80%
|
||||
with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file: # 10%
|
||||
with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file: # 10%
|
||||
with open(
|
||||
target_csv_template.format("train"), "w", encoding="utf-8", newline=""
|
||||
) as train_csv_file: # 80%
|
||||
with open(
|
||||
target_csv_template.format("dev"), "w", encoding="utf-8", newline=""
|
||||
) as dev_csv_file: # 10%
|
||||
with open(
|
||||
target_csv_template.format("test"), "w", encoding="utf-8", newline=""
|
||||
) as test_csv_file: # 10%
|
||||
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
|
||||
train_writer.writeheader()
|
||||
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
|
||||
|
@ -5,7 +5,6 @@ import tarfile
|
||||
import wave
|
||||
|
||||
import pandas
|
||||
|
||||
from coqui_stt_training.util.importers import get_importers_parser
|
||||
|
||||
COLUMN_NAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
|
@ -2,10 +2,9 @@
|
||||
import argparse
|
||||
import ctypes
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import pandas
|
||||
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
|
@ -6,7 +6,6 @@ import tarfile
|
||||
|
||||
import numpy as np
|
||||
import pandas
|
||||
|
||||
from coqui_stt_training.util.importers import get_importers_parser
|
||||
|
||||
COLUMN_NAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
|
@ -8,7 +8,7 @@ from glob import glob
|
||||
from multiprocessing import Pool
|
||||
|
||||
import progressbar
|
||||
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.importers import (
|
||||
get_counter,
|
||||
@ -17,7 +17,6 @@ from coqui_stt_training.util.importers import (
|
||||
get_validate_label,
|
||||
print_import_report,
|
||||
)
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
|
||||
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
|
||||
SAMPLE_RATE = 16000
|
||||
@ -157,9 +156,15 @@ def _maybe_convert_sets(target_dir, extracted_data):
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file: # 80%
|
||||
with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file: # 10%
|
||||
with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file: # 10%
|
||||
with open(
|
||||
target_csv_template.format("train"), "w", encoding="utf-8", newline=""
|
||||
) as train_csv_file: # 80%
|
||||
with open(
|
||||
target_csv_template.format("dev"), "w", encoding="utf-8", newline=""
|
||||
) as dev_csv_file: # 10%
|
||||
with open(
|
||||
target_csv_template.format("test"), "w", encoding="utf-8", newline=""
|
||||
) as test_csv_file: # 10%
|
||||
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
|
||||
train_writer.writeheader()
|
||||
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
|
||||
|
@ -16,7 +16,6 @@ import librosa
|
||||
import pandas
|
||||
import requests
|
||||
import soundfile # <= Has an external dependency on libsndfile
|
||||
|
||||
from coqui_stt_training.util.importers import validate_label_eng as validate_label
|
||||
|
||||
# ARCHIVE_NAME refers to ISIP alignments from 01/29/03
|
||||
@ -315,8 +314,7 @@ def _split_sets(filelist):
|
||||
|
||||
|
||||
def get_sample_size(population_size):
|
||||
"""calculates the sample size for a 99% confidence and 1% margin of error
|
||||
"""
|
||||
"""calculates the sample size for a 99% confidence and 1% margin of error"""
|
||||
margin_of_error = 0.01
|
||||
fraction_picking = 0.50
|
||||
z_score = 2.58 # Corresponds to confidence level 99%
|
||||
|
@ -21,10 +21,9 @@ from multiprocessing.pool import ThreadPool
|
||||
|
||||
import progressbar
|
||||
import sox
|
||||
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.importers import validate_label_eng as validate_label
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
|
||||
SWC_URL = "https://www2.informatik.uni-hamburg.de/nats/pub/SWC/SWC_{language}.tar"
|
||||
SWC_ARCHIVE = "SWC_{language}.tar"
|
||||
@ -173,7 +172,6 @@ def in_alphabet(alphabet, c):
|
||||
return alphabet.CanEncode(c) if alphabet else True
|
||||
|
||||
|
||||
|
||||
ALPHABETS = {}
|
||||
|
||||
|
||||
@ -202,8 +200,16 @@ def label_filter(label, language):
|
||||
dont_normalize = DONT_NORMALIZE[language] if language in DONT_NORMALIZE else ""
|
||||
alphabet = get_alphabet(language)
|
||||
for c in label:
|
||||
if CLI_ARGS.normalize and c not in dont_normalize and not in_alphabet(alphabet, c):
|
||||
c = unicodedata.normalize("NFKD", c).encode("ascii", "ignore").decode("ascii", "ignore")
|
||||
if (
|
||||
CLI_ARGS.normalize
|
||||
and c not in dont_normalize
|
||||
and not in_alphabet(alphabet, c)
|
||||
):
|
||||
c = (
|
||||
unicodedata.normalize("NFKD", c)
|
||||
.encode("ascii", "ignore")
|
||||
.decode("ascii", "ignore")
|
||||
)
|
||||
for sc in c:
|
||||
if not in_alphabet(alphabet, sc):
|
||||
return None, "illegal character"
|
||||
|
@ -7,11 +7,11 @@ from glob import glob
|
||||
from os import makedirs, path, remove, rmdir
|
||||
|
||||
import pandas
|
||||
from sox import Transformer
|
||||
from tensorflow.python.platform import gfile
|
||||
|
||||
from coqui_stt_training.util.downloader import maybe_download
|
||||
from coqui_stt_training.util.stm import parse_stm_file
|
||||
from sox import Transformer
|
||||
|
||||
from tensorflow.python.platform import gfile
|
||||
|
||||
|
||||
def _download_and_preprocess_data(data_dir):
|
||||
|
@ -8,7 +8,6 @@ from multiprocessing import Pool
|
||||
|
||||
import progressbar
|
||||
import sox
|
||||
|
||||
import unidecode
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.importers import (
|
||||
@ -132,9 +131,15 @@ def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file: # 80%
|
||||
with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file: # 10%
|
||||
with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file: # 10%
|
||||
with open(
|
||||
target_csv_template.format("train"), "w", encoding="utf-8", newline=""
|
||||
) as train_csv_file: # 80%
|
||||
with open(
|
||||
target_csv_template.format("dev"), "w", encoding="utf-8", newline=""
|
||||
) as dev_csv_file: # 10%
|
||||
with open(
|
||||
target_csv_template.format("test"), "w", encoding="utf-8", newline=""
|
||||
) as test_csv_file: # 10%
|
||||
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
|
||||
train_writer.writeheader()
|
||||
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
|
||||
|
@ -13,10 +13,9 @@ import xml.etree.ElementTree as ET
|
||||
from collections import Counter
|
||||
|
||||
import progressbar
|
||||
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.importers import validate_label_eng as validate_label
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
|
||||
TUDA_VERSION = "v2"
|
||||
TUDA_PACKAGE = "german-speechdata-package-{}".format(TUDA_VERSION)
|
||||
@ -55,7 +54,11 @@ def check_and_prepare_sentence(sentence):
|
||||
chars = []
|
||||
for c in sentence:
|
||||
if CLI_ARGS.normalize and c not in "äöüß" and not in_alphabet(c):
|
||||
c = unicodedata.normalize("NFKD", c).encode("ascii", "ignore").decode("ascii", "ignore")
|
||||
c = (
|
||||
unicodedata.normalize("NFKD", c)
|
||||
.encode("ascii", "ignore")
|
||||
.decode("ascii", "ignore")
|
||||
)
|
||||
for sc in c:
|
||||
if not in_alphabet(c):
|
||||
return None
|
||||
@ -118,7 +121,7 @@ def write_csvs(extracted):
|
||||
sentence = list(meta.iter("cleaned_sentence"))[0].text
|
||||
sentence = check_and_prepare_sentence(sentence)
|
||||
if sentence is None:
|
||||
reasons['alphabet filter'] += 1
|
||||
reasons["alphabet filter"] += 1
|
||||
continue
|
||||
for wav_name in wav_names:
|
||||
sample_counter += 1
|
||||
|
@ -10,7 +10,6 @@ from zipfile import ZipFile
|
||||
|
||||
import librosa
|
||||
import progressbar
|
||||
|
||||
from coqui_stt_training.util.downloader import SIMPLE_BAR, maybe_download
|
||||
from coqui_stt_training.util.importers import (
|
||||
get_counter,
|
||||
|
@ -13,9 +13,10 @@ from os import makedirs, path
|
||||
|
||||
import pandas
|
||||
from bs4 import BeautifulSoup
|
||||
from tensorflow.python.platform import gfile
|
||||
from coqui_stt_training.util.downloader import maybe_download
|
||||
|
||||
from tensorflow.python.platform import gfile
|
||||
|
||||
"""The number of jobs to run in parallel"""
|
||||
NUM_PARALLEL = 8
|
||||
|
||||
|
46
bin/play.py
46
bin/play.py
@ -4,14 +4,26 @@ Tool for playing (and augmenting) single samples or samples from Sample Database
|
||||
Use "python3 play.py -h" for help
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import random
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
|
||||
from coqui_stt_training.util.audio import get_loadable_audio_type_from_extension, AUDIO_TYPE_PCM, AUDIO_TYPE_WAV
|
||||
from coqui_stt_training.util.sample_collections import SampleList, LabeledSample, samples_from_source
|
||||
from coqui_stt_training.util.augmentations import parse_augmentations, apply_sample_augmentations, SampleAugmentation
|
||||
from coqui_stt_training.util.audio import (
|
||||
AUDIO_TYPE_PCM,
|
||||
AUDIO_TYPE_WAV,
|
||||
get_loadable_audio_type_from_extension,
|
||||
)
|
||||
from coqui_stt_training.util.augmentations import (
|
||||
SampleAugmentation,
|
||||
apply_sample_augmentations,
|
||||
parse_augmentations,
|
||||
)
|
||||
from coqui_stt_training.util.sample_collections import (
|
||||
LabeledSample,
|
||||
SampleList,
|
||||
samples_from_source,
|
||||
)
|
||||
|
||||
|
||||
def get_samples_in_play_order():
|
||||
@ -43,11 +55,13 @@ def play_collection():
|
||||
if any(not isinstance(a, SampleAugmentation) for a in augmentations):
|
||||
print("Warning: Some of the augmentations cannot be simulated by this command.")
|
||||
samples = get_samples_in_play_order()
|
||||
samples = apply_sample_augmentations(samples,
|
||||
samples = apply_sample_augmentations(
|
||||
samples,
|
||||
audio_type=AUDIO_TYPE_PCM,
|
||||
augmentations=augmentations,
|
||||
process_ahead=0,
|
||||
clock=CLI_ARGS.clock)
|
||||
clock=CLI_ARGS.clock,
|
||||
)
|
||||
for sample in samples:
|
||||
if not CLI_ARGS.quiet:
|
||||
print('Sample "{}"'.format(sample.sample_id), file=sys.stderr)
|
||||
@ -57,10 +71,12 @@ def play_collection():
|
||||
sample.change_audio_type(AUDIO_TYPE_WAV)
|
||||
sys.stdout.buffer.write(sample.audio.getvalue())
|
||||
return
|
||||
wave_obj = simpleaudio.WaveObject(sample.audio,
|
||||
wave_obj = simpleaudio.WaveObject(
|
||||
sample.audio,
|
||||
sample.audio_format.channels,
|
||||
sample.audio_format.width,
|
||||
sample.audio_format.rate)
|
||||
sample.audio_format.rate,
|
||||
)
|
||||
play_obj = wave_obj.play()
|
||||
play_obj.wait_done()
|
||||
|
||||
@ -70,7 +86,9 @@ def handle_args():
|
||||
description="Tool for playing (and augmenting) single samples or samples from Sample Databases (SDB files) "
|
||||
"and Coqui STT CSV files"
|
||||
)
|
||||
parser.add_argument("source", help="Sample DB, CSV or WAV file to play samples from")
|
||||
parser.add_argument(
|
||||
"source", help="Sample DB, CSV or WAV file to play samples from"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--start",
|
||||
type=int,
|
||||
@ -90,7 +108,7 @@ def handle_args():
|
||||
)
|
||||
parser.add_argument(
|
||||
"--augment",
|
||||
action='append',
|
||||
action="append",
|
||||
help="Add an augmentation operation",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -120,7 +138,9 @@ if __name__ == "__main__":
|
||||
try:
|
||||
import simpleaudio
|
||||
except ModuleNotFoundError:
|
||||
print('Unless using the --pipe flag, play.py requires Python package "simpleaudio" for playing samples')
|
||||
print(
|
||||
'Unless using the --pipe flag, play.py requires Python package "simpleaudio" for playing samples'
|
||||
)
|
||||
sys.exit(1)
|
||||
try:
|
||||
play_collection()
|
||||
|
@ -8,4 +8,3 @@ This directory contains language-specific data files. Most importantly, you will
|
||||
2. A script used to generate a binary n-gram language model: ``data/lm/generate_lm.py``.
|
||||
|
||||
For more information on how to build these resources from scratch, see the ``External scorer scripts`` section on `stt.readthedocs.io <https://stt.readthedocs.io/>`_.
|
||||
|
||||
|
100
doc/conf.py
100
doc/conf.py
@ -22,21 +22,27 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.insert(0, os.path.abspath('../'))
|
||||
sys.path.insert(0, os.path.abspath("../"))
|
||||
|
||||
autodoc_mock_imports = ['stt']
|
||||
autodoc_mock_imports = ["stt"]
|
||||
|
||||
# This is in fact only relevant on ReadTheDocs, but we want to run the same way
|
||||
# on our CI as in RTD to avoid regressions on RTD that we would not catch on CI
|
||||
import subprocess
|
||||
|
||||
parent = subprocess.check_output("cd ../ && pwd", shell=True).decode().strip()
|
||||
os.environ["PATH"] = os.path.join(parent, 'node_modules', '.bin') + ':' + os.environ["PATH"]
|
||||
subprocess.check_call('cd ../ && npm install typedoc@0.17.4 typescript@3.8.3 @types/node@13.9.x', shell=True)
|
||||
subprocess.check_call('env', shell=True)
|
||||
subprocess.check_call('which typedoc', shell=True)
|
||||
subprocess.check_call('cd ../ && doxygen doc/doxygen-c.conf', shell=True)
|
||||
subprocess.check_call('cd ../ && doxygen doc/doxygen-java.conf', shell=True)
|
||||
subprocess.check_call('cd ../ && doxygen doc/doxygen-dotnet.conf', shell=True)
|
||||
os.environ["PATH"] = (
|
||||
os.path.join(parent, "node_modules", ".bin") + ":" + os.environ["PATH"]
|
||||
)
|
||||
subprocess.check_call(
|
||||
"cd ../ && npm install typedoc@0.17.4 typescript@3.8.3 @types/node@13.9.x",
|
||||
shell=True,
|
||||
)
|
||||
subprocess.check_call("env", shell=True)
|
||||
subprocess.check_call("which typedoc", shell=True)
|
||||
subprocess.check_call("cd ../ && doxygen doc/doxygen-c.conf", shell=True)
|
||||
subprocess.check_call("cd ../ && doxygen doc/doxygen-java.conf", shell=True)
|
||||
subprocess.check_call("cd ../ && doxygen doc/doxygen-dotnet.conf", shell=True)
|
||||
|
||||
# -- General configuration ------------------------------------------------
|
||||
|
||||
@ -44,11 +50,11 @@ import semver
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = u'Coqui STT'
|
||||
copyright = '2021 Coqui GmbH, 2020 DeepSpeech authors, 2019-2020 Mozilla Corporation'
|
||||
author = 'Coqui GmbH'
|
||||
project = u"Coqui STT"
|
||||
copyright = "2021 Coqui GmbH, 2020 DeepSpeech authors, 2019-2020 Mozilla Corporation"
|
||||
author = "Coqui GmbH"
|
||||
|
||||
with open('../VERSION', 'r') as ver:
|
||||
with open("../VERSION", "r") as ver:
|
||||
v = ver.read().strip()
|
||||
vv = semver.parse(v)
|
||||
|
||||
@ -56,7 +62,7 @@ vv = semver.parse(v)
|
||||
# |version| and |release|, also used in various other places throughout the
|
||||
# built documents.
|
||||
# The short X.Y version
|
||||
version = '{}.{}'.format(vv['major'], vv['minor'])
|
||||
version = "{}.{}".format(vv["major"], vv["minor"])
|
||||
# The full version, including alpha/beta/rc tags
|
||||
release = v
|
||||
|
||||
@ -68,15 +74,15 @@ release = v
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinx.ext.extlinks',
|
||||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.viewcode',
|
||||
'sphinx_js',
|
||||
'sphinx_csharp',
|
||||
'breathe',
|
||||
'recommonmark',
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.extlinks",
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx.ext.mathjax",
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinx_js",
|
||||
"sphinx_csharp",
|
||||
"breathe",
|
||||
"recommonmark",
|
||||
]
|
||||
|
||||
|
||||
@ -91,16 +97,16 @@ js_language = "typescript"
|
||||
jsdoc_config_path = "../native_client/javascript/tsconfig.json"
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['.templates']
|
||||
templates_path = [".templates"]
|
||||
|
||||
# The suffix(es) of source filenames.
|
||||
# You can specify multiple suffix as a list of string:
|
||||
#
|
||||
# source_suffix = ['.rst', '.md']
|
||||
source_suffix = '.rst'
|
||||
source_suffix = ".rst"
|
||||
|
||||
# The main toctree document.
|
||||
master_doc = 'index'
|
||||
master_doc = "index"
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
@ -112,10 +118,10 @@ language = None
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This patterns also effect to html_static_path and html_extra_path
|
||||
exclude_patterns = ['.build', 'Thumbs.db', '.DS_Store', 'node_modules', 'examples']
|
||||
exclude_patterns = [".build", "Thumbs.db", ".DS_Store", "node_modules", "examples"]
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
pygments_style = "sphinx"
|
||||
|
||||
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
||||
todo_include_todos = False
|
||||
@ -128,18 +134,18 @@ add_module_names = False
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = 'furo'
|
||||
html_theme = "furo"
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['.static']
|
||||
html_static_path = [".static"]
|
||||
|
||||
|
||||
# -- Options for HTMLHelp output ------------------------------------------
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'STTdoc'
|
||||
htmlhelp_basename = "STTdoc"
|
||||
|
||||
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
@ -148,15 +154,12 @@ latex_elements = {
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#
|
||||
# 'papersize': 'letterpaper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#
|
||||
# 'pointsize': '10pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#
|
||||
# 'preamble': '',
|
||||
|
||||
# Latex figure (float) alignment
|
||||
#
|
||||
# 'figure_align': 'htbp',
|
||||
@ -166,8 +169,7 @@ latex_elements = {
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, 'STT.tex', u'Coqui STT Documentation',
|
||||
u'Coqui GmbH', 'manual'),
|
||||
(master_doc, "STT.tex", u"Coqui STT Documentation", u"Coqui GmbH", "manual"),
|
||||
]
|
||||
|
||||
|
||||
@ -175,10 +177,7 @@ latex_documents = [
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
man_pages = [
|
||||
(master_doc, 'stt', u'Coqui STT Documentation',
|
||||
[author], 1)
|
||||
]
|
||||
man_pages = [(master_doc, "stt", u"Coqui STT Documentation", [author], 1)]
|
||||
|
||||
|
||||
# -- Options for Texinfo output -------------------------------------------
|
||||
@ -187,16 +186,21 @@ man_pages = [
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
texinfo_documents = [
|
||||
(master_doc, 'STT', u'Coqui STT Documentation',
|
||||
author, 'STT', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
(
|
||||
master_doc,
|
||||
"STT",
|
||||
u"Coqui STT Documentation",
|
||||
author,
|
||||
"STT",
|
||||
"One line description of project.",
|
||||
"Miscellaneous",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
# Example configuration for intersphinx: refer to the Python standard library.
|
||||
intersphinx_mapping = {'https://docs.python.org/': None}
|
||||
intersphinx_mapping = {"https://docs.python.org/": None}
|
||||
|
||||
extlinks = {'github': ('https://github.com/coqui-ai/STT/blob/v{}/%s'.format(release),
|
||||
'%s')}
|
||||
extlinks = {
|
||||
"github": ("https://github.com/coqui-ai/STT/blob/v{}/%s".format(release), "%s")
|
||||
}
|
||||
|
@ -2,11 +2,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
from coqui_stt_training import evaluate as ds_evaluate
|
||||
except ImportError:
|
||||
print('Training package is not installed. See training documentation.')
|
||||
print("Training package is not installed. See training documentation.")
|
||||
raise
|
||||
|
||||
ds_evaluate.run_script()
|
||||
|
@ -2,22 +2,22 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import absl.app
|
||||
import argparse
|
||||
import numpy as np
|
||||
import wave
|
||||
import csv
|
||||
import os
|
||||
import sys
|
||||
import wave
|
||||
from functools import partial
|
||||
from multiprocessing import JoinableQueue, Manager, Process, cpu_count
|
||||
|
||||
from stt import Model
|
||||
import absl.app
|
||||
import numpy as np
|
||||
from coqui_stt_training.util.evaluate_tools import calculate_and_print_report
|
||||
from coqui_stt_training.util.flags import create_flags
|
||||
from functools import partial
|
||||
from multiprocessing import JoinableQueue, Process, cpu_count, Manager
|
||||
from six.moves import zip, range
|
||||
from six.moves import range, zip
|
||||
from stt import Model
|
||||
|
||||
r'''
|
||||
r"""
|
||||
This module should be self-contained:
|
||||
- build libstt.so with TFLite:
|
||||
- bazel build [...] --define=runtime=tflite [...] //native_client:libstt.so
|
||||
@ -27,10 +27,11 @@ This module should be self-contained:
|
||||
- pip install -r requirements_eval_tflite.txt
|
||||
|
||||
Then run with a TFLite model, a scorer and a CSV test file
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def tflite_worker(model, scorer, queue_in, queue_out, gpu_mask):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_mask)
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_mask)
|
||||
ds = Model(model)
|
||||
ds.enableExternalScorer(scorer)
|
||||
|
||||
@ -38,20 +39,27 @@ def tflite_worker(model, scorer, queue_in, queue_out, gpu_mask):
|
||||
try:
|
||||
msg = queue_in.get()
|
||||
|
||||
filename = msg['filename']
|
||||
fin = wave.open(filename, 'rb')
|
||||
filename = msg["filename"]
|
||||
fin = wave.open(filename, "rb")
|
||||
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
|
||||
fin.close()
|
||||
|
||||
decoded = ds.stt(audio)
|
||||
|
||||
queue_out.put({'wav': filename, 'prediction': decoded, 'ground_truth': msg['transcript']})
|
||||
queue_out.put(
|
||||
{
|
||||
"wav": filename,
|
||||
"prediction": decoded,
|
||||
"ground_truth": msg["transcript"],
|
||||
}
|
||||
)
|
||||
except FileNotFoundError as ex:
|
||||
print('FileNotFoundError: ', ex)
|
||||
print("FileNotFoundError: ", ex)
|
||||
|
||||
print(queue_out.qsize(), end='\r') # Update the current progress
|
||||
print(queue_out.qsize(), end="\r") # Update the current progress
|
||||
queue_in.task_done()
|
||||
|
||||
|
||||
def main(args, _):
|
||||
manager = Manager()
|
||||
work_todo = JoinableQueue() # this is where we are going to store input data
|
||||
@ -59,7 +67,12 @@ def main(args, _):
|
||||
|
||||
processes = []
|
||||
for i in range(args.proc):
|
||||
worker_process = Process(target=tflite_worker, args=(args.model, args.scorer, work_todo, work_done, i), daemon=True, name='tflite_process_{}'.format(i))
|
||||
worker_process = Process(
|
||||
target=tflite_worker,
|
||||
args=(args.model, args.scorer, work_todo, work_done, i),
|
||||
daemon=True,
|
||||
name="tflite_process_{}".format(i),
|
||||
)
|
||||
worker_process.start() # Launch reader() as a separate python process
|
||||
processes.append(worker_process)
|
||||
|
||||
@ -71,56 +84,75 @@ def main(args, _):
|
||||
losses = []
|
||||
wav_filenames = []
|
||||
|
||||
with open(args.csv, 'r') as csvfile:
|
||||
with open(args.csv, "r") as csvfile:
|
||||
csvreader = csv.DictReader(csvfile)
|
||||
count = 0
|
||||
for row in csvreader:
|
||||
count += 1
|
||||
# Relative paths are relative to the folder the CSV file is in
|
||||
if not os.path.isabs(row['wav_filename']):
|
||||
row['wav_filename'] = os.path.join(os.path.dirname(args.csv), row['wav_filename'])
|
||||
work_todo.put({'filename': row['wav_filename'], 'transcript': row['transcript']})
|
||||
wav_filenames.extend(row['wav_filename'])
|
||||
if not os.path.isabs(row["wav_filename"]):
|
||||
row["wav_filename"] = os.path.join(
|
||||
os.path.dirname(args.csv), row["wav_filename"]
|
||||
)
|
||||
work_todo.put(
|
||||
{"filename": row["wav_filename"], "transcript": row["transcript"]}
|
||||
)
|
||||
wav_filenames.extend(row["wav_filename"])
|
||||
|
||||
print('Totally %d wav entries found in csv\n' % count)
|
||||
print("Totally %d wav entries found in csv\n" % count)
|
||||
work_todo.join()
|
||||
print('\nTotally %d wav file transcripted' % work_done.qsize())
|
||||
print("\nTotally %d wav file transcripted" % work_done.qsize())
|
||||
|
||||
while not work_done.empty():
|
||||
msg = work_done.get()
|
||||
losses.append(0.0)
|
||||
ground_truths.append(msg['ground_truth'])
|
||||
predictions.append(msg['prediction'])
|
||||
wavlist.append(msg['wav'])
|
||||
ground_truths.append(msg["ground_truth"])
|
||||
predictions.append(msg["prediction"])
|
||||
wavlist.append(msg["wav"])
|
||||
|
||||
# Print test summary
|
||||
_ = calculate_and_print_report(wav_filenames, ground_truths, predictions, losses, args.csv)
|
||||
_ = calculate_and_print_report(
|
||||
wav_filenames, ground_truths, predictions, losses, args.csv
|
||||
)
|
||||
|
||||
if args.dump:
|
||||
with open(args.dump + '.txt', 'w') as ftxt, open(args.dump + '.out', 'w') as fout:
|
||||
with open(args.dump + ".txt", "w") as ftxt, open(
|
||||
args.dump + ".out", "w"
|
||||
) as fout:
|
||||
for wav, txt, out in zip(wavlist, ground_truths, predictions):
|
||||
ftxt.write('%s %s\n' % (wav, txt))
|
||||
fout.write('%s %s\n' % (wav, out))
|
||||
print('Reference texts dumped to %s.txt' % args.dump)
|
||||
print('Transcription dumped to %s.out' % args.dump)
|
||||
ftxt.write("%s %s\n" % (wav, txt))
|
||||
fout.write("%s %s\n" % (wav, out))
|
||||
print("Reference texts dumped to %s.txt" % args.dump)
|
||||
print("Transcription dumped to %s.out" % args.dump)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Computing TFLite accuracy')
|
||||
parser.add_argument('--model', required=True,
|
||||
help='Path to the model (protocol buffer binary file)')
|
||||
parser.add_argument('--scorer', required=True,
|
||||
help='Path to the external scorer file')
|
||||
parser.add_argument('--csv', required=True,
|
||||
help='Path to the CSV source file')
|
||||
parser.add_argument('--proc', required=False, default=cpu_count(), type=int,
|
||||
help='Number of processes to spawn, defaulting to number of CPUs')
|
||||
parser.add_argument('--dump', required=False,
|
||||
help='Path to dump the results as text file, with one line for each wav: "wav transcription".')
|
||||
parser = argparse.ArgumentParser(description="Computing TFLite accuracy")
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path to the model (protocol buffer binary file)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--scorer", required=True, help="Path to the external scorer file"
|
||||
)
|
||||
parser.add_argument("--csv", required=True, help="Path to the CSV source file")
|
||||
parser.add_argument(
|
||||
"--proc",
|
||||
required=False,
|
||||
default=cpu_count(),
|
||||
type=int,
|
||||
help="Number of processes to spawn, defaulting to number of CPUs",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dump",
|
||||
required=False,
|
||||
help='Path to dump the results as text file, with one line for each wav: "wav transcription".',
|
||||
)
|
||||
args, unknown = parser.parse_known_args()
|
||||
# Reconstruct argv for absl.flags
|
||||
sys.argv = [sys.argv[0]] + unknown
|
||||
return args
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
create_flags()
|
||||
absl.app.run(partial(main, parse_args()))
|
||||
|
@ -2,35 +2,39 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from __future__ import absolute_import, print_function
|
||||
|
||||
import sys
|
||||
|
||||
import absl.app
|
||||
import optuna
|
||||
import sys
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
|
||||
from coqui_stt_ctcdecoder import Scorer
|
||||
from coqui_stt_training.evaluate import evaluate
|
||||
from coqui_stt_training.train import create_model
|
||||
from coqui_stt_training.util.config import Config, initialize_globals
|
||||
from coqui_stt_training.util.flags import create_flags, FLAGS
|
||||
from coqui_stt_training.util.logging import log_error
|
||||
from coqui_stt_training.util.evaluate_tools import wer_cer_batch
|
||||
from coqui_stt_ctcdecoder import Scorer
|
||||
from coqui_stt_training.util.flags import FLAGS, create_flags
|
||||
from coqui_stt_training.util.logging import log_error
|
||||
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
|
||||
|
||||
def character_based():
|
||||
is_character_based = False
|
||||
if FLAGS.scorer_path:
|
||||
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta, FLAGS.scorer_path, Config.alphabet)
|
||||
scorer = Scorer(
|
||||
FLAGS.lm_alpha, FLAGS.lm_beta, FLAGS.scorer_path, Config.alphabet
|
||||
)
|
||||
is_character_based = scorer.is_utf8_mode()
|
||||
return is_character_based
|
||||
|
||||
def objective(trial):
|
||||
FLAGS.lm_alpha = trial.suggest_uniform('lm_alpha', 0, FLAGS.lm_alpha_max)
|
||||
FLAGS.lm_beta = trial.suggest_uniform('lm_beta', 0, FLAGS.lm_beta_max)
|
||||
|
||||
is_character_based = trial.study.user_attrs['is_character_based']
|
||||
def objective(trial):
|
||||
FLAGS.lm_alpha = trial.suggest_uniform("lm_alpha", 0, FLAGS.lm_alpha_max)
|
||||
FLAGS.lm_beta = trial.suggest_uniform("lm_beta", 0, FLAGS.lm_beta_max)
|
||||
|
||||
is_character_based = trial.study.user_attrs["is_character_based"]
|
||||
|
||||
samples = []
|
||||
for step, test_file in enumerate(FLAGS.test_files.split(',')):
|
||||
for step, test_file in enumerate(FLAGS.test_files.split(",")):
|
||||
tfv1.reset_default_graph()
|
||||
|
||||
current_samples = evaluate([test_file], create_model)
|
||||
@ -47,12 +51,15 @@ def objective(trial):
|
||||
wer, cer = wer_cer_batch(samples)
|
||||
return cer if is_character_based else wer
|
||||
|
||||
|
||||
def main(_):
|
||||
initialize_globals()
|
||||
|
||||
if not FLAGS.test_files:
|
||||
log_error('You need to specify what files to use for evaluation via '
|
||||
'the --test_files flag.')
|
||||
log_error(
|
||||
"You need to specify what files to use for evaluation via "
|
||||
"the --test_files flag."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
is_character_based = character_based()
|
||||
@ -60,11 +67,15 @@ def main(_):
|
||||
study = optuna.create_study()
|
||||
study.set_user_attr("is_character_based", is_character_based)
|
||||
study.optimize(objective, n_jobs=1, n_trials=FLAGS.n_trials)
|
||||
print('Best params: lm_alpha={} and lm_beta={} with WER={}'.format(study.best_params['lm_alpha'],
|
||||
study.best_params['lm_beta'],
|
||||
study.best_value))
|
||||
print(
|
||||
"Best params: lm_alpha={} and lm_beta={} with WER={}".format(
|
||||
study.best_params["lm_alpha"],
|
||||
study.best_params["lm_beta"],
|
||||
study.best_value,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
create_flags()
|
||||
absl.app.run(main)
|
||||
|
@ -20,4 +20,3 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
@ -4,14 +4,15 @@ from . import swigwrapper # pylint: disable=import-self
|
||||
|
||||
# This module is built with SWIG_PYTHON_STRICT_BYTE_CHAR so we must handle
|
||||
# string encoding explicitly, here and throughout this file.
|
||||
__version__ = swigwrapper.__version__.decode('utf-8')
|
||||
__version__ = swigwrapper.__version__.decode("utf-8")
|
||||
|
||||
# Hack: import error codes by matching on their names, as SWIG unfortunately
|
||||
# does not support binding enums to Python in a scoped manner yet.
|
||||
for symbol in dir(swigwrapper):
|
||||
if symbol.startswith('STT_ERR_'):
|
||||
if symbol.startswith("STT_ERR_"):
|
||||
globals()[symbol] = getattr(swigwrapper, symbol)
|
||||
|
||||
|
||||
class Scorer(swigwrapper.Scorer):
|
||||
"""Wrapper for Scorer.
|
||||
|
||||
@ -23,130 +24,140 @@ class Scorer(swigwrapper.Scorer):
|
||||
:alphabet: Alphabet
|
||||
:type scorer_path: basestring
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None, beta=None, scorer_path=None, alphabet=None):
|
||||
super(Scorer, self).__init__()
|
||||
# Allow bare initialization
|
||||
if alphabet:
|
||||
assert alpha is not None, 'alpha parameter is required'
|
||||
assert beta is not None, 'beta parameter is required'
|
||||
assert scorer_path, 'scorer_path parameter is required'
|
||||
assert alpha is not None, "alpha parameter is required"
|
||||
assert beta is not None, "beta parameter is required"
|
||||
assert scorer_path, "scorer_path parameter is required"
|
||||
|
||||
err = self.init(scorer_path.encode('utf-8'), alphabet)
|
||||
err = self.init(scorer_path.encode("utf-8"), alphabet)
|
||||
if err != 0:
|
||||
raise ValueError('Scorer initialization failed with error code 0x{:X}'.format(err))
|
||||
raise ValueError(
|
||||
"Scorer initialization failed with error code 0x{:X}".format(err)
|
||||
)
|
||||
|
||||
self.reset_params(alpha, beta)
|
||||
|
||||
|
||||
class Alphabet(swigwrapper.Alphabet):
|
||||
"""Convenience wrapper for Alphabet which calls init in the constructor"""
|
||||
|
||||
def __init__(self, config_path):
|
||||
super(Alphabet, self).__init__()
|
||||
err = self.init(config_path.encode('utf-8'))
|
||||
err = self.init(config_path.encode("utf-8"))
|
||||
if err != 0:
|
||||
raise ValueError('Alphabet initialization failed with error code 0x{:X}'.format(err))
|
||||
raise ValueError(
|
||||
"Alphabet initialization failed with error code 0x{:X}".format(err)
|
||||
)
|
||||
|
||||
def CanEncodeSingle(self, input):
|
||||
'''
|
||||
"""
|
||||
Returns true if the single character/output class has a corresponding label
|
||||
in the alphabet.
|
||||
'''
|
||||
return super(Alphabet, self).CanEncodeSingle(input.encode('utf-8'))
|
||||
"""
|
||||
return super(Alphabet, self).CanEncodeSingle(input.encode("utf-8"))
|
||||
|
||||
def CanEncode(self, input):
|
||||
'''
|
||||
"""
|
||||
Returns true if the entire string can be encoded into labels in this
|
||||
alphabet.
|
||||
'''
|
||||
return super(Alphabet, self).CanEncode(input.encode('utf-8'))
|
||||
"""
|
||||
return super(Alphabet, self).CanEncode(input.encode("utf-8"))
|
||||
|
||||
def EncodeSingle(self, input):
|
||||
'''
|
||||
"""
|
||||
Encode a single character/output class into a label. Character must be in
|
||||
the alphabet, this method will assert that. Use `CanEncodeSingle` to test.
|
||||
'''
|
||||
return super(Alphabet, self).EncodeSingle(input.encode('utf-8'))
|
||||
"""
|
||||
return super(Alphabet, self).EncodeSingle(input.encode("utf-8"))
|
||||
|
||||
def Encode(self, input):
|
||||
'''
|
||||
"""
|
||||
Encode a sequence of character/output classes into a sequence of labels.
|
||||
Characters are assumed to always take a single Unicode codepoint.
|
||||
Characters must be in the alphabet, this method will assert that. Use
|
||||
`CanEncode` and `CanEncodeSingle` to test.
|
||||
'''
|
||||
"""
|
||||
# Convert SWIG's UnsignedIntVec to a Python list
|
||||
res = super(Alphabet, self).Encode(input.encode('utf-8'))
|
||||
res = super(Alphabet, self).Encode(input.encode("utf-8"))
|
||||
return [el for el in res]
|
||||
|
||||
def DecodeSingle(self, input):
|
||||
res = super(Alphabet, self).DecodeSingle(input)
|
||||
return res.decode('utf-8')
|
||||
return res.decode("utf-8")
|
||||
|
||||
def Decode(self, input):
|
||||
'''Decode a sequence of labels into a string.'''
|
||||
"""Decode a sequence of labels into a string."""
|
||||
res = super(Alphabet, self).Decode(input)
|
||||
return res.decode('utf-8')
|
||||
return res.decode("utf-8")
|
||||
|
||||
|
||||
class UTF8Alphabet(swigwrapper.UTF8Alphabet):
|
||||
"""Convenience wrapper for Alphabet which calls init in the constructor"""
|
||||
|
||||
def __init__(self):
|
||||
super(UTF8Alphabet, self).__init__()
|
||||
err = self.init(b'')
|
||||
err = self.init(b"")
|
||||
if err != 0:
|
||||
raise ValueError('UTF8Alphabet initialization failed with error code 0x{:X}'.format(err))
|
||||
raise ValueError(
|
||||
"UTF8Alphabet initialization failed with error code 0x{:X}".format(err)
|
||||
)
|
||||
|
||||
def CanEncodeSingle(self, input):
|
||||
'''
|
||||
"""
|
||||
Returns true if the single character/output class has a corresponding label
|
||||
in the alphabet.
|
||||
'''
|
||||
return super(UTF8Alphabet, self).CanEncodeSingle(input.encode('utf-8'))
|
||||
"""
|
||||
return super(UTF8Alphabet, self).CanEncodeSingle(input.encode("utf-8"))
|
||||
|
||||
def CanEncode(self, input):
|
||||
'''
|
||||
"""
|
||||
Returns true if the entire string can be encoded into labels in this
|
||||
alphabet.
|
||||
'''
|
||||
return super(UTF8Alphabet, self).CanEncode(input.encode('utf-8'))
|
||||
"""
|
||||
return super(UTF8Alphabet, self).CanEncode(input.encode("utf-8"))
|
||||
|
||||
def EncodeSingle(self, input):
|
||||
'''
|
||||
"""
|
||||
Encode a single character/output class into a label. Character must be in
|
||||
the alphabet, this method will assert that. Use `CanEncodeSingle` to test.
|
||||
'''
|
||||
return super(UTF8Alphabet, self).EncodeSingle(input.encode('utf-8'))
|
||||
"""
|
||||
return super(UTF8Alphabet, self).EncodeSingle(input.encode("utf-8"))
|
||||
|
||||
def Encode(self, input):
|
||||
'''
|
||||
"""
|
||||
Encode a sequence of character/output classes into a sequence of labels.
|
||||
Characters are assumed to always take a single Unicode codepoint.
|
||||
Characters must be in the alphabet, this method will assert that. Use
|
||||
`CanEncode` and `CanEncodeSingle` to test.
|
||||
'''
|
||||
"""
|
||||
# Convert SWIG's UnsignedIntVec to a Python list
|
||||
res = super(UTF8Alphabet, self).Encode(input.encode('utf-8'))
|
||||
res = super(UTF8Alphabet, self).Encode(input.encode("utf-8"))
|
||||
return [el for el in res]
|
||||
|
||||
def DecodeSingle(self, input):
|
||||
res = super(UTF8Alphabet, self).DecodeSingle(input)
|
||||
return res.decode('utf-8')
|
||||
return res.decode("utf-8")
|
||||
|
||||
def Decode(self, input):
|
||||
'''Decode a sequence of labels into a string.'''
|
||||
"""Decode a sequence of labels into a string."""
|
||||
res = super(UTF8Alphabet, self).Decode(input)
|
||||
return res.decode('utf-8')
|
||||
return res.decode("utf-8")
|
||||
|
||||
|
||||
|
||||
def ctc_beam_search_decoder(probs_seq,
|
||||
def ctc_beam_search_decoder(
|
||||
probs_seq,
|
||||
alphabet,
|
||||
beam_size,
|
||||
cutoff_prob=1.0,
|
||||
cutoff_top_n=40,
|
||||
scorer=None,
|
||||
hot_words=dict(),
|
||||
num_results=1):
|
||||
num_results=1,
|
||||
):
|
||||
"""Wrapper for the CTC Beam Search Decoder.
|
||||
|
||||
:param probs_seq: 2-D list of probability distributions over each time
|
||||
@ -175,13 +186,23 @@ def ctc_beam_search_decoder(probs_seq,
|
||||
:rtype: list
|
||||
"""
|
||||
beam_results = swigwrapper.ctc_beam_search_decoder(
|
||||
probs_seq, alphabet, beam_size, cutoff_prob, cutoff_top_n,
|
||||
scorer, hot_words, num_results)
|
||||
beam_results = [(res.confidence, alphabet.Decode(res.tokens)) for res in beam_results]
|
||||
probs_seq,
|
||||
alphabet,
|
||||
beam_size,
|
||||
cutoff_prob,
|
||||
cutoff_top_n,
|
||||
scorer,
|
||||
hot_words,
|
||||
num_results,
|
||||
)
|
||||
beam_results = [
|
||||
(res.confidence, alphabet.Decode(res.tokens)) for res in beam_results
|
||||
]
|
||||
return beam_results
|
||||
|
||||
|
||||
def ctc_beam_search_decoder_batch(probs_seq,
|
||||
def ctc_beam_search_decoder_batch(
|
||||
probs_seq,
|
||||
seq_lengths,
|
||||
alphabet,
|
||||
beam_size,
|
||||
@ -190,7 +211,8 @@ def ctc_beam_search_decoder_batch(probs_seq,
|
||||
cutoff_top_n=40,
|
||||
scorer=None,
|
||||
hot_words=dict(),
|
||||
num_results=1):
|
||||
num_results=1,
|
||||
):
|
||||
"""Wrapper for the batched CTC beam search decoder.
|
||||
|
||||
:param probs_seq: 3-D list with each element as an instance of 2-D list
|
||||
@ -222,7 +244,18 @@ def ctc_beam_search_decoder_batch(probs_seq,
|
||||
results, in descending order of the confidence.
|
||||
:rtype: list
|
||||
"""
|
||||
batch_beam_results = swigwrapper.ctc_beam_search_decoder_batch(probs_seq, seq_lengths, alphabet, beam_size, num_processes, cutoff_prob, cutoff_top_n, scorer, hot_words, num_results)
|
||||
batch_beam_results = swigwrapper.ctc_beam_search_decoder_batch(
|
||||
probs_seq,
|
||||
seq_lengths,
|
||||
alphabet,
|
||||
beam_size,
|
||||
num_processes,
|
||||
cutoff_prob,
|
||||
cutoff_top_n,
|
||||
scorer,
|
||||
hot_words,
|
||||
num_results,
|
||||
)
|
||||
batch_beam_results = [
|
||||
[(res.confidence, alphabet.Decode(res.tokens)) for res in beam_results]
|
||||
for beam_results in batch_beam_results
|
||||
|
@ -6,84 +6,95 @@ import os
|
||||
import shlex
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
from multiprocessing.dummy import Pool
|
||||
|
||||
if sys.platform.startswith('win'):
|
||||
ARGS = ['/nologo', '/D KENLM_MAX_ORDER=6', '/EHsc', '/source-charset:utf-8']
|
||||
OPT_ARGS = ['/O2', '/MT', '/D NDEBUG']
|
||||
DBG_ARGS = ['/Od', '/MTd', '/Zi', '/U NDEBUG', '/D DEBUG']
|
||||
OPENFST_DIR = 'third_party/openfst-1.6.9-win'
|
||||
if sys.platform.startswith("win"):
|
||||
ARGS = ["/nologo", "/D KENLM_MAX_ORDER=6", "/EHsc", "/source-charset:utf-8"]
|
||||
OPT_ARGS = ["/O2", "/MT", "/D NDEBUG"]
|
||||
DBG_ARGS = ["/Od", "/MTd", "/Zi", "/U NDEBUG", "/D DEBUG"]
|
||||
OPENFST_DIR = "third_party/openfst-1.6.9-win"
|
||||
else:
|
||||
ARGS = ['-fPIC', '-DKENLM_MAX_ORDER=6', '-std=c++11', '-Wno-unused-local-typedefs', '-Wno-sign-compare']
|
||||
OPT_ARGS = ['-O3', '-DNDEBUG']
|
||||
DBG_ARGS = ['-O0', '-g', '-UNDEBUG', '-DDEBUG']
|
||||
OPENFST_DIR = 'third_party/openfst-1.6.7'
|
||||
|
||||
ARGS = [
|
||||
"-fPIC",
|
||||
"-DKENLM_MAX_ORDER=6",
|
||||
"-std=c++11",
|
||||
"-Wno-unused-local-typedefs",
|
||||
"-Wno-sign-compare",
|
||||
]
|
||||
OPT_ARGS = ["-O3", "-DNDEBUG"]
|
||||
DBG_ARGS = ["-O0", "-g", "-UNDEBUG", "-DDEBUG"]
|
||||
OPENFST_DIR = "third_party/openfst-1.6.7"
|
||||
|
||||
|
||||
INCLUDES = [
|
||||
'..',
|
||||
'../kenlm',
|
||||
OPENFST_DIR + '/src/include',
|
||||
'third_party/ThreadPool',
|
||||
'third_party/object_pool'
|
||||
"..",
|
||||
"../kenlm",
|
||||
OPENFST_DIR + "/src/include",
|
||||
"third_party/ThreadPool",
|
||||
"third_party/object_pool",
|
||||
]
|
||||
|
||||
KENLM_FILES = (glob.glob('../kenlm/util/*.cc')
|
||||
+ glob.glob('../kenlm/lm/*.cc')
|
||||
+ glob.glob('../kenlm/util/double-conversion/*.cc'))
|
||||
KENLM_FILES = (
|
||||
glob.glob("../kenlm/util/*.cc")
|
||||
+ glob.glob("../kenlm/lm/*.cc")
|
||||
+ glob.glob("../kenlm/util/double-conversion/*.cc")
|
||||
)
|
||||
|
||||
KENLM_FILES += glob.glob(OPENFST_DIR + '/src/lib/*.cc')
|
||||
KENLM_FILES += glob.glob(OPENFST_DIR + "/src/lib/*.cc")
|
||||
|
||||
KENLM_FILES = [
|
||||
fn for fn in KENLM_FILES
|
||||
if not (fn.endswith('main.cc') or fn.endswith('test.cc') or fn.endswith(
|
||||
'unittest.cc'))
|
||||
fn
|
||||
for fn in KENLM_FILES
|
||||
if not (
|
||||
fn.endswith("main.cc") or fn.endswith("test.cc") or fn.endswith("unittest.cc")
|
||||
)
|
||||
]
|
||||
|
||||
CTC_DECODER_FILES = [
|
||||
'ctc_beam_search_decoder.cpp',
|
||||
'scorer.cpp',
|
||||
'path_trie.cpp',
|
||||
'decoder_utils.cpp',
|
||||
'workspace_status.cc',
|
||||
'../alphabet.cc',
|
||||
"ctc_beam_search_decoder.cpp",
|
||||
"scorer.cpp",
|
||||
"path_trie.cpp",
|
||||
"decoder_utils.cpp",
|
||||
"workspace_status.cc",
|
||||
"../alphabet.cc",
|
||||
]
|
||||
|
||||
def build_archive(srcs=[], out_name='', build_dir='temp_build/temp_build', debug=False, num_parallel=1):
|
||||
compiler = os.environ.get('CXX', 'g++')
|
||||
if sys.platform.startswith('win'):
|
||||
|
||||
def build_archive(
|
||||
srcs=[], out_name="", build_dir="temp_build/temp_build", debug=False, num_parallel=1
|
||||
):
|
||||
compiler = os.environ.get("CXX", "g++")
|
||||
if sys.platform.startswith("win"):
|
||||
compiler = '"{}"'.format(compiler)
|
||||
ar = os.environ.get('AR', 'ar')
|
||||
libexe = os.environ.get('LIBEXE', 'lib.exe')
|
||||
libtool = os.environ.get('LIBTOOL', 'libtool')
|
||||
cflags = os.environ.get('CFLAGS', '') + os.environ.get('CXXFLAGS', '')
|
||||
ar = os.environ.get("AR", "ar")
|
||||
libexe = os.environ.get("LIBEXE", "lib.exe")
|
||||
libtool = os.environ.get("LIBTOOL", "libtool")
|
||||
cflags = os.environ.get("CFLAGS", "") + os.environ.get("CXXFLAGS", "")
|
||||
args = ARGS + (DBG_ARGS if debug else OPT_ARGS)
|
||||
|
||||
for file in srcs:
|
||||
outfile = os.path.join(build_dir, os.path.splitext(file)[0] + '.o')
|
||||
outfile = os.path.join(build_dir, os.path.splitext(file)[0] + ".o")
|
||||
outdir = os.path.dirname(outfile)
|
||||
if not os.path.exists(outdir):
|
||||
print('mkdir', outdir)
|
||||
print("mkdir", outdir)
|
||||
os.makedirs(outdir)
|
||||
|
||||
def build_one(file):
|
||||
outfile = os.path.join(build_dir, os.path.splitext(file)[0] + '.o')
|
||||
outfile = os.path.join(build_dir, os.path.splitext(file)[0] + ".o")
|
||||
if os.path.exists(outfile):
|
||||
return
|
||||
|
||||
if sys.platform.startswith('win'):
|
||||
file = '"{}"'.format(file.replace('\\', '/'))
|
||||
output = '/Fo"{}"'.format(outfile.replace('\\', '/'))
|
||||
if sys.platform.startswith("win"):
|
||||
file = '"{}"'.format(file.replace("\\", "/"))
|
||||
output = '/Fo"{}"'.format(outfile.replace("\\", "/"))
|
||||
else:
|
||||
output = '-o ' + outfile
|
||||
output = "-o " + outfile
|
||||
|
||||
cmd = '{cc} -c {cflags} {args} {includes} {infile} {output}'.format(
|
||||
cmd = "{cc} -c {cflags} {args} {includes} {infile} {output}".format(
|
||||
cc=compiler,
|
||||
cflags=cflags,
|
||||
args=' '.join(args),
|
||||
includes=' '.join('-I' + i for i in INCLUDES),
|
||||
args=" ".join(args),
|
||||
includes=" ".join("-I" + i for i in INCLUDES),
|
||||
infile=file,
|
||||
output=output,
|
||||
)
|
||||
@ -94,30 +105,28 @@ def build_archive(srcs=[], out_name='', build_dir='temp_build/temp_build', debug
|
||||
pool = Pool(num_parallel)
|
||||
obj_files = list(pool.imap_unordered(build_one, srcs))
|
||||
|
||||
if sys.platform.startswith('darwin'):
|
||||
cmd = '{libtool} -static -o {outfile} {infiles}'.format(
|
||||
if sys.platform.startswith("darwin"):
|
||||
cmd = "{libtool} -static -o {outfile} {infiles}".format(
|
||||
libtool=libtool,
|
||||
outfile=out_name,
|
||||
infiles=' '.join(obj_files),
|
||||
infiles=" ".join(obj_files),
|
||||
)
|
||||
print(cmd)
|
||||
subprocess.check_call(shlex.split(cmd))
|
||||
elif sys.platform.startswith('win'):
|
||||
elif sys.platform.startswith("win"):
|
||||
cmd = '"{libexe}" /OUT:"{outfile}" {infiles} /MACHINE:X64 /NOLOGO'.format(
|
||||
libexe=libexe,
|
||||
outfile=out_name,
|
||||
infiles=' '.join(obj_files))
|
||||
cmd = cmd.replace('\\', '/')
|
||||
libexe=libexe, outfile=out_name, infiles=" ".join(obj_files)
|
||||
)
|
||||
cmd = cmd.replace("\\", "/")
|
||||
print(cmd)
|
||||
subprocess.check_call(shlex.split(cmd))
|
||||
else:
|
||||
cmd = '{ar} rcs {outfile} {infiles}'.format(
|
||||
ar=ar,
|
||||
outfile=out_name,
|
||||
infiles=' '.join(obj_files)
|
||||
cmd = "{ar} rcs {outfile} {infiles}".format(
|
||||
ar=ar, outfile=out_name, infiles=" ".join(obj_files)
|
||||
)
|
||||
print(cmd)
|
||||
subprocess.check_call(shlex.split(cmd))
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
build_common()
|
||||
|
@ -13,4 +13,3 @@ bdist-dir=temp_build/temp_build
|
||||
|
||||
[install_lib]
|
||||
build-dir=temp_build/temp_build
|
||||
|
||||
|
@ -1,95 +1,105 @@
|
||||
#!/usr/bin/env python
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
from distutils.command.build import build
|
||||
from setuptools import setup, Extension, distutils
|
||||
|
||||
import argparse
|
||||
import multiprocessing.pool
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
from distutils.command.build import build
|
||||
|
||||
from build_archive import *
|
||||
from setuptools import Extension, distutils, setup
|
||||
|
||||
try:
|
||||
import numpy
|
||||
|
||||
try:
|
||||
numpy_include = numpy.get_include()
|
||||
except AttributeError:
|
||||
numpy_include = numpy.get_numpy_include()
|
||||
except ImportError:
|
||||
numpy_include = ''
|
||||
assert 'NUMPY_INCLUDE' in os.environ
|
||||
numpy_include = ""
|
||||
assert "NUMPY_INCLUDE" in os.environ
|
||||
|
||||
numpy_include = os.getenv('NUMPY_INCLUDE', numpy_include)
|
||||
numpy_min_ver = os.getenv('NUMPY_DEP_VERSION', '')
|
||||
numpy_include = os.getenv("NUMPY_INCLUDE", numpy_include)
|
||||
numpy_min_ver = os.getenv("NUMPY_DEP_VERSION", "")
|
||||
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--num_processes",
|
||||
default=1,
|
||||
type=int,
|
||||
help="Number of cpu processes to build package. (default: %(default)d)")
|
||||
help="Number of cpu processes to build package. (default: %(default)d)",
|
||||
)
|
||||
known_args, unknown_args = parser.parse_known_args()
|
||||
debug = '--debug' in unknown_args
|
||||
debug = "--debug" in unknown_args
|
||||
|
||||
# reconstruct sys.argv to pass to setup below
|
||||
sys.argv = [sys.argv[0]] + unknown_args
|
||||
|
||||
|
||||
def read(fname):
|
||||
return open(os.path.join(os.path.dirname(__file__), fname)).read()
|
||||
|
||||
|
||||
def maybe_rebuild(srcs, out_name, build_dir):
|
||||
if not os.path.exists(out_name):
|
||||
if not os.path.exists(build_dir):
|
||||
os.makedirs(build_dir)
|
||||
|
||||
build_archive(srcs=srcs,
|
||||
build_archive(
|
||||
srcs=srcs,
|
||||
out_name=out_name,
|
||||
build_dir=build_dir,
|
||||
num_parallel=known_args.num_processes,
|
||||
debug=debug)
|
||||
debug=debug,
|
||||
)
|
||||
|
||||
project_version = read('../../training/coqui_stt_training/VERSION').strip()
|
||||
|
||||
build_dir = 'temp_build/temp_build'
|
||||
project_version = read("../../training/coqui_stt_training/VERSION").strip()
|
||||
|
||||
if sys.platform.startswith('win'):
|
||||
archive_ext = 'lib'
|
||||
build_dir = "temp_build/temp_build"
|
||||
|
||||
if sys.platform.startswith("win"):
|
||||
archive_ext = "lib"
|
||||
else:
|
||||
archive_ext = 'a'
|
||||
archive_ext = "a"
|
||||
|
||||
third_party_build = 'third_party.{}'.format(archive_ext)
|
||||
ctc_decoder_build = 'first_party.{}'.format(archive_ext)
|
||||
third_party_build = "third_party.{}".format(archive_ext)
|
||||
ctc_decoder_build = "first_party.{}".format(archive_ext)
|
||||
|
||||
|
||||
maybe_rebuild(KENLM_FILES, third_party_build, build_dir)
|
||||
maybe_rebuild(CTC_DECODER_FILES, ctc_decoder_build, build_dir)
|
||||
|
||||
decoder_module = Extension(
|
||||
name='coqui_stt_ctcdecoder._swigwrapper',
|
||||
sources=['swigwrapper.i'],
|
||||
swig_opts=['-c++', '-extranative'],
|
||||
language='c++',
|
||||
name="coqui_stt_ctcdecoder._swigwrapper",
|
||||
sources=["swigwrapper.i"],
|
||||
swig_opts=["-c++", "-extranative"],
|
||||
language="c++",
|
||||
include_dirs=INCLUDES + [numpy_include],
|
||||
extra_compile_args=ARGS + (DBG_ARGS if debug else OPT_ARGS),
|
||||
extra_link_args=[ctc_decoder_build, third_party_build],
|
||||
)
|
||||
|
||||
|
||||
class BuildExtFirst(build):
|
||||
sub_commands = [('build_ext', build.has_ext_modules),
|
||||
('build_py', build.has_pure_modules),
|
||||
('build_clib', build.has_c_libraries),
|
||||
('build_scripts', build.has_scripts)]
|
||||
sub_commands = [
|
||||
("build_ext", build.has_ext_modules),
|
||||
("build_py", build.has_pure_modules),
|
||||
("build_clib", build.has_c_libraries),
|
||||
("build_scripts", build.has_scripts),
|
||||
]
|
||||
|
||||
|
||||
setup(
|
||||
name='coqui_stt_ctcdecoder',
|
||||
name="coqui_stt_ctcdecoder",
|
||||
version=project_version,
|
||||
description="""DS CTC decoder""",
|
||||
cmdclass = {'build': BuildExtFirst},
|
||||
cmdclass={"build": BuildExtFirst},
|
||||
ext_modules=[decoder_module],
|
||||
package_dir = {'coqui_stt_ctcdecoder': '.'},
|
||||
py_modules=['coqui_stt_ctcdecoder', 'coqui_stt_ctcdecoder.swigwrapper'],
|
||||
install_requires = ['numpy%s' % numpy_min_ver],
|
||||
package_dir={"coqui_stt_ctcdecoder": "."},
|
||||
py_modules=["coqui_stt_ctcdecoder", "coqui_stt_ctcdecoder.swigwrapper"],
|
||||
install_requires=["numpy%s" % numpy_min_ver],
|
||||
)
|
||||
|
@ -11,5 +11,3 @@ org.gradle.jvmargs=-Xmx1536m
|
||||
# This option should only be used with decoupled projects. More details, visit
|
||||
# http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects
|
||||
# org.gradle.parallel=true
|
||||
|
||||
|
||||
|
@ -70,4 +70,3 @@ public enum STT_Error_Codes {
|
||||
private static int next = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3,27 +3,25 @@
|
||||
{
|
||||
"target_name": "stt",
|
||||
"sources": ["stt_wrap.cxx"],
|
||||
"libraries": [
|
||||
"$(LIBS)"
|
||||
],
|
||||
"include_dirs": [
|
||||
"../"
|
||||
],
|
||||
"libraries": ["$(LIBS)"],
|
||||
"include_dirs": ["../"],
|
||||
"conditions": [
|
||||
[ "OS=='mac'", {
|
||||
[
|
||||
"OS=='mac'",
|
||||
{
|
||||
"xcode_settings": {
|
||||
"OTHER_CXXFLAGS": [
|
||||
"-stdlib=libc++",
|
||||
"-mmacosx-version-min=10.10"
|
||||
"-mmacosx-version-min=10.10",
|
||||
],
|
||||
"OTHER_LDFLAGS": [
|
||||
"-stdlib=libc++",
|
||||
"-mmacosx-version-min=10.10"
|
||||
]
|
||||
}
|
||||
"-mmacosx-version-min=10.10",
|
||||
],
|
||||
}
|
||||
},
|
||||
]
|
||||
]
|
||||
],
|
||||
},
|
||||
{
|
||||
"target_name": "action_after_build",
|
||||
@ -32,15 +30,15 @@
|
||||
"copies": [
|
||||
{
|
||||
"files": ["<(PRODUCT_DIR)/<(module_name).node"],
|
||||
"destination": "<(module_path)"
|
||||
}
|
||||
]
|
||||
"destination": "<(module_path)",
|
||||
}
|
||||
],
|
||||
},
|
||||
],
|
||||
"variables": {
|
||||
"build_v8_with_gn": 0,
|
||||
"v8_enable_pointer_compression": 0,
|
||||
"v8_enable_31bit_smis_on_64bit_arch": 0,
|
||||
"enable_lto": 1
|
||||
"enable_lto": 1,
|
||||
},
|
||||
}
|
||||
|
@ -5,23 +5,24 @@ import platform
|
||||
# pylint: disable=invalid-name
|
||||
|
||||
if platform.system().lower() == "windows":
|
||||
dslib_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'lib')
|
||||
dslib_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "lib")
|
||||
|
||||
# On Windows, we can't rely on RPATH being set to $ORIGIN/lib/ or on
|
||||
# @loader_path/lib
|
||||
if hasattr(os, 'add_dll_directory'):
|
||||
if hasattr(os, "add_dll_directory"):
|
||||
# Starting with Python 3.8 this properly handles the problem
|
||||
os.add_dll_directory(dslib_path)
|
||||
else:
|
||||
# Before Pythin 3.8 we need to change the PATH to include the proper
|
||||
# directory for the dynamic linker
|
||||
os.environ['PATH'] = dslib_path + ';' + os.environ['PATH']
|
||||
os.environ["PATH"] = dslib_path + ";" + os.environ["PATH"]
|
||||
|
||||
import stt
|
||||
|
||||
# rename for backwards compatibility
|
||||
from stt.impl import Version as version
|
||||
|
||||
|
||||
class Model(object):
|
||||
"""
|
||||
Class holding a Coqui STT model
|
||||
@ -29,13 +30,18 @@ class Model(object):
|
||||
:param aModelPath: Path to model file to load
|
||||
:type aModelPath: str
|
||||
"""
|
||||
|
||||
def __init__(self, model_path):
|
||||
# make sure the attribute is there if CreateModel fails
|
||||
self._impl = None
|
||||
|
||||
status, impl = stt.impl.CreateModel(model_path)
|
||||
if status != 0:
|
||||
raise RuntimeError("CreateModel failed with '{}' (0x{:X})".format(stt.impl.ErrorCodeToErrorMessage(status),status))
|
||||
raise RuntimeError(
|
||||
"CreateModel failed with '{}' (0x{:X})".format(
|
||||
stt.impl.ErrorCodeToErrorMessage(status), status
|
||||
)
|
||||
)
|
||||
self._impl = impl
|
||||
|
||||
def __del__(self):
|
||||
@ -85,7 +91,11 @@ class Model(object):
|
||||
"""
|
||||
status = stt.impl.EnableExternalScorer(self._impl, scorer_path)
|
||||
if status != 0:
|
||||
raise RuntimeError("EnableExternalScorer failed with '{}' (0x{:X})".format(stt.impl.ErrorCodeToErrorMessage(status),status))
|
||||
raise RuntimeError(
|
||||
"EnableExternalScorer failed with '{}' (0x{:X})".format(
|
||||
stt.impl.ErrorCodeToErrorMessage(status), status
|
||||
)
|
||||
)
|
||||
|
||||
def disableExternalScorer(self):
|
||||
"""
|
||||
@ -111,7 +121,11 @@ class Model(object):
|
||||
"""
|
||||
status = stt.impl.AddHotWord(self._impl, word, boost)
|
||||
if status != 0:
|
||||
raise RuntimeError("AddHotWord failed with '{}' (0x{:X})".format(stt.impl.ErrorCodeToErrorMessage(status),status))
|
||||
raise RuntimeError(
|
||||
"AddHotWord failed with '{}' (0x{:X})".format(
|
||||
stt.impl.ErrorCodeToErrorMessage(status), status
|
||||
)
|
||||
)
|
||||
|
||||
def eraseHotWord(self, word):
|
||||
"""
|
||||
@ -124,7 +138,11 @@ class Model(object):
|
||||
"""
|
||||
status = stt.impl.EraseHotWord(self._impl, word)
|
||||
if status != 0:
|
||||
raise RuntimeError("EraseHotWord failed with '{}' (0x{:X})".format(stt.impl.ErrorCodeToErrorMessage(status),status))
|
||||
raise RuntimeError(
|
||||
"EraseHotWord failed with '{}' (0x{:X})".format(
|
||||
stt.impl.ErrorCodeToErrorMessage(status), status
|
||||
)
|
||||
)
|
||||
|
||||
def clearHotWords(self):
|
||||
"""
|
||||
@ -134,7 +152,11 @@ class Model(object):
|
||||
"""
|
||||
status = stt.impl.ClearHotWords(self._impl)
|
||||
if status != 0:
|
||||
raise RuntimeError("ClearHotWords failed with '{}' (0x{:X})".format(stt.impl.ErrorCodeToErrorMessage(status),status))
|
||||
raise RuntimeError(
|
||||
"ClearHotWords failed with '{}' (0x{:X})".format(
|
||||
stt.impl.ErrorCodeToErrorMessage(status), status
|
||||
)
|
||||
)
|
||||
|
||||
def setScorerAlphaBeta(self, alpha, beta):
|
||||
"""
|
||||
@ -190,7 +212,11 @@ class Model(object):
|
||||
"""
|
||||
status, ctx = stt.impl.CreateStream(self._impl)
|
||||
if status != 0:
|
||||
raise RuntimeError("CreateStream failed with '{}' (0x{:X})".format(stt.impl.ErrorCodeToErrorMessage(status),status))
|
||||
raise RuntimeError(
|
||||
"CreateStream failed with '{}' (0x{:X})".format(
|
||||
stt.impl.ErrorCodeToErrorMessage(status), status
|
||||
)
|
||||
)
|
||||
return Stream(ctx)
|
||||
|
||||
|
||||
@ -199,6 +225,7 @@ class Stream(object):
|
||||
Class wrapping a stt stream. The constructor cannot be called directly.
|
||||
Use :func:`Model.createStream()`
|
||||
"""
|
||||
|
||||
def __init__(self, native_stream):
|
||||
self._impl = native_stream
|
||||
|
||||
@ -216,7 +243,9 @@ class Stream(object):
|
||||
:throws: RuntimeError if the stream object is not valid
|
||||
"""
|
||||
if not self._impl:
|
||||
raise RuntimeError("Stream object is not valid. Trying to feed an already finished stream?")
|
||||
raise RuntimeError(
|
||||
"Stream object is not valid. Trying to feed an already finished stream?"
|
||||
)
|
||||
stt.impl.FeedAudioContent(self._impl, audio_buffer)
|
||||
|
||||
def intermediateDecode(self):
|
||||
@ -229,7 +258,9 @@ class Stream(object):
|
||||
:throws: RuntimeError if the stream object is not valid
|
||||
"""
|
||||
if not self._impl:
|
||||
raise RuntimeError("Stream object is not valid. Trying to decode an already finished stream?")
|
||||
raise RuntimeError(
|
||||
"Stream object is not valid. Trying to decode an already finished stream?"
|
||||
)
|
||||
return stt.impl.IntermediateDecode(self._impl)
|
||||
|
||||
def intermediateDecodeWithMetadata(self, num_results=1):
|
||||
@ -245,7 +276,9 @@ class Stream(object):
|
||||
:throws: RuntimeError if the stream object is not valid
|
||||
"""
|
||||
if not self._impl:
|
||||
raise RuntimeError("Stream object is not valid. Trying to decode an already finished stream?")
|
||||
raise RuntimeError(
|
||||
"Stream object is not valid. Trying to decode an already finished stream?"
|
||||
)
|
||||
return stt.impl.IntermediateDecodeWithMetadata(self._impl, num_results)
|
||||
|
||||
def finishStream(self):
|
||||
@ -260,7 +293,9 @@ class Stream(object):
|
||||
:throws: RuntimeError if the stream object is not valid
|
||||
"""
|
||||
if not self._impl:
|
||||
raise RuntimeError("Stream object is not valid. Trying to finish an already finished stream?")
|
||||
raise RuntimeError(
|
||||
"Stream object is not valid. Trying to finish an already finished stream?"
|
||||
)
|
||||
result = stt.impl.FinishStream(self._impl)
|
||||
self._impl = None
|
||||
return result
|
||||
@ -281,7 +316,9 @@ class Stream(object):
|
||||
:throws: RuntimeError if the stream object is not valid
|
||||
"""
|
||||
if not self._impl:
|
||||
raise RuntimeError("Stream object is not valid. Trying to finish an already finished stream?")
|
||||
raise RuntimeError(
|
||||
"Stream object is not valid. Trying to finish an already finished stream?"
|
||||
)
|
||||
result = stt.impl.FinishStreamWithMetadata(self._impl, num_results)
|
||||
self._impl = None
|
||||
return result
|
||||
@ -294,7 +331,9 @@ class Stream(object):
|
||||
:throws: RuntimeError if the stream object is not valid
|
||||
"""
|
||||
if not self._impl:
|
||||
raise RuntimeError("Stream object is not valid. Trying to free an already finished stream?")
|
||||
raise RuntimeError(
|
||||
"Stream object is not valid. Trying to free an already finished stream?"
|
||||
)
|
||||
stt.impl.FreeStream(self._impl)
|
||||
self._impl = None
|
||||
|
||||
@ -311,13 +350,11 @@ class TokenMetadata(object):
|
||||
The text for this token
|
||||
"""
|
||||
|
||||
|
||||
def timestep(self):
|
||||
"""
|
||||
Position of the token in units of 20ms
|
||||
"""
|
||||
|
||||
|
||||
def start_time(self):
|
||||
"""
|
||||
Position of the token in seconds
|
||||
@ -328,6 +365,7 @@ class CandidateTranscript(object):
|
||||
"""
|
||||
Stores the entire CTC output as an array of character metadata objects
|
||||
"""
|
||||
|
||||
def tokens(self):
|
||||
"""
|
||||
List of tokens
|
||||
@ -336,7 +374,6 @@ class CandidateTranscript(object):
|
||||
:type: list
|
||||
"""
|
||||
|
||||
|
||||
def confidence(self):
|
||||
"""
|
||||
Approximated confidence value for this transcription. This is roughly the
|
||||
|
@ -3,16 +3,16 @@
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
import json
|
||||
import shlex
|
||||
import subprocess
|
||||
import sys
|
||||
import wave
|
||||
import json
|
||||
|
||||
from stt import Model, version
|
||||
from timeit import default_timer as timer
|
||||
|
||||
import numpy as np
|
||||
from stt import Model, version
|
||||
|
||||
try:
|
||||
from shhlex import quote
|
||||
except ImportError:
|
||||
@ -20,19 +20,26 @@ except ImportError:
|
||||
|
||||
|
||||
def convert_samplerate(audio_path, desired_sample_rate):
|
||||
sox_cmd = 'sox {} --type raw --bits 16 --channels 1 --rate {} --encoding signed-integer --endian little --compression 0.0 --no-dither - '.format(quote(audio_path), desired_sample_rate)
|
||||
sox_cmd = "sox {} --type raw --bits 16 --channels 1 --rate {} --encoding signed-integer --endian little --compression 0.0 --no-dither - ".format(
|
||||
quote(audio_path), desired_sample_rate
|
||||
)
|
||||
try:
|
||||
output = subprocess.check_output(shlex.split(sox_cmd), stderr=subprocess.PIPE)
|
||||
except subprocess.CalledProcessError as e:
|
||||
raise RuntimeError('SoX returned non-zero status: {}'.format(e.stderr))
|
||||
raise RuntimeError("SoX returned non-zero status: {}".format(e.stderr))
|
||||
except OSError as e:
|
||||
raise OSError(e.errno, 'SoX not found, use {}hz files or install it: {}'.format(desired_sample_rate, e.strerror))
|
||||
raise OSError(
|
||||
e.errno,
|
||||
"SoX not found, use {}hz files or install it: {}".format(
|
||||
desired_sample_rate, e.strerror
|
||||
),
|
||||
)
|
||||
|
||||
return desired_sample_rate, np.frombuffer(output, np.int16)
|
||||
|
||||
|
||||
def metadata_to_string(metadata):
|
||||
return ''.join(token.text for token in metadata.tokens)
|
||||
return "".join(token.text for token in metadata.tokens)
|
||||
|
||||
|
||||
def words_from_candidate_transcript(metadata):
|
||||
@ -70,56 +77,78 @@ def words_from_candidate_transcript(metadata):
|
||||
|
||||
def metadata_json_output(metadata):
|
||||
json_result = dict()
|
||||
json_result["transcripts"] = [{
|
||||
json_result["transcripts"] = [
|
||||
{
|
||||
"confidence": transcript.confidence,
|
||||
"words": words_from_candidate_transcript(transcript),
|
||||
} for transcript in metadata.transcripts]
|
||||
}
|
||||
for transcript in metadata.transcripts
|
||||
]
|
||||
return json.dumps(json_result, indent=2)
|
||||
|
||||
|
||||
|
||||
class VersionAction(argparse.Action):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(VersionAction, self).__init__(nargs=0, *args, **kwargs)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
print('Coqui STT ', version())
|
||||
print("Coqui STT ", version())
|
||||
exit(0)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='Running Coqui STT inference.')
|
||||
parser.add_argument('--model', required=True,
|
||||
help='Path to the model (protocol buffer binary file)')
|
||||
parser.add_argument('--scorer', required=False,
|
||||
help='Path to the external scorer file')
|
||||
parser.add_argument('--audio', required=True,
|
||||
help='Path to the audio file to run (WAV format)')
|
||||
parser.add_argument('--beam_width', type=int,
|
||||
help='Beam width for the CTC decoder')
|
||||
parser.add_argument('--lm_alpha', type=float,
|
||||
help='Language model weight (lm_alpha). If not specified, use default from the scorer package.')
|
||||
parser.add_argument('--lm_beta', type=float,
|
||||
help='Word insertion bonus (lm_beta). If not specified, use default from the scorer package.')
|
||||
parser.add_argument('--version', action=VersionAction,
|
||||
help='Print version and exits')
|
||||
parser.add_argument('--extended', required=False, action='store_true',
|
||||
help='Output string from extended metadata')
|
||||
parser.add_argument('--json', required=False, action='store_true',
|
||||
help='Output json from metadata with timestamp of each word')
|
||||
parser.add_argument('--candidate_transcripts', type=int, default=3,
|
||||
help='Number of candidate transcripts to include in JSON output')
|
||||
parser.add_argument('--hot_words', type=str,
|
||||
help='Hot-words and their boosts.')
|
||||
parser = argparse.ArgumentParser(description="Running Coqui STT inference.")
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path to the model (protocol buffer binary file)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--scorer", required=False, help="Path to the external scorer file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--audio", required=True, help="Path to the audio file to run (WAV format)"
|
||||
)
|
||||
parser.add_argument("--beam_width", type=int, help="Beam width for the CTC decoder")
|
||||
parser.add_argument(
|
||||
"--lm_alpha",
|
||||
type=float,
|
||||
help="Language model weight (lm_alpha). If not specified, use default from the scorer package.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lm_beta",
|
||||
type=float,
|
||||
help="Word insertion bonus (lm_beta). If not specified, use default from the scorer package.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--version", action=VersionAction, help="Print version and exits"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--extended",
|
||||
required=False,
|
||||
action="store_true",
|
||||
help="Output string from extended metadata",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--json",
|
||||
required=False,
|
||||
action="store_true",
|
||||
help="Output json from metadata with timestamp of each word",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--candidate_transcripts",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of candidate transcripts to include in JSON output",
|
||||
)
|
||||
parser.add_argument("--hot_words", type=str, help="Hot-words and their boosts.")
|
||||
args = parser.parse_args()
|
||||
|
||||
print('Loading model from file {}'.format(args.model), file=sys.stderr)
|
||||
print("Loading model from file {}".format(args.model), file=sys.stderr)
|
||||
model_load_start = timer()
|
||||
# sphinx-doc: python_ref_model_start
|
||||
ds = Model(args.model)
|
||||
# sphinx-doc: python_ref_model_stop
|
||||
model_load_end = timer() - model_load_start
|
||||
print('Loaded model in {:.3}s.'.format(model_load_end), file=sys.stderr)
|
||||
print("Loaded model in {:.3}s.".format(model_load_end), file=sys.stderr)
|
||||
|
||||
if args.beam_width:
|
||||
ds.setBeamWidth(args.beam_width)
|
||||
@ -127,25 +156,30 @@ def main():
|
||||
desired_sample_rate = ds.sampleRate()
|
||||
|
||||
if args.scorer:
|
||||
print('Loading scorer from files {}'.format(args.scorer), file=sys.stderr)
|
||||
print("Loading scorer from files {}".format(args.scorer), file=sys.stderr)
|
||||
scorer_load_start = timer()
|
||||
ds.enableExternalScorer(args.scorer)
|
||||
scorer_load_end = timer() - scorer_load_start
|
||||
print('Loaded scorer in {:.3}s.'.format(scorer_load_end), file=sys.stderr)
|
||||
print("Loaded scorer in {:.3}s.".format(scorer_load_end), file=sys.stderr)
|
||||
|
||||
if args.lm_alpha and args.lm_beta:
|
||||
ds.setScorerAlphaBeta(args.lm_alpha, args.lm_beta)
|
||||
|
||||
if args.hot_words:
|
||||
print('Adding hot-words', file=sys.stderr)
|
||||
for word_boost in args.hot_words.split(','):
|
||||
word,boost = word_boost.split(':')
|
||||
print("Adding hot-words", file=sys.stderr)
|
||||
for word_boost in args.hot_words.split(","):
|
||||
word, boost = word_boost.split(":")
|
||||
ds.addHotWord(word, float(boost))
|
||||
|
||||
fin = wave.open(args.audio, 'rb')
|
||||
fin = wave.open(args.audio, "rb")
|
||||
fs_orig = fin.getframerate()
|
||||
if fs_orig != desired_sample_rate:
|
||||
print('Warning: original sample rate ({}) is different than {}hz. Resampling might produce erratic speech recognition.'.format(fs_orig, desired_sample_rate), file=sys.stderr)
|
||||
print(
|
||||
"Warning: original sample rate ({}) is different than {}hz. Resampling might produce erratic speech recognition.".format(
|
||||
fs_orig, desired_sample_rate
|
||||
),
|
||||
file=sys.stderr,
|
||||
)
|
||||
fs_new, audio = convert_samplerate(args.audio, desired_sample_rate)
|
||||
else:
|
||||
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
|
||||
@ -153,18 +187,24 @@ def main():
|
||||
audio_length = fin.getnframes() * (1 / fs_orig)
|
||||
fin.close()
|
||||
|
||||
print('Running inference.', file=sys.stderr)
|
||||
print("Running inference.", file=sys.stderr)
|
||||
inference_start = timer()
|
||||
# sphinx-doc: python_ref_inference_start
|
||||
if args.extended:
|
||||
print(metadata_to_string(ds.sttWithMetadata(audio, 1).transcripts[0]))
|
||||
elif args.json:
|
||||
print(metadata_json_output(ds.sttWithMetadata(audio, args.candidate_transcripts)))
|
||||
print(
|
||||
metadata_json_output(ds.sttWithMetadata(audio, args.candidate_transcripts))
|
||||
)
|
||||
else:
|
||||
print(ds.stt(audio))
|
||||
# sphinx-doc: python_ref_inference_stop
|
||||
inference_end = timer() - inference_start
|
||||
print('Inference took %0.3fs for %0.3fs audio file.' % (inference_end, audio_length), file=sys.stderr)
|
||||
print(
|
||||
"Inference took %0.3fs for %0.3fs audio file." % (inference_end, audio_length),
|
||||
file=sys.stderr,
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -1,107 +1,122 @@
|
||||
#! /usr/bin/env python
|
||||
|
||||
from setuptools import setup, Extension
|
||||
from distutils.command.build import build
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
from distutils.command.build import build
|
||||
|
||||
from setuptools import Extension, setup
|
||||
|
||||
|
||||
def main():
|
||||
try:
|
||||
import numpy
|
||||
|
||||
try:
|
||||
numpy_include = numpy.get_include()
|
||||
except AttributeError:
|
||||
numpy_include = numpy.get_numpy_include()
|
||||
except ImportError:
|
||||
numpy_include = ''
|
||||
assert 'NUMPY_INCLUDE' in os.environ
|
||||
numpy_include = ""
|
||||
assert "NUMPY_INCLUDE" in os.environ
|
||||
|
||||
def read(fname):
|
||||
return open(os.path.join(os.path.dirname(__file__), fname)).read()
|
||||
|
||||
numpy_include = os.getenv('NUMPY_INCLUDE', numpy_include)
|
||||
numpy_min_ver = os.getenv('NUMPY_DEP_VERSION', '')
|
||||
numpy_include = os.getenv("NUMPY_INCLUDE", numpy_include)
|
||||
numpy_min_ver = os.getenv("NUMPY_DEP_VERSION", "")
|
||||
|
||||
project_name = 'STT'
|
||||
if '--project_name' in sys.argv:
|
||||
project_name_idx = sys.argv.index('--project_name')
|
||||
project_name = "STT"
|
||||
if "--project_name" in sys.argv:
|
||||
project_name_idx = sys.argv.index("--project_name")
|
||||
project_name = sys.argv[project_name_idx + 1]
|
||||
sys.argv.remove('--project_name')
|
||||
sys.argv.remove("--project_name")
|
||||
sys.argv.pop(project_name_idx)
|
||||
|
||||
with open('../../training/coqui_stt_training/VERSION', 'r') as ver:
|
||||
with open("../../training/coqui_stt_training/VERSION", "r") as ver:
|
||||
project_version = ver.read().strip()
|
||||
|
||||
class BuildExtFirst(build):
|
||||
sub_commands = [('build_ext', build.has_ext_modules),
|
||||
('build_py', build.has_pure_modules),
|
||||
('build_clib', build.has_c_libraries),
|
||||
('build_scripts', build.has_scripts)]
|
||||
sub_commands = [
|
||||
("build_ext", build.has_ext_modules),
|
||||
("build_py", build.has_pure_modules),
|
||||
("build_clib", build.has_c_libraries),
|
||||
("build_scripts", build.has_scripts),
|
||||
]
|
||||
|
||||
# Properly pass arguments for linking, setuptools will perform some checks
|
||||
def lib_dirs_split(a):
|
||||
if os.name == 'posix':
|
||||
return a.split('-L')[1:]
|
||||
if os.name == "posix":
|
||||
return a.split("-L")[1:]
|
||||
|
||||
if os.name == 'nt':
|
||||
if os.name == "nt":
|
||||
return []
|
||||
|
||||
raise AssertionError('os.name == java not expected')
|
||||
raise AssertionError("os.name == java not expected")
|
||||
|
||||
def libs_split(a):
|
||||
if os.name == 'posix':
|
||||
return a.split('-l')[1:]
|
||||
if os.name == "posix":
|
||||
return a.split("-l")[1:]
|
||||
|
||||
if os.name == 'nt':
|
||||
return a.split('.lib')[0:1]
|
||||
if os.name == "nt":
|
||||
return a.split(".lib")[0:1]
|
||||
|
||||
raise AssertionError('os.name == java not expected')
|
||||
raise AssertionError("os.name == java not expected")
|
||||
|
||||
ds_ext = Extension(name='stt._impl',
|
||||
sources=['impl.i'],
|
||||
include_dirs=[numpy_include, '../'],
|
||||
library_dirs=list(map(lambda x: x.strip(), lib_dirs_split(os.getenv('MODEL_LDFLAGS', '')))),
|
||||
libraries=list(map(lambda x: x.strip(), libs_split(os.getenv('MODEL_LIBS', '')))),
|
||||
swig_opts=['-c++', '-keyword'])
|
||||
ds_ext = Extension(
|
||||
name="stt._impl",
|
||||
sources=["impl.i"],
|
||||
include_dirs=[numpy_include, "../"],
|
||||
library_dirs=list(
|
||||
map(lambda x: x.strip(), lib_dirs_split(os.getenv("MODEL_LDFLAGS", "")))
|
||||
),
|
||||
libraries=list(
|
||||
map(lambda x: x.strip(), libs_split(os.getenv("MODEL_LIBS", "")))
|
||||
),
|
||||
swig_opts=["-c++", "-keyword"],
|
||||
)
|
||||
|
||||
setup(name=project_name,
|
||||
description='A library for doing speech recognition using a Coqui STT model',
|
||||
long_description=read('README.rst'),
|
||||
long_description_content_type='text/x-rst; charset=UTF-8',
|
||||
author='Coqui GmbH',
|
||||
setup(
|
||||
name=project_name,
|
||||
description="A library for doing speech recognition using a Coqui STT model",
|
||||
long_description=read("README.rst"),
|
||||
long_description_content_type="text/x-rst; charset=UTF-8",
|
||||
author="Coqui GmbH",
|
||||
version=project_version,
|
||||
package_dir={'stt': '.'},
|
||||
cmdclass={'build': BuildExtFirst},
|
||||
license='MPL-2.0',
|
||||
url='https://github.com/coqui-ai/STT',
|
||||
package_dir={"stt": "."},
|
||||
cmdclass={"build": BuildExtFirst},
|
||||
license="MPL-2.0",
|
||||
url="https://github.com/coqui-ai/STT",
|
||||
project_urls={
|
||||
'Documentation': 'https://stt.readthedocs.io',
|
||||
'Tracker': 'https://github.com/coqui-ai/STT/issues',
|
||||
'Repository': 'https://github.com/coqui-ai/STT/tree/v{}'.format(project_version),
|
||||
'Discussions': 'https://github.com/coqui-ai/STT/discussions',
|
||||
"Documentation": "https://stt.readthedocs.io",
|
||||
"Tracker": "https://github.com/coqui-ai/STT/issues",
|
||||
"Repository": "https://github.com/coqui-ai/STT/tree/v{}".format(
|
||||
project_version
|
||||
),
|
||||
"Discussions": "https://github.com/coqui-ai/STT/discussions",
|
||||
},
|
||||
ext_modules=[ds_ext],
|
||||
py_modules=['stt', 'stt.client', 'stt.impl'],
|
||||
entry_points={'console_scripts':['stt=stt.client:main']},
|
||||
install_requires=['numpy%s' % numpy_min_ver],
|
||||
py_modules=["stt", "stt.client", "stt.impl"],
|
||||
entry_points={"console_scripts": ["stt=stt.client:main"]},
|
||||
install_requires=["numpy%s" % numpy_min_ver],
|
||||
include_package_data=True,
|
||||
classifiers=[
|
||||
'Development Status :: 3 - Alpha',
|
||||
'Environment :: Console',
|
||||
'Intended Audience :: Developers',
|
||||
'Intended Audience :: Science/Research',
|
||||
'License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)',
|
||||
'Programming Language :: Python :: 2.7',
|
||||
'Programming Language :: Python :: 3.4',
|
||||
'Programming Language :: Python :: 3.5',
|
||||
'Programming Language :: Python :: 3.6',
|
||||
'Topic :: Multimedia :: Sound/Audio :: Speech',
|
||||
'Topic :: Scientific/Engineering :: Human Machine Interfaces',
|
||||
'Topic :: Scientific/Engineering',
|
||||
'Topic :: Utilities',
|
||||
])
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Environment :: Console",
|
||||
"Intended Audience :: Developers",
|
||||
"Intended Audience :: Science/Research",
|
||||
"License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)",
|
||||
"Programming Language :: Python :: 2.7",
|
||||
"Programming Language :: Python :: 3.4",
|
||||
"Programming Language :: Python :: 3.5",
|
||||
"Programming Language :: Python :: 3.6",
|
||||
"Topic :: Multimedia :: Sound/Audio :: Speech",
|
||||
"Topic :: Scientific/Engineering :: Human Machine Interfaces",
|
||||
"Topic :: Scientific/Engineering",
|
||||
"Topic :: Utilities",
|
||||
],
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -9,5 +9,3 @@
|
||||
#import <Foundation/Foundation.h>
|
||||
|
||||
// In this header, you should import all the public headers of your framework using statements like #import <stt_ios/PublicHeader.h>
|
||||
|
||||
|
||||
|
@ -62,4 +62,3 @@ class SceneDelegate: UIResponder, UIWindowSceneDelegate {
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -3,22 +3,26 @@
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
import wave
|
||||
|
||||
import numpy as np
|
||||
from stt import Model
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='Running STT inference.')
|
||||
parser.add_argument('--model', required=True,
|
||||
help='Path to the model (protocol buffer binary file)')
|
||||
parser.add_argument('--scorer', nargs='?',
|
||||
help='Path to the external scorer file')
|
||||
parser.add_argument('--audio1', required=True,
|
||||
help='First audio file to use in interleaved streams')
|
||||
parser.add_argument('--audio2', required=True,
|
||||
help='Second audio file to use in interleaved streams')
|
||||
parser = argparse.ArgumentParser(description="Running STT inference.")
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path to the model (protocol buffer binary file)"
|
||||
)
|
||||
parser.add_argument("--scorer", nargs="?", help="Path to the external scorer file")
|
||||
parser.add_argument(
|
||||
"--audio1", required=True, help="First audio file to use in interleaved streams"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--audio2",
|
||||
required=True,
|
||||
help="Second audio file to use in interleaved streams",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
ds = Model(args.model)
|
||||
@ -26,12 +30,12 @@ def main():
|
||||
if args.scorer:
|
||||
ds.enableExternalScorer(args.scorer)
|
||||
|
||||
fin = wave.open(args.audio1, 'rb')
|
||||
fin = wave.open(args.audio1, "rb")
|
||||
fs1 = fin.getframerate()
|
||||
audio1 = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
|
||||
fin.close()
|
||||
|
||||
fin = wave.open(args.audio2, 'rb')
|
||||
fin = wave.open(args.audio2, "rb")
|
||||
fs2 = fin.getframerate()
|
||||
audio2 = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
|
||||
fin.close()
|
||||
@ -49,5 +53,6 @@ def main():
|
||||
print(stream1.finishStream())
|
||||
print(stream2.finishStream())
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
81
setup.py
81
setup.py
@ -8,77 +8,74 @@ from setuptools import find_packages, setup
|
||||
|
||||
|
||||
def main():
|
||||
version_file = Path(__file__).parent / 'VERSION'
|
||||
version_file = Path(__file__).parent / "VERSION"
|
||||
with open(str(version_file)) as fin:
|
||||
version = fin.read().strip()
|
||||
|
||||
install_requires_base = [
|
||||
'absl-py',
|
||||
'attrdict',
|
||||
'bs4',
|
||||
'numpy',
|
||||
'optuna',
|
||||
'opuslib == 2.0.0',
|
||||
'pandas',
|
||||
'progressbar2',
|
||||
'pyogg >= 0.6.14a1',
|
||||
'pyxdg',
|
||||
'resampy >= 0.2.2',
|
||||
'requests',
|
||||
'semver',
|
||||
'six',
|
||||
'sox',
|
||||
'soundfile',
|
||||
"absl-py",
|
||||
"attrdict",
|
||||
"bs4",
|
||||
"numpy",
|
||||
"optuna",
|
||||
"opuslib == 2.0.0",
|
||||
"pandas",
|
||||
"progressbar2",
|
||||
"pyogg >= 0.6.14a1",
|
||||
"pyxdg",
|
||||
"resampy >= 0.2.2",
|
||||
"requests",
|
||||
"semver",
|
||||
"six",
|
||||
"sox",
|
||||
"soundfile",
|
||||
]
|
||||
|
||||
decoder_pypi_dep = [
|
||||
'coqui_stt_ctcdecoder == {}'.format(version)
|
||||
]
|
||||
decoder_pypi_dep = ["coqui_stt_ctcdecoder == {}".format(version)]
|
||||
|
||||
tensorflow_pypi_dep = [
|
||||
'tensorflow == 1.15.4'
|
||||
]
|
||||
tensorflow_pypi_dep = ["tensorflow == 1.15.4"]
|
||||
|
||||
if os.environ.get('DS_NODECODER', ''):
|
||||
if os.environ.get("DS_NODECODER", ""):
|
||||
install_requires = install_requires_base
|
||||
else:
|
||||
install_requires = install_requires_base + decoder_pypi_dep
|
||||
|
||||
if os.environ.get('DS_NOTENSORFLOW', ''):
|
||||
if os.environ.get("DS_NOTENSORFLOW", ""):
|
||||
install_requires = install_requires
|
||||
else:
|
||||
install_requires = install_requires + tensorflow_pypi_dep
|
||||
|
||||
setup(
|
||||
name='coqui_stt_training',
|
||||
name="coqui_stt_training",
|
||||
version=version,
|
||||
description='Training code for Coqui STT',
|
||||
url='https://github.com/coqui-ai/STT',
|
||||
author='Coqui STT authors',
|
||||
license='MPL-2.0',
|
||||
description="Training code for Coqui STT",
|
||||
url="https://github.com/coqui-ai/STT",
|
||||
author="Coqui STT authors",
|
||||
license="MPL-2.0",
|
||||
# Classifiers help users find your project by categorizing it.
|
||||
#
|
||||
# For a list of valid classifiers, see https://pypi.org/classifiers/
|
||||
classifiers=[
|
||||
'Development Status :: 3 - Alpha',
|
||||
'Intended Audience :: Developers',
|
||||
'Topic :: Multimedia :: Sound/Audio :: Speech',
|
||||
'License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)',
|
||||
'Programming Language :: Python :: 3',
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Multimedia :: Sound/Audio :: Speech",
|
||||
"License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)",
|
||||
"Programming Language :: Python :: 3",
|
||||
],
|
||||
package_dir={'': 'training'},
|
||||
packages=find_packages(where='training'),
|
||||
python_requires='>=3.5, <4',
|
||||
package_dir={"": "training"},
|
||||
packages=find_packages(where="training"),
|
||||
python_requires=">=3.5, <4",
|
||||
install_requires=install_requires,
|
||||
# If there are data files included in your packages that need to be
|
||||
# installed, specify them here.
|
||||
package_data={
|
||||
'coqui_stt_training': [
|
||||
'VERSION',
|
||||
'GRAPH_VERSION',
|
||||
"coqui_stt_training": [
|
||||
"VERSION",
|
||||
"GRAPH_VERSION",
|
||||
],
|
||||
},
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
59
stats.py
59
stats.py
@ -1,11 +1,11 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import functools
|
||||
import pandas
|
||||
|
||||
from coqui_stt_training.util.helpers import secs_to_hours
|
||||
from pathlib import Path
|
||||
|
||||
import pandas
|
||||
from coqui_stt_training.util.helpers import secs_to_hours
|
||||
|
||||
|
||||
def read_csvs(csv_files):
|
||||
# Relative paths are relative to CSV location
|
||||
@ -17,32 +17,59 @@ def read_csvs(csv_files):
|
||||
|
||||
sets = []
|
||||
for csv in csv_files:
|
||||
file = pandas.read_csv(csv, encoding='utf-8', na_filter=False)
|
||||
file['wav_filename'] = file['wav_filename'].apply(functools.partial(absolutify, csv))
|
||||
file = pandas.read_csv(csv, encoding="utf-8", na_filter=False)
|
||||
file["wav_filename"] = file["wav_filename"].apply(
|
||||
functools.partial(absolutify, csv)
|
||||
)
|
||||
sets.append(file)
|
||||
|
||||
# Concat all sets, drop any extra columns, re-index the final result as 0..N
|
||||
return pandas.concat(sets, join='inner', ignore_index=True)
|
||||
return pandas.concat(sets, join="inner", ignore_index=True)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("-csv", "--csv-files", help="Str. Filenames as a comma separated list", required=True)
|
||||
parser.add_argument("--sample-rate", type=int, default=16000, required=False, help="Audio sample rate")
|
||||
parser.add_argument("--channels", type=int, default=1, required=False, help="Audio channels")
|
||||
parser.add_argument("--bits-per-sample", type=int, default=16, required=False, help="Audio bits per sample")
|
||||
parser.add_argument(
|
||||
"-csv",
|
||||
"--csv-files",
|
||||
help="Str. Filenames as a comma separated list",
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
required=False,
|
||||
help="Audio sample rate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--channels", type=int, default=1, required=False, help="Audio channels"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bits-per-sample",
|
||||
type=int,
|
||||
default=16,
|
||||
required=False,
|
||||
help="Audio bits per sample",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
in_files = [Path(i).absolute() for i in args.csv_files.split(",")]
|
||||
|
||||
csv_dataframe = read_csvs(in_files)
|
||||
total_bytes = csv_dataframe['wav_filesize'].sum()
|
||||
total_bytes = csv_dataframe["wav_filesize"].sum()
|
||||
total_files = len(csv_dataframe)
|
||||
total_seconds = ((csv_dataframe['wav_filesize'] - 44) / args.sample_rate / args.channels / (args.bits_per_sample // 8)).sum()
|
||||
total_seconds = (
|
||||
(csv_dataframe["wav_filesize"] - 44)
|
||||
/ args.sample_rate
|
||||
/ args.channels
|
||||
/ (args.bits_per_sample // 8)
|
||||
).sum()
|
||||
|
||||
print('Total bytes:', total_bytes)
|
||||
print('Total files:', total_files)
|
||||
print('Total time:', secs_to_hours(total_seconds))
|
||||
print("Total bytes:", total_bytes)
|
||||
print("Total files:", total_files)
|
||||
print("Total time:", secs_to_hours(total_seconds))
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -1,4 +1,3 @@
|
||||
a
|
||||
b
|
||||
c
|
||||
|
||||
|
@ -1,42 +1,49 @@
|
||||
import unittest
|
||||
|
||||
from argparse import Namespace
|
||||
from coqui_stt_training.util.importers import validate_label_eng, get_validate_label
|
||||
from pathlib import Path
|
||||
|
||||
from coqui_stt_training.util.importers import get_validate_label, validate_label_eng
|
||||
|
||||
|
||||
def from_here(path):
|
||||
here = Path(__file__)
|
||||
return here.parent / path
|
||||
|
||||
|
||||
class TestValidateLabelEng(unittest.TestCase):
|
||||
def test_numbers(self):
|
||||
label = validate_label_eng("this is a 1 2 3 test")
|
||||
self.assertEqual(label, None)
|
||||
|
||||
class TestGetValidateLabel(unittest.TestCase):
|
||||
|
||||
class TestGetValidateLabel(unittest.TestCase):
|
||||
def test_no_validate_label_locale(self):
|
||||
f = get_validate_label(Namespace())
|
||||
self.assertEqual(f('toto'), 'toto')
|
||||
self.assertEqual(f('toto1234'), None)
|
||||
self.assertEqual(f('toto1234[{[{[]'), None)
|
||||
self.assertEqual(f("toto"), "toto")
|
||||
self.assertEqual(f("toto1234"), None)
|
||||
self.assertEqual(f("toto1234[{[{[]"), None)
|
||||
|
||||
def test_validate_label_locale_default(self):
|
||||
f = get_validate_label(Namespace(validate_label_locale=None))
|
||||
self.assertEqual(f('toto'), 'toto')
|
||||
self.assertEqual(f('toto1234'), None)
|
||||
self.assertEqual(f('toto1234[{[{[]'), None)
|
||||
self.assertEqual(f("toto"), "toto")
|
||||
self.assertEqual(f("toto1234"), None)
|
||||
self.assertEqual(f("toto1234[{[{[]"), None)
|
||||
|
||||
def test_get_validate_label_missing(self):
|
||||
args = Namespace(validate_label_locale=from_here('test_data/validate_locale_ger.py'))
|
||||
args = Namespace(
|
||||
validate_label_locale=from_here("test_data/validate_locale_ger.py")
|
||||
)
|
||||
f = get_validate_label(args)
|
||||
self.assertEqual(f, None)
|
||||
|
||||
def test_get_validate_label(self):
|
||||
args = Namespace(validate_label_locale=from_here('test_data/validate_locale_fra.py'))
|
||||
args = Namespace(
|
||||
validate_label_locale=from_here("test_data/validate_locale_fra.py")
|
||||
)
|
||||
f = get_validate_label(args)
|
||||
l = f('toto')
|
||||
self.assertEqual(l, 'toto')
|
||||
l = f("toto")
|
||||
self.assertEqual(l, "toto")
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
@ -1,13 +1,13 @@
|
||||
import unittest
|
||||
import os
|
||||
import unittest
|
||||
|
||||
from coqui_stt_ctcdecoder import Alphabet
|
||||
|
||||
class TestAlphabetParsing(unittest.TestCase):
|
||||
|
||||
class TestAlphabetParsing(unittest.TestCase):
|
||||
def _ending_tester(self, file, expected):
|
||||
alphabet = Alphabet(os.path.join(os.path.dirname(__file__), 'test_data', file))
|
||||
label = ''
|
||||
alphabet = Alphabet(os.path.join(os.path.dirname(__file__), "test_data", file))
|
||||
label = ""
|
||||
label_id = -1
|
||||
for expected_label, expected_label_id in expected:
|
||||
try:
|
||||
@ -22,13 +22,14 @@ class TestAlphabetParsing(unittest.TestCase):
|
||||
self.assertEqual(label, expected_label)
|
||||
|
||||
def test_macos_ending(self):
|
||||
self._ending_tester('alphabet_macos.txt', [('a', 0), ('b', 1), ('c', 2)])
|
||||
self._ending_tester("alphabet_macos.txt", [("a", 0), ("b", 1), ("c", 2)])
|
||||
|
||||
def test_unix_ending(self):
|
||||
self._ending_tester('alphabet_unix.txt', [('a', 0), ('b', 1), ('c', 2)])
|
||||
self._ending_tester("alphabet_unix.txt", [("a", 0), ("b", 1), ("c", 2)])
|
||||
|
||||
def test_windows_ending(self):
|
||||
self._ending_tester('alphabet_windows.txt', [('a', 0), ('b', 1), ('c', 2)])
|
||||
self._ending_tester("alphabet_windows.txt", [("a", 0), ("b", 1), ("c", 2)])
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
@ -1,27 +1,32 @@
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
from coqui_stt_training.util.helpers import (
|
||||
ValueRange,
|
||||
get_value_range,
|
||||
pick_value_from_range,
|
||||
tf_pick_value_from_range,
|
||||
)
|
||||
|
||||
import tensorflow as tf
|
||||
from coqui_stt_training.util.helpers import ValueRange, get_value_range, pick_value_from_range, tf_pick_value_from_range
|
||||
|
||||
|
||||
class TestValueRange(unittest.TestCase):
|
||||
|
||||
def _ending_tester(self, value, value_type, expected):
|
||||
result = get_value_range(value, value_type)
|
||||
self.assertEqual(result, expected)
|
||||
|
||||
def test_int_str_scalar(self):
|
||||
self._ending_tester('1', int, ValueRange(1, 1, 0))
|
||||
self._ending_tester("1", int, ValueRange(1, 1, 0))
|
||||
|
||||
def test_int_str_scalar_radius(self):
|
||||
self._ending_tester('1~3', int, ValueRange(1, 1, 3))
|
||||
self._ending_tester("1~3", int, ValueRange(1, 1, 3))
|
||||
|
||||
def test_int_str_range(self):
|
||||
self._ending_tester('1:2', int, ValueRange(1, 2, 0))
|
||||
self._ending_tester("1:2", int, ValueRange(1, 2, 0))
|
||||
|
||||
def test_int_str_range_radius(self):
|
||||
self._ending_tester('1:2~3', int, ValueRange(1, 2, 3))
|
||||
self._ending_tester("1:2~3", int, ValueRange(1, 2, 3))
|
||||
|
||||
def test_int_scalar(self):
|
||||
self._ending_tester(1, int, ValueRange(1, 1, 0))
|
||||
@ -33,16 +38,16 @@ class TestValueRange(unittest.TestCase):
|
||||
self._ending_tester((1, 2, 3), int, ValueRange(1, 2, 3))
|
||||
|
||||
def test_float_str_scalar(self):
|
||||
self._ending_tester('1.0', float, ValueRange(1.0, 1.0, 0.0))
|
||||
self._ending_tester("1.0", float, ValueRange(1.0, 1.0, 0.0))
|
||||
|
||||
def test_float_str_scalar_radius(self):
|
||||
self._ending_tester('1.0~3.0', float, ValueRange(1.0, 1.0, 3.0))
|
||||
self._ending_tester("1.0~3.0", float, ValueRange(1.0, 1.0, 3.0))
|
||||
|
||||
def test_float_str_range(self):
|
||||
self._ending_tester('1.0:2.0', float, ValueRange(1.0, 2.0, 0.0))
|
||||
self._ending_tester("1.0:2.0", float, ValueRange(1.0, 2.0, 0.0))
|
||||
|
||||
def test_float_str_range_radius(self):
|
||||
self._ending_tester('1.0:2.0~3.0', float, ValueRange(1.0, 2.0, 3.0))
|
||||
self._ending_tester("1.0:2.0~3.0", float, ValueRange(1.0, 2.0, 3.0))
|
||||
|
||||
def test_float_scalar(self):
|
||||
self._ending_tester(1.0, float, ValueRange(1.0, 1.0, 0.0))
|
||||
@ -61,7 +66,7 @@ class TestPickValueFromFixedRange(unittest.TestCase):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TestPickValueFromFixedRange, self).__init__(*args, **kwargs)
|
||||
self.session = tf.Session()
|
||||
self.clock_ph = tf.placeholder(dtype=tf.float64, name='clock')
|
||||
self.clock_ph = tf.placeholder(dtype=tf.float64, name="clock")
|
||||
|
||||
def _ending_tester(self, value_range, clock, expected):
|
||||
with tf.Session() as session:
|
||||
@ -71,7 +76,10 @@ class TestPickValueFromFixedRange(unittest.TestCase):
|
||||
return session.run(tf_pick, feed_dict={self.clock_ph: c})
|
||||
|
||||
is_int = isinstance(value_range.start, int)
|
||||
for pick, int_type, float_type in [(pick_value_from_range, int, float), (run_pick, np.int32, np.float32)]:
|
||||
for pick, int_type, float_type in [
|
||||
(pick_value_from_range, int, float),
|
||||
(run_pick, np.int32, np.float32),
|
||||
]:
|
||||
result = pick(value_range, clock)
|
||||
self.assertEqual(result, expected)
|
||||
self.assertTrue(isinstance(result, int_type if is_int else float_type))
|
||||
@ -99,9 +107,11 @@ class TestPickValueFromRandomizedRange(unittest.TestCase):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TestPickValueFromRandomizedRange, self).__init__(*args, **kwargs)
|
||||
self.session = tf.Session()
|
||||
self.clock_ph = tf.placeholder(dtype=tf.float64, name='clock')
|
||||
self.clock_ph = tf.placeholder(dtype=tf.float64, name="clock")
|
||||
|
||||
def _ending_tester(self, value_range, clock_min, clock_max, expected_min, expected_max):
|
||||
def _ending_tester(
|
||||
self, value_range, clock_min, clock_max, expected_min, expected_max
|
||||
):
|
||||
with self.session as session:
|
||||
tf_pick = tf_pick_value_from_range(value_range, clock=self.clock_ph)
|
||||
|
||||
@ -109,12 +119,26 @@ class TestPickValueFromRandomizedRange(unittest.TestCase):
|
||||
return session.run(tf_pick, feed_dict={self.clock_ph: c})
|
||||
|
||||
is_int = isinstance(value_range.start, int)
|
||||
clock_range = np.arange(clock_min, clock_max, (clock_max - clock_min) / 100.0)
|
||||
for pick, int_type, float_type in [(pick_value_from_range, int, float), (run_pick, np.int32, np.float32)]:
|
||||
clock_range = np.arange(
|
||||
clock_min, clock_max, (clock_max - clock_min) / 100.0
|
||||
)
|
||||
for pick, int_type, float_type in [
|
||||
(pick_value_from_range, int, float),
|
||||
(run_pick, np.int32, np.float32),
|
||||
]:
|
||||
results = [pick(value_range, c) for c in clock_range]
|
||||
self.assertGreater(len(set(results)), 80)
|
||||
self.assertTrue(all(map(lambda x: expected_min <= x <= expected_max, results)))
|
||||
self.assertTrue(all(map(lambda x: isinstance(x, int_type if is_int else float_type), results)))
|
||||
self.assertTrue(
|
||||
all(map(lambda x: expected_min <= x <= expected_max, results))
|
||||
)
|
||||
self.assertTrue(
|
||||
all(
|
||||
map(
|
||||
lambda x: isinstance(x, int_type if is_int else float_type),
|
||||
results,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
def test_int_0(self):
|
||||
self._ending_tester(ValueRange(10000, 30000, 10000), 0.0, 0.1, 0, 22000)
|
||||
@ -126,14 +150,20 @@ class TestPickValueFromRandomizedRange(unittest.TestCase):
|
||||
self._ending_tester(ValueRange(10000, 30000, 10000), 0.8, 1.0, 16000, 40000)
|
||||
|
||||
def test_float_0(self):
|
||||
self._ending_tester(ValueRange(10000.0, 30000.0, 10000.0), 0.0, 0.1, 0.0, 22000.0)
|
||||
self._ending_tester(
|
||||
ValueRange(10000.0, 30000.0, 10000.0), 0.0, 0.1, 0.0, 22000.0
|
||||
)
|
||||
|
||||
def test_float_half(self):
|
||||
self._ending_tester(ValueRange(10000.0, 30000.0, 10000.0), 0.4, 0.6, 8000.0, 32000.0)
|
||||
self._ending_tester(
|
||||
ValueRange(10000.0, 30000.0, 10000.0), 0.4, 0.6, 8000.0, 32000.0
|
||||
)
|
||||
|
||||
def test_float_1(self):
|
||||
self._ending_tester(ValueRange(10000.0, 30000.0, 10000.0), 0.8, 1.0, 16000.0, 40000.0)
|
||||
self._ending_tester(
|
||||
ValueRange(10000.0, 30000.0, 10000.0), 0.8, 1.0, 16000.0, 40000.0
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
4
train.py
4
train.py
@ -2,11 +2,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
from coqui_stt_training import train as ds_train
|
||||
except ImportError:
|
||||
print('Training package is not installed. See training documentation.')
|
||||
print("Training package is not installed. See training documentation.")
|
||||
raise
|
||||
|
||||
ds_train.run_script()
|
||||
|
@ -4,33 +4,36 @@ from __future__ import absolute_import, division, print_function
|
||||
|
||||
import json
|
||||
import sys
|
||||
|
||||
from multiprocessing import cpu_count
|
||||
|
||||
import absl.app
|
||||
import progressbar
|
||||
from coqui_stt_ctcdecoder import Scorer, ctc_beam_search_decoder_batch
|
||||
from six.moves import zip
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
|
||||
from coqui_stt_ctcdecoder import ctc_beam_search_decoder_batch, Scorer
|
||||
from six.moves import zip
|
||||
from .util.augmentations import NormalizeSampleRate
|
||||
from .util.config import Config, initialize_globals
|
||||
from .util.checkpoints import load_graph_for_evaluation
|
||||
from .util.config import Config, initialize_globals
|
||||
from .util.evaluate_tools import calculate_and_print_report, save_samples_json
|
||||
from .util.feeding import create_dataset
|
||||
from .util.flags import create_flags, FLAGS
|
||||
from .util.flags import FLAGS, create_flags
|
||||
from .util.helpers import check_ctcdecoder_version
|
||||
from .util.logging import create_progressbar, log_error, log_progress
|
||||
|
||||
check_ctcdecoder_version()
|
||||
|
||||
|
||||
def sparse_tensor_value_to_texts(value, alphabet):
|
||||
r"""
|
||||
Given a :class:`tf.SparseTensor` ``value``, return an array of Python strings
|
||||
representing its values, converting tokens to strings using ``alphabet``.
|
||||
"""
|
||||
return sparse_tuple_to_texts((value.indices, value.values, value.dense_shape), alphabet)
|
||||
return sparse_tuple_to_texts(
|
||||
(value.indices, value.values, value.dense_shape), alphabet
|
||||
)
|
||||
|
||||
|
||||
def sparse_tuple_to_texts(sp_tuple, alphabet):
|
||||
@ -45,36 +48,42 @@ def sparse_tuple_to_texts(sp_tuple, alphabet):
|
||||
|
||||
def evaluate(test_csvs, create_model):
|
||||
if FLAGS.scorer_path:
|
||||
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta,
|
||||
FLAGS.scorer_path, Config.alphabet)
|
||||
scorer = Scorer(
|
||||
FLAGS.lm_alpha, FLAGS.lm_beta, FLAGS.scorer_path, Config.alphabet
|
||||
)
|
||||
else:
|
||||
scorer = None
|
||||
|
||||
test_sets = [create_dataset([csv],
|
||||
test_sets = [
|
||||
create_dataset(
|
||||
[csv],
|
||||
batch_size=FLAGS.test_batch_size,
|
||||
train_phase=False,
|
||||
augmentations=[NormalizeSampleRate(FLAGS.audio_sample_rate)],
|
||||
reverse=FLAGS.reverse_test,
|
||||
limit=FLAGS.limit_test) for csv in test_csvs]
|
||||
iterator = tfv1.data.Iterator.from_structure(tfv1.data.get_output_types(test_sets[0]),
|
||||
limit=FLAGS.limit_test,
|
||||
)
|
||||
for csv in test_csvs
|
||||
]
|
||||
iterator = tfv1.data.Iterator.from_structure(
|
||||
tfv1.data.get_output_types(test_sets[0]),
|
||||
tfv1.data.get_output_shapes(test_sets[0]),
|
||||
output_classes=tfv1.data.get_output_classes(test_sets[0]))
|
||||
output_classes=tfv1.data.get_output_classes(test_sets[0]),
|
||||
)
|
||||
test_init_ops = [iterator.make_initializer(test_set) for test_set in test_sets]
|
||||
|
||||
batch_wav_filename, (batch_x, batch_x_len), batch_y = iterator.get_next()
|
||||
|
||||
# One rate per layer
|
||||
no_dropout = [None] * 6
|
||||
logits, _ = create_model(batch_x=batch_x,
|
||||
seq_length=batch_x_len,
|
||||
dropout=no_dropout)
|
||||
logits, _ = create_model(
|
||||
batch_x=batch_x, seq_length=batch_x_len, dropout=no_dropout
|
||||
)
|
||||
|
||||
# Transpose to batch major and apply softmax for decoder
|
||||
transposed = tf.nn.softmax(tf.transpose(a=logits, perm=[1, 0, 2]))
|
||||
|
||||
loss = tfv1.nn.ctc_loss(labels=batch_y,
|
||||
inputs=logits,
|
||||
sequence_length=batch_x_len)
|
||||
loss = tfv1.nn.ctc_loss(labels=batch_y, inputs=logits, sequence_length=batch_x_len)
|
||||
|
||||
tfv1.train.get_or_create_global_step()
|
||||
|
||||
@ -93,9 +102,11 @@ def evaluate(test_csvs, create_model):
|
||||
predictions = []
|
||||
ground_truths = []
|
||||
|
||||
bar = create_progressbar(prefix='Test epoch | ',
|
||||
widgets=['Steps: ', progressbar.Counter(), ' | ', progressbar.Timer()]).start()
|
||||
log_progress('Test epoch...')
|
||||
bar = create_progressbar(
|
||||
prefix="Test epoch | ",
|
||||
widgets=["Steps: ", progressbar.Counter(), " | ", progressbar.Timer()],
|
||||
).start()
|
||||
log_progress("Test epoch...")
|
||||
|
||||
step_count = 0
|
||||
|
||||
@ -105,17 +116,35 @@ def evaluate(test_csvs, create_model):
|
||||
# First pass, compute losses and transposed logits for decoding
|
||||
while True:
|
||||
try:
|
||||
batch_wav_filenames, batch_logits, batch_loss, batch_lengths, batch_transcripts = \
|
||||
session.run([batch_wav_filename, transposed, loss, batch_x_len, batch_y])
|
||||
(
|
||||
batch_wav_filenames,
|
||||
batch_logits,
|
||||
batch_loss,
|
||||
batch_lengths,
|
||||
batch_transcripts,
|
||||
) = session.run(
|
||||
[batch_wav_filename, transposed, loss, batch_x_len, batch_y]
|
||||
)
|
||||
except tf.errors.OutOfRangeError:
|
||||
break
|
||||
|
||||
decoded = ctc_beam_search_decoder_batch(batch_logits, batch_lengths, Config.alphabet, FLAGS.beam_width,
|
||||
num_processes=num_processes, scorer=scorer,
|
||||
cutoff_prob=FLAGS.cutoff_prob, cutoff_top_n=FLAGS.cutoff_top_n)
|
||||
decoded = ctc_beam_search_decoder_batch(
|
||||
batch_logits,
|
||||
batch_lengths,
|
||||
Config.alphabet,
|
||||
FLAGS.beam_width,
|
||||
num_processes=num_processes,
|
||||
scorer=scorer,
|
||||
cutoff_prob=FLAGS.cutoff_prob,
|
||||
cutoff_top_n=FLAGS.cutoff_top_n,
|
||||
)
|
||||
predictions.extend(d[0][1] for d in decoded)
|
||||
ground_truths.extend(sparse_tensor_value_to_texts(batch_transcripts, Config.alphabet))
|
||||
wav_filenames.extend(wav_filename.decode('UTF-8') for wav_filename in batch_wav_filenames)
|
||||
ground_truths.extend(
|
||||
sparse_tensor_value_to_texts(batch_transcripts, Config.alphabet)
|
||||
)
|
||||
wav_filenames.extend(
|
||||
wav_filename.decode("UTF-8") for wav_filename in batch_wav_filenames
|
||||
)
|
||||
losses.extend(batch_loss)
|
||||
|
||||
step_count += 1
|
||||
@ -124,12 +153,14 @@ def evaluate(test_csvs, create_model):
|
||||
bar.finish()
|
||||
|
||||
# Print test summary
|
||||
test_samples = calculate_and_print_report(wav_filenames, ground_truths, predictions, losses, dataset)
|
||||
test_samples = calculate_and_print_report(
|
||||
wav_filenames, ground_truths, predictions, losses, dataset
|
||||
)
|
||||
return test_samples
|
||||
|
||||
samples = []
|
||||
for csv, init_op in zip(test_csvs, test_init_ops):
|
||||
print('Testing model on {}'.format(csv))
|
||||
print("Testing model on {}".format(csv))
|
||||
samples.extend(run_test(init_op, dataset=csv))
|
||||
return samples
|
||||
|
||||
@ -138,12 +169,17 @@ def main(_):
|
||||
initialize_globals()
|
||||
|
||||
if not FLAGS.test_files:
|
||||
log_error('You need to specify what files to use for evaluation via '
|
||||
'the --test_files flag.')
|
||||
log_error(
|
||||
"You need to specify what files to use for evaluation via "
|
||||
"the --test_files flag."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
from .train import create_model # pylint: disable=cyclic-import,import-outside-toplevel
|
||||
samples = evaluate(FLAGS.test_files.split(','), create_model)
|
||||
from .train import ( # pylint: disable=cyclic-import,import-outside-toplevel
|
||||
create_model,
|
||||
)
|
||||
|
||||
samples = evaluate(FLAGS.test_files.split(","), create_model)
|
||||
|
||||
if FLAGS.test_output_file:
|
||||
save_samples_json(samples, FLAGS.test_output_file)
|
||||
@ -153,5 +189,6 @@ def run_script():
|
||||
create_flags()
|
||||
absl.app.run(main)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_script()
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -2,28 +2,29 @@ import collections
|
||||
import ctypes
|
||||
import io
|
||||
import math
|
||||
import numpy as np
|
||||
import os
|
||||
import pyogg
|
||||
import tempfile
|
||||
import wave
|
||||
from collections import namedtuple
|
||||
|
||||
import numpy as np
|
||||
import pyogg
|
||||
|
||||
from .helpers import LimitingPool
|
||||
from collections import namedtuple
|
||||
from .io import open_remote, remove_remote, copy_remote, is_remote_path
|
||||
from .io import copy_remote, is_remote_path, open_remote, remove_remote
|
||||
|
||||
AudioFormat = namedtuple('AudioFormat', 'rate channels width')
|
||||
AudioFormat = namedtuple("AudioFormat", "rate channels width")
|
||||
|
||||
DEFAULT_RATE = 16000
|
||||
DEFAULT_CHANNELS = 1
|
||||
DEFAULT_WIDTH = 2
|
||||
DEFAULT_FORMAT = AudioFormat(DEFAULT_RATE, DEFAULT_CHANNELS, DEFAULT_WIDTH)
|
||||
|
||||
AUDIO_TYPE_NP = 'application/vnd.mozilla.np'
|
||||
AUDIO_TYPE_PCM = 'application/vnd.mozilla.pcm'
|
||||
AUDIO_TYPE_WAV = 'audio/wav'
|
||||
AUDIO_TYPE_OPUS = 'application/vnd.mozilla.opus'
|
||||
AUDIO_TYPE_OGG_OPUS = 'application/vnd.deepspeech.ogg_opus'
|
||||
AUDIO_TYPE_NP = "application/vnd.mozilla.np"
|
||||
AUDIO_TYPE_PCM = "application/vnd.mozilla.pcm"
|
||||
AUDIO_TYPE_WAV = "audio/wav"
|
||||
AUDIO_TYPE_OPUS = "application/vnd.mozilla.opus"
|
||||
AUDIO_TYPE_OGG_OPUS = "application/vnd.deepspeech.ogg_opus"
|
||||
|
||||
SERIALIZABLE_AUDIO_TYPES = [AUDIO_TYPE_WAV, AUDIO_TYPE_OPUS, AUDIO_TYPE_OGG_OPUS]
|
||||
|
||||
@ -49,6 +50,7 @@ class Sample:
|
||||
duration : float
|
||||
Audio duration of the sample in seconds
|
||||
"""
|
||||
|
||||
def __init__(self, audio_type, raw_data, audio_format=None, sample_id=None):
|
||||
"""
|
||||
Parameters
|
||||
@ -74,20 +76,26 @@ class Sample:
|
||||
self.audio_format = audio_format
|
||||
self.sample_id = sample_id
|
||||
if audio_type in SERIALIZABLE_AUDIO_TYPES:
|
||||
self.audio = raw_data if isinstance(raw_data, io.BytesIO) else io.BytesIO(raw_data)
|
||||
self.audio = (
|
||||
raw_data if isinstance(raw_data, io.BytesIO) else io.BytesIO(raw_data)
|
||||
)
|
||||
self.duration = read_duration(audio_type, self.audio)
|
||||
if not self.audio_format:
|
||||
self.audio_format = read_format(audio_type, self.audio)
|
||||
else:
|
||||
self.audio = raw_data
|
||||
if self.audio_format is None:
|
||||
raise ValueError('For audio type "{}" parameter "audio_format" is mandatory'.format(self.audio_type))
|
||||
raise ValueError(
|
||||
'For audio type "{}" parameter "audio_format" is mandatory'.format(
|
||||
self.audio_type
|
||||
)
|
||||
)
|
||||
if audio_type == AUDIO_TYPE_PCM:
|
||||
self.duration = get_pcm_duration(len(self.audio), self.audio_format)
|
||||
elif audio_type == AUDIO_TYPE_NP:
|
||||
self.duration = get_np_duration(len(self.audio), self.audio_format)
|
||||
else:
|
||||
raise ValueError('Unsupported audio type: {}'.format(self.audio_type))
|
||||
raise ValueError("Unsupported audio type: {}".format(self.audio_type))
|
||||
|
||||
def change_audio_type(self, new_audio_type, bitrate=None):
|
||||
"""
|
||||
@ -102,7 +110,10 @@ class Sample:
|
||||
"""
|
||||
if self.audio_type == new_audio_type:
|
||||
return
|
||||
if new_audio_type == AUDIO_TYPE_PCM and self.audio_type in SERIALIZABLE_AUDIO_TYPES:
|
||||
if (
|
||||
new_audio_type == AUDIO_TYPE_PCM
|
||||
and self.audio_type in SERIALIZABLE_AUDIO_TYPES
|
||||
):
|
||||
self.audio_format, audio = read_audio(self.audio_type, self.audio)
|
||||
self.audio.close()
|
||||
self.audio = audio
|
||||
@ -114,18 +125,27 @@ class Sample:
|
||||
elif new_audio_type in SERIALIZABLE_AUDIO_TYPES:
|
||||
self.change_audio_type(AUDIO_TYPE_PCM)
|
||||
audio_bytes = io.BytesIO()
|
||||
write_audio(new_audio_type, audio_bytes, self.audio, audio_format=self.audio_format, bitrate=bitrate)
|
||||
write_audio(
|
||||
new_audio_type,
|
||||
audio_bytes,
|
||||
self.audio,
|
||||
audio_format=self.audio_format,
|
||||
bitrate=bitrate,
|
||||
)
|
||||
audio_bytes.seek(0)
|
||||
self.audio = audio_bytes
|
||||
else:
|
||||
raise RuntimeError('Changing audio representation type from "{}" to "{}" not supported'
|
||||
.format(self.audio_type, new_audio_type))
|
||||
raise RuntimeError(
|
||||
'Changing audio representation type from "{}" to "{}" not supported'.format(
|
||||
self.audio_type, new_audio_type
|
||||
)
|
||||
)
|
||||
self.audio_type = new_audio_type
|
||||
|
||||
|
||||
def _unpack_and_change_audio_type(sample_and_audio_type):
|
||||
packed_sample, audio_type, bitrate = sample_and_audio_type
|
||||
if hasattr(packed_sample, 'unpack'):
|
||||
if hasattr(packed_sample, "unpack"):
|
||||
sample = packed_sample.unpack()
|
||||
else:
|
||||
sample = packed_sample
|
||||
@ -133,20 +153,31 @@ def _unpack_and_change_audio_type(sample_and_audio_type):
|
||||
return sample
|
||||
|
||||
|
||||
def change_audio_types(packed_samples, audio_type=AUDIO_TYPE_PCM, bitrate=None, processes=None, process_ahead=None):
|
||||
def change_audio_types(
|
||||
packed_samples,
|
||||
audio_type=AUDIO_TYPE_PCM,
|
||||
bitrate=None,
|
||||
processes=None,
|
||||
process_ahead=None,
|
||||
):
|
||||
with LimitingPool(processes=processes, process_ahead=process_ahead) as pool:
|
||||
yield from pool.imap(_unpack_and_change_audio_type, map(lambda s: (s, audio_type, bitrate), packed_samples))
|
||||
yield from pool.imap(
|
||||
_unpack_and_change_audio_type,
|
||||
map(lambda s: (s, audio_type, bitrate), packed_samples),
|
||||
)
|
||||
|
||||
|
||||
def get_loadable_audio_type_from_extension(ext):
|
||||
return {
|
||||
'.wav': AUDIO_TYPE_WAV,
|
||||
'.opus': AUDIO_TYPE_OGG_OPUS,
|
||||
".wav": AUDIO_TYPE_WAV,
|
||||
".opus": AUDIO_TYPE_OGG_OPUS,
|
||||
}.get(ext, None)
|
||||
|
||||
|
||||
def read_audio_format_from_wav_file(wav_file):
|
||||
return AudioFormat(wav_file.getframerate(), wav_file.getnchannels(), wav_file.getsampwidth())
|
||||
return AudioFormat(
|
||||
wav_file.getframerate(), wav_file.getnchannels(), wav_file.getsampwidth()
|
||||
)
|
||||
|
||||
|
||||
def get_num_samples(pcm_buffer_size, audio_format=DEFAULT_FORMAT):
|
||||
@ -163,13 +194,18 @@ def get_np_duration(np_len, audio_format=DEFAULT_FORMAT):
|
||||
return np_len / audio_format.rate
|
||||
|
||||
|
||||
def convert_audio(src_audio_path, dst_audio_path, file_type=None, audio_format=DEFAULT_FORMAT):
|
||||
def convert_audio(
|
||||
src_audio_path, dst_audio_path, file_type=None, audio_format=DEFAULT_FORMAT
|
||||
):
|
||||
import sox
|
||||
|
||||
transformer = sox.Transformer()
|
||||
transformer.set_output_format(file_type=file_type,
|
||||
transformer.set_output_format(
|
||||
file_type=file_type,
|
||||
rate=audio_format.rate,
|
||||
channels=audio_format.channels,
|
||||
bits=audio_format.width * 8)
|
||||
bits=audio_format.width * 8,
|
||||
)
|
||||
transformer.build(src_audio_path, dst_audio_path)
|
||||
|
||||
|
||||
@ -178,6 +214,7 @@ class AudioFile:
|
||||
Audio data file wrapper that ensures that the file is loaded with the correct sample rate, channels,
|
||||
and width, and converts the file on the fly otherwise.
|
||||
"""
|
||||
|
||||
def __init__(self, audio_path, as_path=False, audio_format=DEFAULT_FORMAT):
|
||||
self.audio_path = audio_path
|
||||
self.audio_format = audio_format
|
||||
@ -188,8 +225,8 @@ class AudioFile:
|
||||
self.tmp_src_file_path = None
|
||||
|
||||
def __enter__(self):
|
||||
if self.audio_path.endswith('.wav'):
|
||||
self.open_file = open_remote(self.audio_path, 'rb')
|
||||
if self.audio_path.endswith(".wav"):
|
||||
self.open_file = open_remote(self.audio_path, "rb")
|
||||
self.open_wav = wave.open(self.open_file)
|
||||
if read_audio_format_from_wav_file(self.open_wav) == self.audio_format:
|
||||
if self.as_path:
|
||||
@ -202,15 +239,20 @@ class AudioFile:
|
||||
|
||||
# If the format isn't right, copy the file to local tmp dir and do the conversion on disk
|
||||
if is_remote_path(self.audio_path):
|
||||
_, self.tmp_src_file_path = tempfile.mkstemp(suffix='.wav')
|
||||
_, self.tmp_src_file_path = tempfile.mkstemp(suffix=".wav")
|
||||
copy_remote(self.audio_path, self.tmp_src_file_path, True)
|
||||
self.audio_path = self.tmp_src_file_path
|
||||
|
||||
_, self.tmp_file_path = tempfile.mkstemp(suffix='.wav')
|
||||
convert_audio(self.audio_path, self.tmp_file_path, file_type='wav', audio_format=self.audio_format)
|
||||
_, self.tmp_file_path = tempfile.mkstemp(suffix=".wav")
|
||||
convert_audio(
|
||||
self.audio_path,
|
||||
self.tmp_file_path,
|
||||
file_type="wav",
|
||||
audio_format=self.audio_format,
|
||||
)
|
||||
if self.as_path:
|
||||
return self.tmp_file_path
|
||||
self.open_wav = wave.open(self.tmp_file_path, 'rb')
|
||||
self.open_wav = wave.open(self.tmp_file_path, "rb")
|
||||
return self.open_wav
|
||||
|
||||
def __exit__(self, *args):
|
||||
@ -230,33 +272,49 @@ def read_frames(wav_file, frame_duration_ms=30, yield_remainder=False):
|
||||
while True:
|
||||
try:
|
||||
data = wav_file.readframes(frame_size)
|
||||
if not yield_remainder and get_pcm_duration(len(data), audio_format) * 1000 < frame_duration_ms:
|
||||
if (
|
||||
not yield_remainder
|
||||
and get_pcm_duration(len(data), audio_format) * 1000 < frame_duration_ms
|
||||
):
|
||||
break
|
||||
yield data
|
||||
except EOFError:
|
||||
break
|
||||
|
||||
|
||||
def read_frames_from_file(audio_path, audio_format=DEFAULT_FORMAT, frame_duration_ms=30, yield_remainder=False):
|
||||
def read_frames_from_file(
|
||||
audio_path, audio_format=DEFAULT_FORMAT, frame_duration_ms=30, yield_remainder=False
|
||||
):
|
||||
with AudioFile(audio_path, audio_format=audio_format) as wav_file:
|
||||
for frame in read_frames(wav_file, frame_duration_ms=frame_duration_ms, yield_remainder=yield_remainder):
|
||||
for frame in read_frames(
|
||||
wav_file,
|
||||
frame_duration_ms=frame_duration_ms,
|
||||
yield_remainder=yield_remainder,
|
||||
):
|
||||
yield frame
|
||||
|
||||
|
||||
def vad_split(audio_frames,
|
||||
def vad_split(
|
||||
audio_frames,
|
||||
audio_format=DEFAULT_FORMAT,
|
||||
num_padding_frames=10,
|
||||
threshold=0.5,
|
||||
aggressiveness=3):
|
||||
aggressiveness=3,
|
||||
):
|
||||
from webrtcvad import Vad # pylint: disable=import-outside-toplevel
|
||||
|
||||
if audio_format.channels != 1:
|
||||
raise ValueError('VAD-splitting requires mono samples')
|
||||
raise ValueError("VAD-splitting requires mono samples")
|
||||
if audio_format.width != 2:
|
||||
raise ValueError('VAD-splitting requires 16 bit samples')
|
||||
raise ValueError("VAD-splitting requires 16 bit samples")
|
||||
if audio_format.rate not in [8000, 16000, 32000, 48000]:
|
||||
raise ValueError('VAD-splitting only supported for sample rates 8000, 16000, 32000, or 48000')
|
||||
raise ValueError(
|
||||
"VAD-splitting only supported for sample rates 8000, 16000, 32000, or 48000"
|
||||
)
|
||||
if aggressiveness not in [0, 1, 2, 3]:
|
||||
raise ValueError('VAD-splitting aggressiveness mode has to be one of 0, 1, 2, or 3')
|
||||
raise ValueError(
|
||||
"VAD-splitting aggressiveness mode has to be one of 0, 1, 2, or 3"
|
||||
)
|
||||
ring_buffer = collections.deque(maxlen=num_padding_frames)
|
||||
triggered = False
|
||||
vad = Vad(int(aggressiveness))
|
||||
@ -266,7 +324,9 @@ def vad_split(audio_frames,
|
||||
for frame_index, frame in enumerate(audio_frames):
|
||||
frame_duration_ms = get_pcm_duration(len(frame), audio_format) * 1000
|
||||
if int(frame_duration_ms) not in [10, 20, 30]:
|
||||
raise ValueError('VAD-splitting only supported for frame durations 10, 20, or 30 ms')
|
||||
raise ValueError(
|
||||
"VAD-splitting only supported for frame durations 10, 20, or 30 ms"
|
||||
)
|
||||
is_speech = vad.is_speech(frame, audio_format.rate)
|
||||
if not triggered:
|
||||
ring_buffer.append((frame, is_speech))
|
||||
@ -282,23 +342,23 @@ def vad_split(audio_frames,
|
||||
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
|
||||
if num_unvoiced > threshold * ring_buffer.maxlen:
|
||||
triggered = False
|
||||
yield b''.join(voiced_frames), \
|
||||
frame_duration_ms * max(0, frame_index - len(voiced_frames)), \
|
||||
frame_duration_ms * frame_index
|
||||
yield b"".join(voiced_frames), frame_duration_ms * max(
|
||||
0, frame_index - len(voiced_frames)
|
||||
), frame_duration_ms * frame_index
|
||||
ring_buffer.clear()
|
||||
voiced_frames = []
|
||||
if len(voiced_frames) > 0:
|
||||
yield b''.join(voiced_frames), \
|
||||
frame_duration_ms * (frame_index - len(voiced_frames)), \
|
||||
frame_duration_ms * (frame_index + 1)
|
||||
yield b"".join(voiced_frames), frame_duration_ms * (
|
||||
frame_index - len(voiced_frames)
|
||||
), frame_duration_ms * (frame_index + 1)
|
||||
|
||||
|
||||
def pack_number(n, num_bytes):
|
||||
return n.to_bytes(num_bytes, 'big', signed=False)
|
||||
return n.to_bytes(num_bytes, "big", signed=False)
|
||||
|
||||
|
||||
def unpack_number(data):
|
||||
return int.from_bytes(data, 'big', signed=False)
|
||||
return int.from_bytes(data, "big", signed=False)
|
||||
|
||||
|
||||
def get_opus_frame_size(rate):
|
||||
@ -308,7 +368,8 @@ def get_opus_frame_size(rate):
|
||||
def write_opus(opus_file, audio_data, audio_format=DEFAULT_FORMAT, bitrate=None):
|
||||
frame_size = get_opus_frame_size(audio_format.rate)
|
||||
import opuslib # pylint: disable=import-outside-toplevel
|
||||
encoder = opuslib.Encoder(audio_format.rate, audio_format.channels, 'audio')
|
||||
|
||||
encoder = opuslib.Encoder(audio_format.rate, audio_format.channels, "audio")
|
||||
if bitrate is not None:
|
||||
encoder.bitrate = bitrate
|
||||
chunk_size = frame_size * audio_format.channels * audio_format.width
|
||||
@ -320,7 +381,7 @@ def write_opus(opus_file, audio_data, audio_format=DEFAULT_FORMAT, bitrate=None)
|
||||
chunk = audio_data[i : i + chunk_size]
|
||||
# Preventing non-deterministic encoding results from uninitialized remainder of the encoder buffer
|
||||
if len(chunk) < chunk_size:
|
||||
chunk = chunk + b'\0' * (chunk_size - len(chunk))
|
||||
chunk = chunk + b"\0" * (chunk_size - len(chunk))
|
||||
encoded = encoder.encode(chunk, frame_size)
|
||||
opus_file.write(pack_number(len(encoded), OPUS_CHUNK_LEN_SIZE))
|
||||
opus_file.write(encoded)
|
||||
@ -339,6 +400,7 @@ def read_opus(opus_file):
|
||||
pcm_buffer_size, audio_format = read_opus_header(opus_file)
|
||||
frame_size = get_opus_frame_size(audio_format.rate)
|
||||
import opuslib # pylint: disable=import-outside-toplevel
|
||||
|
||||
decoder = opuslib.Decoder(audio_format.rate, audio_format.channels)
|
||||
audio_data = bytearray()
|
||||
while len(audio_data) < pcm_buffer_size:
|
||||
@ -357,13 +419,12 @@ def read_ogg_opus(ogg_file):
|
||||
opusfile = pyogg.opus.op_open_memory(
|
||||
ubyte_array.from_buffer(ogg_file_buffer),
|
||||
len(ogg_file_buffer),
|
||||
ctypes.pointer(error)
|
||||
ctypes.pointer(error),
|
||||
)
|
||||
|
||||
if error.value != 0:
|
||||
raise ValueError(
|
||||
("Ogg/Opus buffer could not be read."
|
||||
"Error code: {}").format(error.value)
|
||||
("Ogg/Opus buffer could not be read." "Error code: {}").format(error.value)
|
||||
)
|
||||
|
||||
channel_count = pyogg.opus.op_channel_count(opusfile, -1)
|
||||
@ -380,10 +441,7 @@ def read_ogg_opus(ogg_file):
|
||||
# seems we can only do pointer arithmetic on void
|
||||
# pointers. See
|
||||
# https://mattgwwalker.wordpress.com/2020/05/30/pointer-manipulation-in-python/
|
||||
buf_ptr = ctypes.cast(
|
||||
ctypes.pointer(buf),
|
||||
ctypes.c_void_p
|
||||
)
|
||||
buf_ptr = ctypes.cast(ctypes.pointer(buf), ctypes.c_void_p)
|
||||
assert buf_ptr.value is not None # for mypy
|
||||
buf_ptr_zero = buf_ptr.value
|
||||
|
||||
@ -396,37 +454,23 @@ def read_ogg_opus(ogg_file):
|
||||
while True:
|
||||
# Calculate remaining buffer size
|
||||
remaining_buffer = (
|
||||
len(buf) # int
|
||||
- (buf_ptr.value - buf_ptr_zero) // bytes_per_sample
|
||||
len(buf) - (buf_ptr.value - buf_ptr_zero) // bytes_per_sample # int
|
||||
)
|
||||
|
||||
# Convert buffer pointer to the desired type
|
||||
ptr = ctypes.cast(
|
||||
buf_ptr,
|
||||
ctypes.POINTER(pyogg.opus.opus_int16)
|
||||
)
|
||||
ptr = ctypes.cast(buf_ptr, ctypes.POINTER(pyogg.opus.opus_int16))
|
||||
|
||||
# Read the next section of PCM
|
||||
ns = pyogg.opus.op_read(
|
||||
opusfile,
|
||||
ptr,
|
||||
remaining_buffer,
|
||||
pyogg.ogg.c_int_p()
|
||||
)
|
||||
ns = pyogg.opus.op_read(opusfile, ptr, remaining_buffer, pyogg.ogg.c_int_p())
|
||||
|
||||
# Check for errors
|
||||
if ns < 0:
|
||||
raise ValueError(
|
||||
"Error while reading OggOpus buffer. "+
|
||||
"Error code: {}".format(ns)
|
||||
"Error while reading OggOpus buffer. " + "Error code: {}".format(ns)
|
||||
)
|
||||
|
||||
# Increment the pointer
|
||||
buf_ptr.value += (
|
||||
ns
|
||||
* bytes_per_sample
|
||||
* channel_count
|
||||
)
|
||||
buf_ptr.value += ns * bytes_per_sample * channel_count
|
||||
assert buf_ptr.value is not None # for mypy
|
||||
|
||||
samples += ns
|
||||
@ -448,7 +492,7 @@ def read_ogg_opus(ogg_file):
|
||||
|
||||
def write_wav(wav_file, pcm_data, audio_format=DEFAULT_FORMAT):
|
||||
# wav_file is already a file-pointer here
|
||||
with wave.open(wav_file, 'wb') as wav_file_writer:
|
||||
with wave.open(wav_file, "wb") as wav_file_writer:
|
||||
wav_file_writer.setframerate(audio_format.rate)
|
||||
wav_file_writer.setnchannels(audio_format.channels)
|
||||
wav_file_writer.setsampwidth(audio_format.width)
|
||||
@ -457,7 +501,7 @@ def write_wav(wav_file, pcm_data, audio_format=DEFAULT_FORMAT):
|
||||
|
||||
def read_wav(wav_file):
|
||||
wav_file.seek(0)
|
||||
with wave.open(wav_file, 'rb') as wav_file_reader:
|
||||
with wave.open(wav_file, "rb") as wav_file_reader:
|
||||
audio_format = read_audio_format_from_wav_file(wav_file_reader)
|
||||
pcm_data = wav_file_reader.readframes(wav_file_reader.getnframes())
|
||||
return audio_format, pcm_data
|
||||
@ -470,20 +514,24 @@ def read_audio(audio_type, audio_file):
|
||||
return read_opus(audio_file)
|
||||
if audio_type == AUDIO_TYPE_OGG_OPUS:
|
||||
return read_ogg_opus(audio_file)
|
||||
raise ValueError('Unsupported audio type: {}'.format(audio_type))
|
||||
raise ValueError("Unsupported audio type: {}".format(audio_type))
|
||||
|
||||
|
||||
def write_audio(audio_type, audio_file, pcm_data, audio_format=DEFAULT_FORMAT, bitrate=None):
|
||||
def write_audio(
|
||||
audio_type, audio_file, pcm_data, audio_format=DEFAULT_FORMAT, bitrate=None
|
||||
):
|
||||
if audio_type == AUDIO_TYPE_WAV:
|
||||
return write_wav(audio_file, pcm_data, audio_format=audio_format)
|
||||
if audio_type == AUDIO_TYPE_OPUS:
|
||||
return write_opus(audio_file, pcm_data, audio_format=audio_format, bitrate=bitrate)
|
||||
raise ValueError('Unsupported audio type: {}'.format(audio_type))
|
||||
return write_opus(
|
||||
audio_file, pcm_data, audio_format=audio_format, bitrate=bitrate
|
||||
)
|
||||
raise ValueError("Unsupported audio type: {}".format(audio_type))
|
||||
|
||||
|
||||
def read_wav_duration(wav_file):
|
||||
wav_file.seek(0)
|
||||
with wave.open(wav_file, 'rb') as wav_file_reader:
|
||||
with wave.open(wav_file, "rb") as wav_file_reader:
|
||||
return wav_file_reader.getnframes() / wav_file_reader.getframerate()
|
||||
|
||||
|
||||
@ -499,13 +547,12 @@ def read_ogg_opus_duration(ogg_file):
|
||||
opusfile = pyogg.opus.op_open_memory(
|
||||
ubyte_array.from_buffer(ogg_file_buffer),
|
||||
len(ogg_file_buffer),
|
||||
ctypes.pointer(error)
|
||||
ctypes.pointer(error),
|
||||
)
|
||||
|
||||
if error.value != 0:
|
||||
raise ValueError(
|
||||
("Ogg/Opus buffer could not be read."
|
||||
"Error code: {}").format(error.value)
|
||||
("Ogg/Opus buffer could not be read." "Error code: {}").format(error.value)
|
||||
)
|
||||
|
||||
pcm_buffer_size = pyogg.opus.op_pcm_total(opusfile, -1)
|
||||
@ -524,12 +571,12 @@ def read_duration(audio_type, audio_file):
|
||||
return read_opus_duration(audio_file)
|
||||
if audio_type == AUDIO_TYPE_OGG_OPUS:
|
||||
return read_ogg_opus_duration(audio_file)
|
||||
raise ValueError('Unsupported audio type: {}'.format(audio_type))
|
||||
raise ValueError("Unsupported audio type: {}".format(audio_type))
|
||||
|
||||
|
||||
def read_wav_format(wav_file):
|
||||
wav_file.seek(0)
|
||||
with wave.open(wav_file, 'rb') as wav_file_reader:
|
||||
with wave.open(wav_file, "rb") as wav_file_reader:
|
||||
return read_audio_format_from_wav_file(wav_file_reader)
|
||||
|
||||
|
||||
@ -545,13 +592,12 @@ def read_ogg_opus_format(ogg_file):
|
||||
opusfile = pyogg.opus.op_open_memory(
|
||||
ubyte_array.from_buffer(ogg_file_buffer),
|
||||
len(ogg_file_buffer),
|
||||
ctypes.pointer(error)
|
||||
ctypes.pointer(error),
|
||||
)
|
||||
|
||||
if error.value != 0:
|
||||
raise ValueError(
|
||||
("Ogg/Opus buffer could not be read."
|
||||
"Error code: {}").format(error.value)
|
||||
("Ogg/Opus buffer could not be read." "Error code: {}").format(error.value)
|
||||
)
|
||||
|
||||
channel_count = pyogg.opus.op_channel_count(opusfile, -1)
|
||||
@ -569,12 +615,12 @@ def read_format(audio_type, audio_file):
|
||||
return read_opus_format(audio_file)
|
||||
if audio_type == AUDIO_TYPE_OGG_OPUS:
|
||||
return read_ogg_opus_format(audio_file)
|
||||
raise ValueError('Unsupported audio type: {}'.format(audio_type))
|
||||
raise ValueError("Unsupported audio type: {}".format(audio_type))
|
||||
|
||||
|
||||
def get_dtype(audio_format):
|
||||
if audio_format.width not in [1, 2, 4]:
|
||||
raise ValueError('Unsupported sample width: {}'.format(audio_format.width))
|
||||
raise ValueError("Unsupported sample width: {}".format(audio_format.width))
|
||||
return [None, np.int8, np.int16, None, np.int32][audio_format.width]
|
||||
|
||||
|
||||
@ -624,4 +670,7 @@ def gain_db_to_ratio(gain_db):
|
||||
|
||||
|
||||
def normalize_audio(sample_data, dbfs=3.0103):
|
||||
return np.maximum(np.minimum(sample_data * gain_db_to_ratio(dbfs - max_dbfs(sample_data)), 1.0), -1.0)
|
||||
return np.maximum(
|
||||
np.minimum(sample_data * gain_db_to_ratio(dbfs - max_dbfs(sample_data)), 1.0),
|
||||
-1.0,
|
||||
)
|
||||
|
@ -1,18 +1,33 @@
|
||||
import os
|
||||
import re
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import resampy
|
||||
import numpy as np
|
||||
import re
|
||||
from multiprocessing import Process, Queue
|
||||
|
||||
from multiprocessing import Queue, Process
|
||||
from .audio import gain_db_to_ratio, max_dbfs, normalize_audio, AUDIO_TYPE_NP, AUDIO_TYPE_PCM, AUDIO_TYPE_OPUS
|
||||
from .helpers import LimitingPool, int_range, float_range, pick_value_from_range, tf_pick_value_from_range, MEGABYTE
|
||||
from .sample_collections import samples_from_source, unpack_maybe
|
||||
import numpy as np
|
||||
import resampy
|
||||
|
||||
from .audio import (
|
||||
AUDIO_TYPE_NP,
|
||||
AUDIO_TYPE_OPUS,
|
||||
AUDIO_TYPE_PCM,
|
||||
gain_db_to_ratio,
|
||||
max_dbfs,
|
||||
normalize_audio,
|
||||
)
|
||||
from .helpers import (
|
||||
MEGABYTE,
|
||||
LimitingPool,
|
||||
float_range,
|
||||
int_range,
|
||||
pick_value_from_range,
|
||||
tf_pick_value_from_range,
|
||||
)
|
||||
from .logging import log_info
|
||||
from .sample_collections import samples_from_source, unpack_maybe
|
||||
|
||||
BUFFER_SIZE = 1 * MEGABYTE
|
||||
SPEC_PARSER = re.compile(r'^(?P<cls>[a-z_]+)(\[(?P<params>.*)\])?$')
|
||||
SPEC_PARSER = re.compile(r"^(?P<cls>[a-z_]+)(\[(?P<params>.*)\])?$")
|
||||
|
||||
|
||||
class Augmentation:
|
||||
@ -32,10 +47,10 @@ class SampleAugmentation(Augmentation):
|
||||
|
||||
|
||||
class GraphAugmentation(Augmentation):
|
||||
def __init__(self, p=1.0, domain='spectrogram'):
|
||||
def __init__(self, p=1.0, domain="spectrogram"):
|
||||
super(GraphAugmentation, self).__init__(p)
|
||||
if domain not in ['signal', 'spectrogram', 'features']:
|
||||
raise ValueError('Unsupported augmentation domain: {}'.format(domain))
|
||||
if domain not in ["signal", "spectrogram", "features"]:
|
||||
raise ValueError("Unsupported augmentation domain: {}".format(domain))
|
||||
self.domain = domain
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
@ -43,19 +58,31 @@ class GraphAugmentation(Augmentation):
|
||||
|
||||
def apply_with_probability(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
rv = tf.random.stateless_uniform([], seed=(clock * tf.int32.min, clock * tf.int32.max))
|
||||
return tf.cond(tf.less(rv, self.probability),
|
||||
|
||||
rv = tf.random.stateless_uniform(
|
||||
[], seed=(clock * tf.int32.min, clock * tf.int32.max)
|
||||
)
|
||||
return tf.cond(
|
||||
tf.less(rv, self.probability),
|
||||
lambda: self.apply(tensor, transcript=transcript, clock=clock),
|
||||
lambda: tensor)
|
||||
lambda: tensor,
|
||||
)
|
||||
|
||||
def maybe_apply(self, domain, tensor, transcript=None, clock=0.0):
|
||||
if domain == self.domain:
|
||||
return self.apply_with_probability(tensor, transcript=transcript, clock=clock)
|
||||
return self.apply_with_probability(
|
||||
tensor, transcript=transcript, clock=clock
|
||||
)
|
||||
return tensor
|
||||
|
||||
def units_per_ms(self):
|
||||
from .flags import FLAGS # pylint: disable=import-outside-toplevel
|
||||
return FLAGS.audio_sample_rate / 1000.0 if self.domain == 'signal' else 1.0 / FLAGS.feature_win_step
|
||||
|
||||
return (
|
||||
FLAGS.audio_sample_rate / 1000.0
|
||||
if self.domain == "signal"
|
||||
else 1.0 / FLAGS.feature_win_step
|
||||
)
|
||||
|
||||
|
||||
def parse_augmentation(augmentation_spec):
|
||||
@ -73,24 +100,34 @@ def parse_augmentation(augmentation_spec):
|
||||
"""
|
||||
match = SPEC_PARSER.match(augmentation_spec)
|
||||
if not match:
|
||||
raise ValueError('Augmentation specification has wrong format')
|
||||
cls_name = ''.join(map(lambda p: p[0].upper() + p[1:], match.group('cls').split('_')))
|
||||
raise ValueError("Augmentation specification has wrong format")
|
||||
cls_name = "".join(
|
||||
map(lambda p: p[0].upper() + p[1:], match.group("cls").split("_"))
|
||||
)
|
||||
augmentation_cls = globals()[cls_name] if cls_name in globals() else None
|
||||
if augmentation_cls is None or not issubclass(augmentation_cls, Augmentation) or augmentation_cls == Augmentation:
|
||||
raise ValueError('Unknown augmentation: {}'.format(cls_name))
|
||||
parameters = match.group('params')
|
||||
parameters = [] if parameters is None else parameters.split(',')
|
||||
if (
|
||||
augmentation_cls is None
|
||||
or not issubclass(augmentation_cls, Augmentation)
|
||||
or augmentation_cls == Augmentation
|
||||
):
|
||||
raise ValueError("Unknown augmentation: {}".format(cls_name))
|
||||
parameters = match.group("params")
|
||||
parameters = [] if parameters is None else parameters.split(",")
|
||||
args = []
|
||||
kwargs = {}
|
||||
for parameter in parameters:
|
||||
pair = tuple(list(map(str.strip, (parameter.split('=')))))
|
||||
pair = tuple(list(map(str.strip, (parameter.split("=")))))
|
||||
if len(pair) == 1:
|
||||
args.append(pair)
|
||||
elif len(pair) == 2:
|
||||
kwargs[pair[0]] = pair[1]
|
||||
else:
|
||||
raise ValueError('Unable to parse augmentation value assignment')
|
||||
log_info('Processed augmentation type: [{}] with parameter settings: {}'.format(augmentation_cls.__name__, kwargs))
|
||||
raise ValueError("Unable to parse augmentation value assignment")
|
||||
log_info(
|
||||
"Processed augmentation type: [{}] with parameter settings: {}".format(
|
||||
augmentation_cls.__name__, kwargs
|
||||
)
|
||||
)
|
||||
return augmentation_cls(*args, **kwargs)
|
||||
|
||||
|
||||
@ -110,7 +147,9 @@ def parse_augmentations(augmentation_specs):
|
||||
return list(map(parse_augmentation, augmentation_specs or []))
|
||||
|
||||
|
||||
def apply_graph_augmentations(domain, tensor, augmentations, transcript=None, clock=0.0):
|
||||
def apply_graph_augmentations(
|
||||
domain, tensor, augmentations, transcript=None, clock=0.0
|
||||
):
|
||||
"""
|
||||
Augments training sample tensor of a certain domain with matching augmentations of passed list.
|
||||
|
||||
@ -134,7 +173,9 @@ def apply_graph_augmentations(domain, tensor, augmentations, transcript=None, cl
|
||||
if augmentations:
|
||||
for augmentation in augmentations:
|
||||
if isinstance(augmentation, GraphAugmentation):
|
||||
tensor = augmentation.maybe_apply(domain, tensor, transcript=transcript, clock=clock)
|
||||
tensor = augmentation.maybe_apply(
|
||||
domain, tensor, transcript=transcript, clock=clock
|
||||
)
|
||||
return tensor
|
||||
|
||||
|
||||
@ -168,13 +209,15 @@ def _augment_sample(timed_sample, context=None):
|
||||
return sample
|
||||
|
||||
|
||||
def apply_sample_augmentations(samples,
|
||||
def apply_sample_augmentations(
|
||||
samples,
|
||||
augmentations,
|
||||
audio_type=AUDIO_TYPE_NP,
|
||||
buffering=BUFFER_SIZE,
|
||||
process_ahead=None,
|
||||
clock=0.0,
|
||||
final_clock=None):
|
||||
final_clock=None,
|
||||
):
|
||||
"""
|
||||
Prepares samples for being used during training.
|
||||
This includes parallel and buffered application of augmentations and a conversion to a specified audio-type.
|
||||
@ -201,20 +244,27 @@ def apply_sample_augmentations(samples,
|
||||
-------
|
||||
iterable of util.sample_collections.LabeledSample or util.audio.Sample
|
||||
"""
|
||||
|
||||
def timed_samples():
|
||||
if final_clock is None:
|
||||
for sample in samples:
|
||||
yield sample, clock
|
||||
else:
|
||||
for sample_index, sample in enumerate(samples):
|
||||
sample_clock = clock + (final_clock - clock) * (sample_index / len(samples))
|
||||
sample_clock = clock + (final_clock - clock) * (
|
||||
sample_index / len(samples)
|
||||
)
|
||||
yield sample, sample_clock
|
||||
|
||||
assert 0.0 <= clock <= 1.0
|
||||
if final_clock is not None:
|
||||
assert 0.0 <= final_clock <= 1.0
|
||||
assert clock <= final_clock
|
||||
augmentations = [aug for aug in augmentations if isinstance(aug, SampleAugmentation)] if augmentations else []
|
||||
augmentations = (
|
||||
[aug for aug in augmentations if isinstance(aug, SampleAugmentation)]
|
||||
if augmentations
|
||||
else []
|
||||
)
|
||||
try:
|
||||
for augmentation in augmentations:
|
||||
augmentation.start(buffering=buffering)
|
||||
@ -223,9 +273,11 @@ def apply_sample_augmentations(samples,
|
||||
for timed_sample in timed_samples():
|
||||
yield _load_and_augment_sample(timed_sample, context=context)
|
||||
else:
|
||||
with LimitingPool(process_ahead=process_ahead,
|
||||
with LimitingPool(
|
||||
process_ahead=process_ahead,
|
||||
initializer=_init_augmentation_worker,
|
||||
initargs=(context,)) as pool:
|
||||
initargs=(context,),
|
||||
) as pool:
|
||||
yield from pool.imap(_load_and_augment_sample, timed_samples())
|
||||
finally:
|
||||
for augmentation in augmentations:
|
||||
@ -247,6 +299,7 @@ def _enqueue_overlay_samples(sample_source, queue, buffering=BUFFER_SIZE):
|
||||
|
||||
class Overlay(SampleAugmentation):
|
||||
"""See "Overlay augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, source, p=1.0, snr=3.0, layers=1):
|
||||
super(Overlay, self).__init__(p)
|
||||
self.source = source
|
||||
@ -257,10 +310,14 @@ class Overlay(SampleAugmentation):
|
||||
self.enqueue_process = None
|
||||
|
||||
def start(self, buffering=BUFFER_SIZE):
|
||||
self.queue = Queue(max(1, math.floor(self.probability * self.layers[1] * os.cpu_count())))
|
||||
self.enqueue_process = Process(target=_enqueue_overlay_samples,
|
||||
self.queue = Queue(
|
||||
max(1, math.floor(self.probability * self.layers[1] * os.cpu_count()))
|
||||
)
|
||||
self.enqueue_process = Process(
|
||||
target=_enqueue_overlay_samples,
|
||||
args=(self.source, self.queue),
|
||||
kwargs={'buffering': buffering})
|
||||
kwargs={"buffering": buffering},
|
||||
)
|
||||
self.enqueue_process.start()
|
||||
|
||||
def apply(self, sample, clock=0.0):
|
||||
@ -280,11 +337,15 @@ class Overlay(SampleAugmentation):
|
||||
n_required = len(audio) - overlay_offset
|
||||
n_current = len(self.current_sample)
|
||||
if n_required >= n_current: # take it completely
|
||||
overlay_data[overlay_offset:overlay_offset + n_current] += self.current_sample
|
||||
overlay_data[
|
||||
overlay_offset : overlay_offset + n_current
|
||||
] += self.current_sample
|
||||
overlay_offset += n_current
|
||||
self.current_sample = None
|
||||
else: # take required slice from head and keep tail for next layer or sample
|
||||
overlay_data[overlay_offset:overlay_offset + n_required] += self.current_sample[0:n_required]
|
||||
overlay_data[
|
||||
overlay_offset : overlay_offset + n_required
|
||||
] += self.current_sample[0:n_required]
|
||||
overlay_offset += n_required
|
||||
self.current_sample = self.current_sample[n_required:]
|
||||
snr_db = pick_value_from_range(self.snr, clock=clock)
|
||||
@ -303,18 +364,24 @@ class Overlay(SampleAugmentation):
|
||||
|
||||
class Codec(SampleAugmentation):
|
||||
"""See "Codec augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, p=1.0, bitrate=3200):
|
||||
super(Codec, self).__init__(p)
|
||||
self.bitrate = int_range(bitrate)
|
||||
|
||||
def apply(self, sample, clock=0.0):
|
||||
bitrate = pick_value_from_range(self.bitrate, clock=clock)
|
||||
sample.change_audio_type(new_audio_type=AUDIO_TYPE_PCM) # decoding to ensure it has to get encoded again
|
||||
sample.change_audio_type(new_audio_type=AUDIO_TYPE_OPUS, bitrate=bitrate) # will get decoded again downstream
|
||||
sample.change_audio_type(
|
||||
new_audio_type=AUDIO_TYPE_PCM
|
||||
) # decoding to ensure it has to get encoded again
|
||||
sample.change_audio_type(
|
||||
new_audio_type=AUDIO_TYPE_OPUS, bitrate=bitrate
|
||||
) # will get decoded again downstream
|
||||
|
||||
|
||||
class Reverb(SampleAugmentation):
|
||||
"""See "Reverb augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, p=1.0, delay=20.0, decay=10.0):
|
||||
super(Reverb, self).__init__(p)
|
||||
self.delay = float_range(delay)
|
||||
@ -331,8 +398,12 @@ class Reverb(SampleAugmentation):
|
||||
primes = [17, 19, 23, 29, 31]
|
||||
for delay_prime in primes: # primes to minimize comb filter interference
|
||||
layer = np.copy(audio)
|
||||
n_delay = math.floor(delay * (delay_prime / primes[0]) * sample.audio_format.rate / 1000.0)
|
||||
n_delay = max(16, n_delay) # 16 samples minimum to avoid performance trap and risk of division by zero
|
||||
n_delay = math.floor(
|
||||
delay * (delay_prime / primes[0]) * sample.audio_format.rate / 1000.0
|
||||
)
|
||||
n_delay = max(
|
||||
16, n_delay
|
||||
) # 16 samples minimum to avoid performance trap and risk of division by zero
|
||||
for w_index in range(0, math.floor(len(audio) / n_delay)):
|
||||
w1 = w_index * n_delay
|
||||
w2 = (w_index + 1) * n_delay
|
||||
@ -345,6 +416,7 @@ class Reverb(SampleAugmentation):
|
||||
|
||||
class Resample(SampleAugmentation):
|
||||
"""See "Resample augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, p=1.0, rate=8000):
|
||||
super(Resample, self).__init__(p)
|
||||
self.rate = int_range(rate)
|
||||
@ -353,8 +425,12 @@ class Resample(SampleAugmentation):
|
||||
sample.change_audio_type(new_audio_type=AUDIO_TYPE_NP)
|
||||
rate = pick_value_from_range(self.rate, clock=clock)
|
||||
orig_len = len(sample.audio)
|
||||
resampled = resampy.resample(sample.audio, sample.audio_format.rate, rate, axis=0, filter='kaiser_fast')
|
||||
sample.audio = resampy.resample(resampled, rate, sample.audio_format.rate, axis=0, filter='kaiser_fast')[:orig_len]
|
||||
resampled = resampy.resample(
|
||||
sample.audio, sample.audio_format.rate, rate, axis=0, filter="kaiser_fast"
|
||||
)
|
||||
sample.audio = resampy.resample(
|
||||
resampled, rate, sample.audio_format.rate, axis=0, filter="kaiser_fast"
|
||||
)[:orig_len]
|
||||
|
||||
|
||||
class NormalizeSampleRate(SampleAugmentation):
|
||||
@ -367,12 +443,19 @@ class NormalizeSampleRate(SampleAugmentation):
|
||||
return
|
||||
|
||||
sample.change_audio_type(new_audio_type=AUDIO_TYPE_NP)
|
||||
sample.audio = resampy.resample(sample.audio, sample.audio_format.rate, self.rate, axis=0, filter='kaiser_fast')
|
||||
sample.audio = resampy.resample(
|
||||
sample.audio,
|
||||
sample.audio_format.rate,
|
||||
self.rate,
|
||||
axis=0,
|
||||
filter="kaiser_fast",
|
||||
)
|
||||
sample.audio_format = sample.audio_format._replace(rate=self.rate)
|
||||
|
||||
|
||||
class Volume(SampleAugmentation):
|
||||
"""See "Volume augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, p=1.0, dbfs=3.0103):
|
||||
super(Volume, self).__init__(p)
|
||||
self.target_dbfs = float_range(dbfs)
|
||||
@ -385,55 +468,76 @@ class Volume(SampleAugmentation):
|
||||
|
||||
class Pitch(GraphAugmentation):
|
||||
"""See "Pitch augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, p=1.0, pitch=(1.075, 1.075, 0.125)):
|
||||
super(Pitch, self).__init__(p, domain='spectrogram')
|
||||
super(Pitch, self).__init__(p, domain="spectrogram")
|
||||
self.pitch = float_range(pitch)
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
|
||||
original_shape = tf.shape(tensor)
|
||||
pitch = tf_pick_value_from_range(self.pitch, clock=clock)
|
||||
new_freq_size = tf.cast(tf.cast(original_shape[2], tf.float32) * pitch, tf.int32)
|
||||
spectrogram_aug = tf.image.resize_bilinear(tf.expand_dims(tensor, -1), [original_shape[1], new_freq_size])
|
||||
spectrogram_aug = tf.image.crop_to_bounding_box(spectrogram_aug,
|
||||
new_freq_size = tf.cast(
|
||||
tf.cast(original_shape[2], tf.float32) * pitch, tf.int32
|
||||
)
|
||||
spectrogram_aug = tf.image.resize_bilinear(
|
||||
tf.expand_dims(tensor, -1), [original_shape[1], new_freq_size]
|
||||
)
|
||||
spectrogram_aug = tf.image.crop_to_bounding_box(
|
||||
spectrogram_aug,
|
||||
offset_height=0,
|
||||
offset_width=0,
|
||||
target_height=original_shape[1],
|
||||
target_width=tf.math.minimum(original_shape[2], new_freq_size))
|
||||
spectrogram_aug = tf.cond(pitch < 1,
|
||||
lambda: tf.image.pad_to_bounding_box(spectrogram_aug,
|
||||
target_width=tf.math.minimum(original_shape[2], new_freq_size),
|
||||
)
|
||||
spectrogram_aug = tf.cond(
|
||||
pitch < 1,
|
||||
lambda: tf.image.pad_to_bounding_box(
|
||||
spectrogram_aug,
|
||||
offset_height=0,
|
||||
offset_width=0,
|
||||
target_height=tf.shape(spectrogram_aug)[1],
|
||||
target_width=original_shape[2]),
|
||||
lambda: spectrogram_aug)
|
||||
target_width=original_shape[2],
|
||||
),
|
||||
lambda: spectrogram_aug,
|
||||
)
|
||||
return spectrogram_aug[:, :, :, 0]
|
||||
|
||||
|
||||
class Tempo(GraphAugmentation):
|
||||
"""See "Tempo augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, p=1.0, factor=1.1, max_time=-1):
|
||||
super(Tempo, self).__init__(p, domain='spectrogram')
|
||||
super(Tempo, self).__init__(p, domain="spectrogram")
|
||||
self.factor = float_range(factor)
|
||||
self.max_time = float(max_time)
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
|
||||
factor = tf_pick_value_from_range(self.factor, clock=clock)
|
||||
original_shape = tf.shape(tensor)
|
||||
new_time_size = tf.cast(tf.cast(original_shape[1], tf.float32) / factor, tf.int32)
|
||||
new_time_size = tf.cast(
|
||||
tf.cast(original_shape[1], tf.float32) / factor, tf.int32
|
||||
)
|
||||
if transcript is not None:
|
||||
new_time_size = tf.math.maximum(new_time_size, tf.shape(transcript)[1])
|
||||
if self.max_time > 0:
|
||||
new_time_size = tf.math.minimum(new_time_size, tf.cast(self.max_time * self.units_per_ms(), tf.int32))
|
||||
spectrogram_aug = tf.image.resize_bilinear(tf.expand_dims(tensor, -1), [new_time_size, original_shape[2]])
|
||||
new_time_size = tf.math.minimum(
|
||||
new_time_size, tf.cast(self.max_time * self.units_per_ms(), tf.int32)
|
||||
)
|
||||
spectrogram_aug = tf.image.resize_bilinear(
|
||||
tf.expand_dims(tensor, -1), [new_time_size, original_shape[2]]
|
||||
)
|
||||
return spectrogram_aug[:, :, :, 0]
|
||||
|
||||
|
||||
class Warp(GraphAugmentation):
|
||||
"""See "Warp augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, p=1.0, nt=1, nf=1, wt=0.1, wf=0.0):
|
||||
super(Warp, self).__init__(p, domain='spectrogram')
|
||||
super(Warp, self).__init__(p, domain="spectrogram")
|
||||
self.num_t = int_range(nt)
|
||||
self.num_f = int_range(nf)
|
||||
self.warp_t = float_range(wt)
|
||||
@ -441,6 +545,7 @@ class Warp(GraphAugmentation):
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
|
||||
original_shape = tf.shape(tensor)
|
||||
size_t, size_f = original_shape[1], original_shape[2]
|
||||
seed = (clock * tf.int32.min, clock * tf.int32.max)
|
||||
@ -449,25 +554,43 @@ class Warp(GraphAugmentation):
|
||||
|
||||
def get_flows(n, size, warp):
|
||||
warp = tf_pick_value_from_range(warp, clock=clock)
|
||||
warp = warp * tf.cast(size, dtype=tf.float32) / tf.cast(2 * (n + 1), dtype=tf.float32)
|
||||
f = tf.random.stateless_normal([num_t, num_f], seed, mean=0.0, stddev=warp, dtype=tf.float32)
|
||||
return tf.pad(f, tf.constant([[1, 1], [1, 1]]), 'CONSTANT') # zero flow at all edges
|
||||
warp = (
|
||||
warp
|
||||
* tf.cast(size, dtype=tf.float32)
|
||||
/ tf.cast(2 * (n + 1), dtype=tf.float32)
|
||||
)
|
||||
f = tf.random.stateless_normal(
|
||||
[num_t, num_f], seed, mean=0.0, stddev=warp, dtype=tf.float32
|
||||
)
|
||||
return tf.pad(
|
||||
f, tf.constant([[1, 1], [1, 1]]), "CONSTANT"
|
||||
) # zero flow at all edges
|
||||
|
||||
flows = tf.stack([get_flows(num_t, size_t, self.warp_t), get_flows(num_f, size_f, self.warp_f)], axis=2)
|
||||
flows = tf.stack(
|
||||
[
|
||||
get_flows(num_t, size_t, self.warp_t),
|
||||
get_flows(num_f, size_f, self.warp_f),
|
||||
],
|
||||
axis=2,
|
||||
)
|
||||
flows = tf.image.resize_bicubic(tf.expand_dims(flows, 0), [size_t, size_f])
|
||||
spectrogram_aug = tf.contrib.image.dense_image_warp(tf.expand_dims(tensor, -1), flows)
|
||||
spectrogram_aug = tf.contrib.image.dense_image_warp(
|
||||
tf.expand_dims(tensor, -1), flows
|
||||
)
|
||||
return tf.reshape(spectrogram_aug, shape=(1, -1, size_f))
|
||||
|
||||
|
||||
class FrequencyMask(GraphAugmentation):
|
||||
"""See "Frequency mask augmentation" in training documentation"""
|
||||
|
||||
def __init__(self, p=1.0, n=3, size=2):
|
||||
super(FrequencyMask, self).__init__(p, domain='spectrogram')
|
||||
super(FrequencyMask, self).__init__(p, domain="spectrogram")
|
||||
self.n = int_range(n) # pylint: disable=invalid-name
|
||||
self.size = int_range(size)
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
|
||||
time_max = tf.shape(tensor)[1]
|
||||
freq_max = tf.shape(tensor)[2]
|
||||
n = tf_pick_value_from_range(self.n, clock=clock)
|
||||
@ -476,10 +599,21 @@ class FrequencyMask(GraphAugmentation):
|
||||
size = tf_pick_value_from_range(self.size, clock=clock)
|
||||
size = tf.math.maximum(1, tf.math.minimum(freq_max - 1, size))
|
||||
seed = tf.cast(clock * tf.int32.max, tf.int32) - i
|
||||
f0 = tf.random.stateless_uniform((), (-seed, seed), minval=0, maxval=freq_max - size, dtype=tf.dtypes.int32)
|
||||
freq_mask = tf.concat([tf.ones([1, time_max, f0]),
|
||||
f0 = tf.random.stateless_uniform(
|
||||
(),
|
||||
(-seed, seed),
|
||||
minval=0,
|
||||
maxval=freq_max - size,
|
||||
dtype=tf.dtypes.int32,
|
||||
)
|
||||
freq_mask = tf.concat(
|
||||
[
|
||||
tf.ones([1, time_max, f0]),
|
||||
tf.zeros([1, time_max, size]),
|
||||
tf.ones([1, time_max, freq_max - f0 - size])], axis=2)
|
||||
tf.ones([1, time_max, freq_max - f0 - size]),
|
||||
],
|
||||
axis=2,
|
||||
)
|
||||
return i + 1, spectrogram_aug * freq_mask
|
||||
|
||||
return tf.while_loop(lambda i, spectrogram_aug: i < n, body, (0, tensor))[1]
|
||||
@ -487,29 +621,51 @@ class FrequencyMask(GraphAugmentation):
|
||||
|
||||
class TimeMask(GraphAugmentation):
|
||||
"""See "Time mask augmentation" in training documentation"""
|
||||
def __init__(self, p=1.0, domain='spectrogram', n=3, size=10.0):
|
||||
|
||||
def __init__(self, p=1.0, domain="spectrogram", n=3, size=10.0):
|
||||
super(TimeMask, self).__init__(p, domain=domain)
|
||||
self.n = int_range(n) # pylint: disable=invalid-name
|
||||
self.size = float_range(size)
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
time_max = tf.shape(tensor)[0 if self.domain == 'signal' else 1]
|
||||
|
||||
time_max = tf.shape(tensor)[0 if self.domain == "signal" else 1]
|
||||
n = tf_pick_value_from_range(self.n, clock=clock)
|
||||
|
||||
def body(i, augmented):
|
||||
size = tf.cast(tf_pick_value_from_range(self.size, clock=clock) * self.units_per_ms(), dtype=tf.int32)
|
||||
size = tf.cast(
|
||||
tf_pick_value_from_range(self.size, clock=clock) * self.units_per_ms(),
|
||||
dtype=tf.int32,
|
||||
)
|
||||
size = tf.math.maximum(1, tf.math.minimum(time_max - 1, size))
|
||||
seed = tf.cast(clock * tf.int32.max, tf.int32) - i
|
||||
t0 = tf.random.stateless_uniform((), (-seed, seed), minval=0, maxval=time_max - size, dtype=tf.dtypes.int32)
|
||||
t0 = tf.random.stateless_uniform(
|
||||
(),
|
||||
(-seed, seed),
|
||||
minval=0,
|
||||
maxval=time_max - size,
|
||||
dtype=tf.dtypes.int32,
|
||||
)
|
||||
rest = time_max - t0 - size
|
||||
if self.domain == 'spectrogram':
|
||||
if self.domain == "spectrogram":
|
||||
fm = tf.shape(tensor)[2]
|
||||
time_mask = tf.concat([tf.ones([1, t0, fm]), tf.zeros([1, size, fm]), tf.ones([1, rest, fm])], axis=1)
|
||||
elif self.domain == 'signal':
|
||||
time_mask = tf.concat([tf.ones([t0, 1]), tf.zeros([size, 1]), tf.ones([rest, 1])], axis=0)
|
||||
time_mask = tf.concat(
|
||||
[
|
||||
tf.ones([1, t0, fm]),
|
||||
tf.zeros([1, size, fm]),
|
||||
tf.ones([1, rest, fm]),
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
elif self.domain == "signal":
|
||||
time_mask = tf.concat(
|
||||
[tf.ones([t0, 1]), tf.zeros([size, 1]), tf.ones([rest, 1])], axis=0
|
||||
)
|
||||
else:
|
||||
time_mask = tf.concat([tf.ones([1, t0]), tf.zeros([1, size]), tf.ones([1, rest])], axis=1)
|
||||
time_mask = tf.concat(
|
||||
[tf.ones([1, t0]), tf.zeros([1, size]), tf.ones([1, rest])], axis=1
|
||||
)
|
||||
return i + 1, augmented * time_mask
|
||||
|
||||
return tf.while_loop(lambda i, augmented: i < n, body, (0, tensor))[1]
|
||||
@ -517,43 +673,55 @@ class TimeMask(GraphAugmentation):
|
||||
|
||||
class Dropout(GraphAugmentation):
|
||||
"""See "Dropout augmentation" in training documentation"""
|
||||
def __init__(self, p=1.0, domain='spectrogram', rate=0.05):
|
||||
|
||||
def __init__(self, p=1.0, domain="spectrogram", rate=0.05):
|
||||
super(Dropout, self).__init__(p, domain=domain)
|
||||
self.rate = float_range(rate)
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
|
||||
rate = tf_pick_value_from_range(self.rate, clock=clock)
|
||||
rate = tf.math.maximum(0.0, rate)
|
||||
factors = tf.random.stateless_uniform(tf.shape(tensor),
|
||||
factors = tf.random.stateless_uniform(
|
||||
tf.shape(tensor),
|
||||
(clock * tf.int32.min, clock * tf.int32.max),
|
||||
minval=0.0,
|
||||
maxval=1.0,
|
||||
dtype=tf.float32)
|
||||
dtype=tf.float32,
|
||||
)
|
||||
return tensor * tf.math.sign(tf.math.floor(factors + rate))
|
||||
|
||||
|
||||
class Add(GraphAugmentation):
|
||||
"""See "Add augmentation" in training documentation"""
|
||||
def __init__(self, p=1.0, domain='features', stddev=5):
|
||||
|
||||
def __init__(self, p=1.0, domain="features", stddev=5):
|
||||
super(Add, self).__init__(p, domain=domain)
|
||||
self.stddev = float_range(stddev)
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
|
||||
stddev = tf_pick_value_from_range(self.stddev, clock=clock)
|
||||
seed = (clock * tf.int32.min, clock * tf.int32.max)
|
||||
return tensor + tf.random.stateless_normal(tf.shape(tensor), seed, mean=0.0, stddev=stddev)
|
||||
return tensor + tf.random.stateless_normal(
|
||||
tf.shape(tensor), seed, mean=0.0, stddev=stddev
|
||||
)
|
||||
|
||||
|
||||
class Multiply(GraphAugmentation):
|
||||
"""See "Multiply augmentation" in training documentation"""
|
||||
def __init__(self, p=1.0, domain='features', stddev=5):
|
||||
|
||||
def __init__(self, p=1.0, domain="features", stddev=5):
|
||||
super(Multiply, self).__init__(p, domain=domain)
|
||||
self.stddev = float_range(stddev)
|
||||
|
||||
def apply(self, tensor, transcript=None, clock=0.0):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
|
||||
stddev = tf_pick_value_from_range(self.stddev, clock=clock)
|
||||
seed = (clock * tf.int32.min, clock * tf.int32.max)
|
||||
return tensor * tf.random.stateless_normal(tf.shape(tensor), seed, mean=1.0, stddev=stddev)
|
||||
return tensor * tf.random.stateless_normal(
|
||||
tf.shape(tensor), seed, mean=1.0, stddev=stddev
|
||||
)
|
||||
|
@ -22,14 +22,31 @@ import csv
|
||||
import os
|
||||
import sys
|
||||
import unicodedata
|
||||
|
||||
from .io import open_remote
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("-csv", "--csv-files", help="Str. Filenames as a comma separated list", required=True)
|
||||
parser.add_argument("-alpha", "--alphabet-format", help="Bool. Print in format for alphabet.txt", action="store_true")
|
||||
parser.add_argument("-unicode", "--disable-unicode-variants", help="Bool. DISABLE check for unicode consistency (use with --alphabet-format)", action="store_true")
|
||||
parser.add_argument(
|
||||
"-csv",
|
||||
"--csv-files",
|
||||
help="Str. Filenames as a comma separated list",
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument(
|
||||
"-alpha",
|
||||
"--alphabet-format",
|
||||
help="Bool. Print in format for alphabet.txt",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-unicode",
|
||||
"--disable-unicode-variants",
|
||||
help="Bool. DISABLE check for unicode consistency (use with --alphabet-format)",
|
||||
action="store_true",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
in_files = args.csv_files.split(",")
|
||||
|
||||
@ -46,11 +63,21 @@ def main():
|
||||
if not args.disable_unicode_variants:
|
||||
unicode_transcript = unicodedata.normalize("NFKC", row[2])
|
||||
if row[2] != unicode_transcript:
|
||||
print("Your input file", in_file, "contains at least one transript with unicode chars on more than one code-point: '{}'. Consider using NFKC normalization: unicodedata.normalize('NFKC', str).".format(row[2]))
|
||||
print(
|
||||
"Your input file",
|
||||
in_file,
|
||||
"contains at least one transript with unicode chars on more than one code-point: '{}'. Consider using NFKC normalization: unicodedata.normalize('NFKC', str).".format(
|
||||
row[2]
|
||||
),
|
||||
)
|
||||
sys.exit(-1)
|
||||
all_text |= set(row[2])
|
||||
except IndexError:
|
||||
print("Your input file", in_file, "is not formatted properly. Check if there are 3 columns with the 3rd containing the transcript")
|
||||
print(
|
||||
"Your input file",
|
||||
in_file,
|
||||
"is not formatted properly. Check if there are 3 columns with the 3rd containing the transcript",
|
||||
)
|
||||
sys.exit(-1)
|
||||
finally:
|
||||
csv_file.close()
|
||||
@ -63,5 +90,6 @@ def main():
|
||||
else:
|
||||
print(list(all_text))
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -1,9 +1,10 @@
|
||||
import sys
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
|
||||
from .flags import FLAGS
|
||||
from .logging import log_info, log_error, log_warn
|
||||
from .logging import log_error, log_info, log_warn
|
||||
|
||||
|
||||
def _load_checkpoint(session, checkpoint_path, allow_drop_layers, allow_lr_init=True):
|
||||
@ -17,9 +18,11 @@ def _load_checkpoint(session, checkpoint_path, allow_drop_layers, allow_lr_init=
|
||||
|
||||
# We explicitly allow the learning rate variable to be missing for backwards
|
||||
# compatibility with older checkpoints.
|
||||
lr_var = set(v for v in load_vars if v.op.name == 'learning_rate')
|
||||
if lr_var and ('learning_rate' not in vars_in_ckpt or
|
||||
(FLAGS.force_initialize_learning_rate and allow_lr_init)):
|
||||
lr_var = set(v for v in load_vars if v.op.name == "learning_rate")
|
||||
if lr_var and (
|
||||
"learning_rate" not in vars_in_ckpt
|
||||
or (FLAGS.force_initialize_learning_rate and allow_lr_init)
|
||||
):
|
||||
assert len(lr_var) <= 1
|
||||
load_vars -= lr_var
|
||||
init_vars |= lr_var
|
||||
@ -31,7 +34,7 @@ def _load_checkpoint(session, checkpoint_path, allow_drop_layers, allow_lr_init=
|
||||
missing_vars = set()
|
||||
for v in load_vars:
|
||||
if v.op.name not in vars_in_ckpt:
|
||||
log_warn('CUDNN variable not found: %s' % (v.op.name))
|
||||
log_warn("CUDNN variable not found: %s" % (v.op.name))
|
||||
missing_vars.add(v)
|
||||
init_vars.add(v)
|
||||
|
||||
@ -40,10 +43,12 @@ def _load_checkpoint(session, checkpoint_path, allow_drop_layers, allow_lr_init=
|
||||
# Check that the only missing variables (i.e. those to be initialised)
|
||||
# are the Adam moment tensors, if they aren't then we have an issue
|
||||
missing_var_names = [v.op.name for v in missing_vars]
|
||||
if any('Adam' not in v for v in missing_var_names):
|
||||
log_error('Tried to load a CuDNN RNN checkpoint but there were '
|
||||
'more missing variables than just the Adam moment '
|
||||
'tensors. Missing variables: {}'.format(missing_var_names))
|
||||
if any("Adam" not in v for v in missing_var_names):
|
||||
log_error(
|
||||
"Tried to load a CuDNN RNN checkpoint but there were "
|
||||
"more missing variables than just the Adam moment "
|
||||
"tensors. Missing variables: {}".format(missing_var_names)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
if allow_drop_layers and FLAGS.drop_source_layers > 0:
|
||||
@ -54,12 +59,16 @@ def _load_checkpoint(session, checkpoint_path, allow_drop_layers, allow_lr_init=
|
||||
# If we want to use all layers from the source model except
|
||||
# the last one, we use this: drop_source_layers=1
|
||||
if FLAGS.drop_source_layers >= 6:
|
||||
log_warn('The checkpoint only has 6 layers, but you are trying to drop '
|
||||
'all of them or more than all of them. Continuing and '
|
||||
'dropping only 5 layers.')
|
||||
log_warn(
|
||||
"The checkpoint only has 6 layers, but you are trying to drop "
|
||||
"all of them or more than all of them. Continuing and "
|
||||
"dropping only 5 layers."
|
||||
)
|
||||
FLAGS.drop_source_layers = 5
|
||||
|
||||
dropped_layers = ['2', '3', 'lstm', '5', '6'][-1 * int(FLAGS.drop_source_layers):]
|
||||
dropped_layers = ["2", "3", "lstm", "5", "6"][
|
||||
-1 * int(FLAGS.drop_source_layers) :
|
||||
]
|
||||
# Initialize all variables needed for DS, but not loaded from ckpt
|
||||
for v in load_vars:
|
||||
if any(layer in v.op.name for layer in dropped_layers):
|
||||
@ -67,16 +76,18 @@ def _load_checkpoint(session, checkpoint_path, allow_drop_layers, allow_lr_init=
|
||||
load_vars -= init_vars
|
||||
|
||||
for v in sorted(load_vars, key=lambda v: v.op.name):
|
||||
log_info('Loading variable from checkpoint: %s' % (v.op.name))
|
||||
log_info("Loading variable from checkpoint: %s" % (v.op.name))
|
||||
v.load(ckpt.get_tensor(v.op.name), session=session)
|
||||
|
||||
for v in sorted(init_vars, key=lambda v: v.op.name):
|
||||
log_info('Initializing variable: %s' % (v.op.name))
|
||||
log_info("Initializing variable: %s" % (v.op.name))
|
||||
session.run(v.initializer)
|
||||
|
||||
|
||||
def _checkpoint_path_or_none(checkpoint_filename):
|
||||
checkpoint = tfv1.train.get_checkpoint_state(FLAGS.load_checkpoint_dir, checkpoint_filename)
|
||||
checkpoint = tfv1.train.get_checkpoint_state(
|
||||
FLAGS.load_checkpoint_dir, checkpoint_filename
|
||||
)
|
||||
if not checkpoint:
|
||||
return None
|
||||
return checkpoint.model_checkpoint_path
|
||||
@ -91,61 +102,65 @@ def _initialize_all_variables(session):
|
||||
def _load_or_init_impl(session, method_order, allow_drop_layers, allow_lr_init=True):
|
||||
for method in method_order:
|
||||
# Load best validating checkpoint, saved in checkpoint file 'best_dev_checkpoint'
|
||||
if method == 'best':
|
||||
ckpt_path = _checkpoint_path_or_none('best_dev_checkpoint')
|
||||
if method == "best":
|
||||
ckpt_path = _checkpoint_path_or_none("best_dev_checkpoint")
|
||||
if ckpt_path:
|
||||
log_info('Loading best validating checkpoint from {}'.format(ckpt_path))
|
||||
return _load_checkpoint(session, ckpt_path, allow_drop_layers, allow_lr_init=allow_lr_init)
|
||||
log_info('Could not find best validating checkpoint.')
|
||||
log_info("Loading best validating checkpoint from {}".format(ckpt_path))
|
||||
return _load_checkpoint(
|
||||
session, ckpt_path, allow_drop_layers, allow_lr_init=allow_lr_init
|
||||
)
|
||||
log_info("Could not find best validating checkpoint.")
|
||||
|
||||
# Load most recent checkpoint, saved in checkpoint file 'checkpoint'
|
||||
elif method == 'last':
|
||||
ckpt_path = _checkpoint_path_or_none('checkpoint')
|
||||
elif method == "last":
|
||||
ckpt_path = _checkpoint_path_or_none("checkpoint")
|
||||
if ckpt_path:
|
||||
log_info('Loading most recent checkpoint from {}'.format(ckpt_path))
|
||||
return _load_checkpoint(session, ckpt_path, allow_drop_layers, allow_lr_init=allow_lr_init)
|
||||
log_info('Could not find most recent checkpoint.')
|
||||
log_info("Loading most recent checkpoint from {}".format(ckpt_path))
|
||||
return _load_checkpoint(
|
||||
session, ckpt_path, allow_drop_layers, allow_lr_init=allow_lr_init
|
||||
)
|
||||
log_info("Could not find most recent checkpoint.")
|
||||
|
||||
# Initialize all variables
|
||||
elif method == 'init':
|
||||
log_info('Initializing all variables.')
|
||||
elif method == "init":
|
||||
log_info("Initializing all variables.")
|
||||
return _initialize_all_variables(session)
|
||||
|
||||
else:
|
||||
log_error('Unknown initialization method: {}'.format(method))
|
||||
log_error("Unknown initialization method: {}".format(method))
|
||||
sys.exit(1)
|
||||
|
||||
log_error('All initialization methods failed ({}).'.format(method_order))
|
||||
log_error("All initialization methods failed ({}).".format(method_order))
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def reload_best_checkpoint(session):
|
||||
_load_or_init_impl(session, ['best'], allow_drop_layers=False, allow_lr_init=False)
|
||||
_load_or_init_impl(session, ["best"], allow_drop_layers=False, allow_lr_init=False)
|
||||
|
||||
|
||||
def load_or_init_graph_for_training(session):
|
||||
'''
|
||||
"""
|
||||
Load variables from checkpoint or initialize variables. By default this will
|
||||
try to load the best validating checkpoint, then try the last checkpoint,
|
||||
and finally initialize the weights from scratch. This can be overriden with
|
||||
the `--load_train` flag. See its documentation for more info.
|
||||
'''
|
||||
if FLAGS.load_train == 'auto':
|
||||
methods = ['best', 'last', 'init']
|
||||
"""
|
||||
if FLAGS.load_train == "auto":
|
||||
methods = ["best", "last", "init"]
|
||||
else:
|
||||
methods = [FLAGS.load_train]
|
||||
_load_or_init_impl(session, methods, allow_drop_layers=True)
|
||||
|
||||
|
||||
def load_graph_for_evaluation(session):
|
||||
'''
|
||||
"""
|
||||
Load variables from checkpoint. Initialization is not allowed. By default
|
||||
this will try to load the best validating checkpoint, then try the last
|
||||
checkpoint. This can be overriden with the `--load_evaluate` flag. See its
|
||||
documentation for more info.
|
||||
'''
|
||||
if FLAGS.load_evaluate == 'auto':
|
||||
methods = ['best', 'last']
|
||||
"""
|
||||
if FLAGS.load_evaluate == "auto":
|
||||
methods = ["best", "last"]
|
||||
else:
|
||||
methods = [FLAGS.load_evaluate]
|
||||
_load_or_init_impl(session, methods, allow_drop_layers=False)
|
||||
|
@ -2,18 +2,20 @@ from __future__ import absolute_import, division, print_function
|
||||
|
||||
import os
|
||||
import sys
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
|
||||
from attrdict import AttrDict
|
||||
from xdg import BaseDirectory as xdg
|
||||
from coqui_stt_ctcdecoder import Alphabet, UTF8Alphabet
|
||||
from xdg import BaseDirectory as xdg
|
||||
|
||||
import tensorflow.compat.v1 as tfv1
|
||||
|
||||
from .augmentations import NormalizeSampleRate, parse_augmentations
|
||||
from .flags import FLAGS
|
||||
from .gpu import get_available_gpus
|
||||
from .logging import log_error, log_warn
|
||||
from .helpers import parse_file_size
|
||||
from .augmentations import parse_augmentations, NormalizeSampleRate
|
||||
from .io import path_exists_remote
|
||||
from .logging import log_error, log_warn
|
||||
|
||||
|
||||
class ConfigSingleton:
|
||||
_config = None
|
||||
@ -22,28 +24,37 @@ class ConfigSingleton:
|
||||
if not ConfigSingleton._config:
|
||||
raise RuntimeError("Global configuration not yet initialized.")
|
||||
if not hasattr(ConfigSingleton._config, name):
|
||||
raise RuntimeError("Configuration option {} not found in config.".format(name))
|
||||
raise RuntimeError(
|
||||
"Configuration option {} not found in config.".format(name)
|
||||
)
|
||||
return ConfigSingleton._config[name]
|
||||
|
||||
|
||||
Config = ConfigSingleton() # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def initialize_globals():
|
||||
c = AttrDict()
|
||||
|
||||
# Augmentations
|
||||
c.augmentations = parse_augmentations(FLAGS.augment)
|
||||
if c.augmentations and FLAGS.feature_cache and FLAGS.cache_for_epochs == 0:
|
||||
log_warn('Due to current feature-cache settings the exact same sample augmentations of the first '
|
||||
'epoch will be repeated on all following epochs. This could lead to unintended over-fitting. '
|
||||
'You could use --cache_for_epochs <n_epochs> to invalidate the cache after a given number of epochs.')
|
||||
log_warn(
|
||||
"Due to current feature-cache settings the exact same sample augmentations of the first "
|
||||
"epoch will be repeated on all following epochs. This could lead to unintended over-fitting. "
|
||||
"You could use --cache_for_epochs <n_epochs> to invalidate the cache after a given number of epochs."
|
||||
)
|
||||
|
||||
if FLAGS.normalize_sample_rate:
|
||||
c.augmentations = [NormalizeSampleRate(FLAGS.audio_sample_rate)] + c['augmentations']
|
||||
c.augmentations = [NormalizeSampleRate(FLAGS.audio_sample_rate)] + c[
|
||||
"augmentations"
|
||||
]
|
||||
|
||||
# Caching
|
||||
if FLAGS.cache_for_epochs == 1:
|
||||
log_warn('--cache_for_epochs == 1 is (re-)creating the feature cache on every epoch but will never use it.')
|
||||
log_warn(
|
||||
"--cache_for_epochs == 1 is (re-)creating the feature cache on every epoch but will never use it."
|
||||
)
|
||||
|
||||
# Read-buffer
|
||||
FLAGS.read_buffer = parse_file_size(FLAGS.read_buffer)
|
||||
@ -58,26 +69,29 @@ def initialize_globals():
|
||||
|
||||
# Set default checkpoint dir
|
||||
if not FLAGS.checkpoint_dir:
|
||||
FLAGS.checkpoint_dir = xdg.save_data_path(os.path.join('stt', 'checkpoints'))
|
||||
FLAGS.checkpoint_dir = xdg.save_data_path(os.path.join("stt", "checkpoints"))
|
||||
|
||||
if FLAGS.load_train not in ['last', 'best', 'init', 'auto']:
|
||||
FLAGS.load_train = 'auto'
|
||||
if FLAGS.load_train not in ["last", "best", "init", "auto"]:
|
||||
FLAGS.load_train = "auto"
|
||||
|
||||
if FLAGS.load_evaluate not in ['last', 'best', 'auto']:
|
||||
FLAGS.load_evaluate = 'auto'
|
||||
if FLAGS.load_evaluate not in ["last", "best", "auto"]:
|
||||
FLAGS.load_evaluate = "auto"
|
||||
|
||||
# Set default summary dir
|
||||
if not FLAGS.summary_dir:
|
||||
FLAGS.summary_dir = xdg.save_data_path(os.path.join('stt', 'summaries'))
|
||||
FLAGS.summary_dir = xdg.save_data_path(os.path.join("stt", "summaries"))
|
||||
|
||||
# Standard session configuration that'll be used for all new sessions.
|
||||
c.session_config = tfv1.ConfigProto(allow_soft_placement=True, log_device_placement=FLAGS.log_placement,
|
||||
c.session_config = tfv1.ConfigProto(
|
||||
allow_soft_placement=True,
|
||||
log_device_placement=FLAGS.log_placement,
|
||||
inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads,
|
||||
intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads,
|
||||
gpu_options=tfv1.GPUOptions(allow_growth=FLAGS.use_allow_growth))
|
||||
gpu_options=tfv1.GPUOptions(allow_growth=FLAGS.use_allow_growth),
|
||||
)
|
||||
|
||||
# CPU device
|
||||
c.cpu_device = '/cpu:0'
|
||||
c.cpu_device = "/cpu:0"
|
||||
|
||||
# Available GPU devices
|
||||
c.available_devices = get_available_gpus(c.session_config)
|
||||
@ -123,36 +137,50 @@ def initialize_globals():
|
||||
|
||||
# Size of audio window in samples
|
||||
if (FLAGS.feature_win_len * FLAGS.audio_sample_rate) % 1000 != 0:
|
||||
log_error('--feature_win_len value ({}) in milliseconds ({}) multiplied '
|
||||
'by --audio_sample_rate value ({}) must be an integer value. Adjust '
|
||||
'your --feature_win_len value or resample your audio accordingly.'
|
||||
''.format(FLAGS.feature_win_len, FLAGS.feature_win_len / 1000, FLAGS.audio_sample_rate))
|
||||
log_error(
|
||||
"--feature_win_len value ({}) in milliseconds ({}) multiplied "
|
||||
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
|
||||
"your --feature_win_len value or resample your audio accordingly."
|
||||
"".format(
|
||||
FLAGS.feature_win_len,
|
||||
FLAGS.feature_win_len / 1000,
|
||||
FLAGS.audio_sample_rate,
|
||||
)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
c.audio_window_samples = FLAGS.audio_sample_rate * (FLAGS.feature_win_len / 1000)
|
||||
|
||||
# Stride for feature computations in samples
|
||||
if (FLAGS.feature_win_step * FLAGS.audio_sample_rate) % 1000 != 0:
|
||||
log_error('--feature_win_step value ({}) in milliseconds ({}) multiplied '
|
||||
'by --audio_sample_rate value ({}) must be an integer value. Adjust '
|
||||
'your --feature_win_step value or resample your audio accordingly.'
|
||||
''.format(FLAGS.feature_win_step, FLAGS.feature_win_step / 1000, FLAGS.audio_sample_rate))
|
||||
log_error(
|
||||
"--feature_win_step value ({}) in milliseconds ({}) multiplied "
|
||||
"by --audio_sample_rate value ({}) must be an integer value. Adjust "
|
||||
"your --feature_win_step value or resample your audio accordingly."
|
||||
"".format(
|
||||
FLAGS.feature_win_step,
|
||||
FLAGS.feature_win_step / 1000,
|
||||
FLAGS.audio_sample_rate,
|
||||
)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
c.audio_step_samples = FLAGS.audio_sample_rate * (FLAGS.feature_win_step / 1000)
|
||||
|
||||
if FLAGS.one_shot_infer:
|
||||
if not path_exists_remote(FLAGS.one_shot_infer):
|
||||
log_error('Path specified in --one_shot_infer is not a valid file.')
|
||||
log_error("Path specified in --one_shot_infer is not a valid file.")
|
||||
sys.exit(1)
|
||||
|
||||
if FLAGS.train_cudnn and FLAGS.load_cudnn:
|
||||
log_error('Trying to use --train_cudnn, but --load_cudnn '
|
||||
'was also specified. The --load_cudnn flag is only '
|
||||
'needed when converting a CuDNN RNN checkpoint to '
|
||||
'a CPU-capable graph. If your system is capable of '
|
||||
'using CuDNN RNN, you can just specify the CuDNN RNN '
|
||||
'checkpoint normally with --save_checkpoint_dir.')
|
||||
log_error(
|
||||
"Trying to use --train_cudnn, but --load_cudnn "
|
||||
"was also specified. The --load_cudnn flag is only "
|
||||
"needed when converting a CuDNN RNN checkpoint to "
|
||||
"a CPU-capable graph. If your system is capable of "
|
||||
"using CuDNN RNN, you can just specify the CuDNN RNN "
|
||||
"checkpoint normally with --save_checkpoint_dir."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
# If separate save and load flags were not specified, default to load and save
|
||||
|
@ -1,10 +1,18 @@
|
||||
import requests
|
||||
from os import makedirs, path
|
||||
|
||||
import progressbar
|
||||
import requests
|
||||
|
||||
from os import path, makedirs
|
||||
from .io import open_remote, path_exists_remote, is_remote_path
|
||||
from .io import is_remote_path, open_remote, path_exists_remote
|
||||
|
||||
SIMPLE_BAR = [
|
||||
"Progress ",
|
||||
progressbar.Bar(),
|
||||
" ",
|
||||
progressbar.Percentage(),
|
||||
" completed",
|
||||
]
|
||||
|
||||
SIMPLE_BAR = ['Progress ', progressbar.Bar(), ' ', progressbar.Percentage(), ' completed']
|
||||
|
||||
def maybe_download(archive_name, target_dir, archive_url):
|
||||
# If archive file does not exist, download it...
|
||||
@ -17,10 +25,13 @@ def maybe_download(archive_name, target_dir, archive_url):
|
||||
if not path_exists_remote(archive_path):
|
||||
print('No archive "%s" - downloading...' % archive_path)
|
||||
req = requests.get(archive_url, stream=True)
|
||||
total_size = int(req.headers.get('content-length', 0))
|
||||
total_size = int(req.headers.get("content-length", 0))
|
||||
done = 0
|
||||
with open_remote(archive_path, 'wb') as f:
|
||||
bar = progressbar.ProgressBar(max_value=total_size if total_size > 0 else progressbar.UnknownLength, widgets=SIMPLE_BAR)
|
||||
with open_remote(archive_path, "wb") as f:
|
||||
bar = progressbar.ProgressBar(
|
||||
max_value=total_size if total_size > 0 else progressbar.UnknownLength,
|
||||
widgets=SIMPLE_BAR,
|
||||
)
|
||||
|
||||
for data in req.iter_content(1024 * 1024):
|
||||
done += len(data)
|
||||
|
@ -9,8 +9,9 @@ import numpy as np
|
||||
from attrdict import AttrDict
|
||||
|
||||
from .flags import FLAGS
|
||||
from .text import levenshtein
|
||||
from .io import open_remote
|
||||
from .text import levenshtein
|
||||
|
||||
|
||||
def pmap(fun, iterable):
|
||||
pool = Pool()
|
||||
@ -42,26 +43,28 @@ def process_decode_result(item):
|
||||
char_length = len(ground_truth)
|
||||
word_distance = levenshtein(ground_truth.split(), prediction.split())
|
||||
word_length = len(ground_truth.split())
|
||||
return AttrDict({
|
||||
'wav_filename': wav_filename,
|
||||
'src': ground_truth,
|
||||
'res': prediction,
|
||||
'loss': loss,
|
||||
'char_distance': char_distance,
|
||||
'char_length': char_length,
|
||||
'word_distance': word_distance,
|
||||
'word_length': word_length,
|
||||
'cer': char_distance / char_length,
|
||||
'wer': word_distance / word_length,
|
||||
})
|
||||
return AttrDict(
|
||||
{
|
||||
"wav_filename": wav_filename,
|
||||
"src": ground_truth,
|
||||
"res": prediction,
|
||||
"loss": loss,
|
||||
"char_distance": char_distance,
|
||||
"char_length": char_length,
|
||||
"word_distance": word_distance,
|
||||
"word_length": word_length,
|
||||
"cer": char_distance / char_length,
|
||||
"wer": word_distance / word_length,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def calculate_and_print_report(wav_filenames, labels, decodings, losses, dataset_name):
|
||||
r'''
|
||||
r"""
|
||||
This routine will calculate and print a WER report.
|
||||
It'll compute the `mean` WER and create ``Sample`` objects of the ``report_count`` top lowest
|
||||
loss items from the provided WER results tuple (only items with WER!=0 and ordered by their WER).
|
||||
'''
|
||||
"""
|
||||
samples = pmap(process_decode_result, zip(wav_filenames, labels, decodings, losses))
|
||||
|
||||
# Getting the WER and CER from the accumulated edit distances and lengths
|
||||
@ -88,8 +91,10 @@ def print_report(samples, losses, wer, cer, dataset_name):
|
||||
|
||||
# Print summary
|
||||
mean_loss = np.mean(losses)
|
||||
print('Test on %s - WER: %f, CER: %f, loss: %f' % (dataset_name, wer, cer, mean_loss))
|
||||
print('-' * 80)
|
||||
print(
|
||||
"Test on %s - WER: %f, CER: %f, loss: %f" % (dataset_name, wer, cer, mean_loss)
|
||||
)
|
||||
print("-" * 80)
|
||||
|
||||
best_samples = samples[: FLAGS.report_count]
|
||||
worst_samples = samples[-FLAGS.report_count :]
|
||||
@ -99,30 +104,30 @@ def print_report(samples, losses, wer, cer, dataset_name):
|
||||
median_samples = samples[median_index - median_left : median_index + median_right]
|
||||
|
||||
def print_single_sample(sample):
|
||||
print('WER: %f, CER: %f, loss: %f' % (sample.wer, sample.cer, sample.loss))
|
||||
print(' - wav: file://%s' % sample.wav_filename)
|
||||
print("WER: %f, CER: %f, loss: %f" % (sample.wer, sample.cer, sample.loss))
|
||||
print(" - wav: file://%s" % sample.wav_filename)
|
||||
print(' - src: "%s"' % sample.src)
|
||||
print(' - res: "%s"' % sample.res)
|
||||
print('-' * 80)
|
||||
print("-" * 80)
|
||||
|
||||
print('Best WER:', '\n' + '-' * 80)
|
||||
print("Best WER:", "\n" + "-" * 80)
|
||||
for s in best_samples:
|
||||
print_single_sample(s)
|
||||
|
||||
print('Median WER:', '\n' + '-' * 80)
|
||||
print("Median WER:", "\n" + "-" * 80)
|
||||
for s in median_samples:
|
||||
print_single_sample(s)
|
||||
|
||||
print('Worst WER:', '\n' + '-' * 80)
|
||||
print("Worst WER:", "\n" + "-" * 80)
|
||||
for s in worst_samples:
|
||||
print_single_sample(s)
|
||||
|
||||
|
||||
def save_samples_json(samples, output_path):
|
||||
''' Save decoded tuples as JSON, converting NumPy floats to Python floats.
|
||||
"""Save decoded tuples as JSON, converting NumPy floats to Python floats.
|
||||
|
||||
We set ensure_ascii=True to prevent json from escaping non-ASCII chars
|
||||
in the texts.
|
||||
'''
|
||||
with open_remote(output_path, 'w') as fout:
|
||||
"""
|
||||
with open_remote(output_path, "w") as fout:
|
||||
json.dump(samples, fout, default=float, ensure_ascii=False, indent=2)
|
||||
|
@ -5,73 +5,117 @@ from collections import Counter
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.ops import gen_audio_ops as contrib_audio
|
||||
|
||||
from .audio import DEFAULT_FORMAT, pcm_to_np, read_frames_from_file, vad_split
|
||||
from .augmentations import apply_graph_augmentations, apply_sample_augmentations
|
||||
from .config import Config
|
||||
from .text import text_to_char_array
|
||||
from .flags import FLAGS
|
||||
from .augmentations import apply_sample_augmentations, apply_graph_augmentations
|
||||
from .audio import read_frames_from_file, vad_split, pcm_to_np, DEFAULT_FORMAT
|
||||
from .helpers import MEGABYTE, remember_exception
|
||||
from .sample_collections import samples_from_sources
|
||||
from .helpers import remember_exception, MEGABYTE
|
||||
from .text import text_to_char_array
|
||||
|
||||
|
||||
def audio_to_features(audio, sample_rate, transcript=None, clock=0.0, train_phase=False, augmentations=None, sample_id=None):
|
||||
def audio_to_features(
|
||||
audio,
|
||||
sample_rate,
|
||||
transcript=None,
|
||||
clock=0.0,
|
||||
train_phase=False,
|
||||
augmentations=None,
|
||||
sample_id=None,
|
||||
):
|
||||
if train_phase:
|
||||
# We need the lambdas to make TensorFlow happy.
|
||||
# pylint: disable=unnecessary-lambda
|
||||
tf.cond(tf.math.not_equal(sample_rate, FLAGS.audio_sample_rate),
|
||||
lambda: tf.print('WARNING: sample rate of sample', sample_id, '(', sample_rate, ') '
|
||||
'does not match FLAGS.audio_sample_rate. This can lead to incorrect results.'),
|
||||
tf.cond(
|
||||
tf.math.not_equal(sample_rate, FLAGS.audio_sample_rate),
|
||||
lambda: tf.print(
|
||||
"WARNING: sample rate of sample",
|
||||
sample_id,
|
||||
"(",
|
||||
sample_rate,
|
||||
") "
|
||||
"does not match FLAGS.audio_sample_rate. This can lead to incorrect results.",
|
||||
),
|
||||
lambda: tf.no_op(),
|
||||
name='matching_sample_rate')
|
||||
name="matching_sample_rate",
|
||||
)
|
||||
|
||||
if train_phase and augmentations:
|
||||
audio = apply_graph_augmentations('signal', audio, augmentations, transcript=transcript, clock=clock)
|
||||
audio = apply_graph_augmentations(
|
||||
"signal", audio, augmentations, transcript=transcript, clock=clock
|
||||
)
|
||||
|
||||
spectrogram = contrib_audio.audio_spectrogram(audio,
|
||||
spectrogram = contrib_audio.audio_spectrogram(
|
||||
audio,
|
||||
window_size=Config.audio_window_samples,
|
||||
stride=Config.audio_step_samples,
|
||||
magnitude_squared=True)
|
||||
magnitude_squared=True,
|
||||
)
|
||||
|
||||
if train_phase and augmentations:
|
||||
spectrogram = apply_graph_augmentations('spectrogram', spectrogram, augmentations, transcript=transcript, clock=clock)
|
||||
spectrogram = apply_graph_augmentations(
|
||||
"spectrogram",
|
||||
spectrogram,
|
||||
augmentations,
|
||||
transcript=transcript,
|
||||
clock=clock,
|
||||
)
|
||||
|
||||
features = contrib_audio.mfcc(spectrogram=spectrogram,
|
||||
features = contrib_audio.mfcc(
|
||||
spectrogram=spectrogram,
|
||||
sample_rate=sample_rate,
|
||||
dct_coefficient_count=Config.n_input,
|
||||
upper_frequency_limit=FLAGS.audio_sample_rate / 2)
|
||||
upper_frequency_limit=FLAGS.audio_sample_rate / 2,
|
||||
)
|
||||
features = tf.reshape(features, [-1, Config.n_input])
|
||||
|
||||
if train_phase and augmentations:
|
||||
features = apply_graph_augmentations('features', features, augmentations, transcript=transcript, clock=clock)
|
||||
features = apply_graph_augmentations(
|
||||
"features", features, augmentations, transcript=transcript, clock=clock
|
||||
)
|
||||
|
||||
return features, tf.shape(input=features)[0]
|
||||
|
||||
|
||||
def audiofile_to_features(wav_filename, clock=0.0, train_phase=False, augmentations=None):
|
||||
def audiofile_to_features(
|
||||
wav_filename, clock=0.0, train_phase=False, augmentations=None
|
||||
):
|
||||
samples = tf.io.read_file(wav_filename)
|
||||
decoded = contrib_audio.decode_wav(samples, desired_channels=1)
|
||||
return audio_to_features(decoded.audio,
|
||||
return audio_to_features(
|
||||
decoded.audio,
|
||||
decoded.sample_rate,
|
||||
clock=clock,
|
||||
train_phase=train_phase,
|
||||
augmentations=augmentations,
|
||||
sample_id=wav_filename)
|
||||
sample_id=wav_filename,
|
||||
)
|
||||
|
||||
|
||||
def entry_to_features(sample_id, audio, sample_rate, transcript, clock, train_phase=False, augmentations=None):
|
||||
def entry_to_features(
|
||||
sample_id,
|
||||
audio,
|
||||
sample_rate,
|
||||
transcript,
|
||||
clock,
|
||||
train_phase=False,
|
||||
augmentations=None,
|
||||
):
|
||||
# https://bugs.python.org/issue32117
|
||||
sparse_transcript = tf.SparseTensor(*transcript)
|
||||
features, features_len = audio_to_features(audio,
|
||||
features, features_len = audio_to_features(
|
||||
audio,
|
||||
sample_rate,
|
||||
transcript=sparse_transcript,
|
||||
clock=clock,
|
||||
train_phase=train_phase,
|
||||
augmentations=augmentations,
|
||||
sample_id=sample_id)
|
||||
sample_id=sample_id,
|
||||
)
|
||||
return sample_id, features, features_len, sparse_transcript
|
||||
|
||||
|
||||
@ -79,12 +123,15 @@ def to_sparse_tuple(sequence):
|
||||
r"""Creates a sparse representention of ``sequence``.
|
||||
Returns a tuple with (indices, values, shape)
|
||||
"""
|
||||
indices = np.asarray(list(zip([0]*len(sequence), range(len(sequence)))), dtype=np.int64)
|
||||
indices = np.asarray(
|
||||
list(zip([0] * len(sequence), range(len(sequence)))), dtype=np.int64
|
||||
)
|
||||
shape = np.asarray([1, len(sequence)], dtype=np.int64)
|
||||
return indices, sequence, shape
|
||||
|
||||
|
||||
def create_dataset(sources,
|
||||
def create_dataset(
|
||||
sources,
|
||||
batch_size,
|
||||
epochs=1,
|
||||
augmentations=None,
|
||||
@ -94,28 +141,39 @@ def create_dataset(sources,
|
||||
limit=0,
|
||||
exception_box=None,
|
||||
process_ahead=None,
|
||||
buffering=1 * MEGABYTE):
|
||||
buffering=1 * MEGABYTE,
|
||||
):
|
||||
epoch_counter = Counter() # survives restarts of the dataset and its generator
|
||||
|
||||
def generate_values():
|
||||
epoch = epoch_counter['epoch']
|
||||
epoch = epoch_counter["epoch"]
|
||||
if train_phase:
|
||||
epoch_counter['epoch'] += 1
|
||||
samples = samples_from_sources(sources, buffering=buffering, labeled=True, reverse=reverse)
|
||||
epoch_counter["epoch"] += 1
|
||||
samples = samples_from_sources(
|
||||
sources, buffering=buffering, labeled=True, reverse=reverse
|
||||
)
|
||||
num_samples = len(samples)
|
||||
if limit > 0:
|
||||
num_samples = min(limit, num_samples)
|
||||
samples = apply_sample_augmentations(samples,
|
||||
samples = apply_sample_augmentations(
|
||||
samples,
|
||||
augmentations,
|
||||
buffering=buffering,
|
||||
process_ahead=2 * batch_size if process_ahead is None else process_ahead,
|
||||
clock=epoch / epochs,
|
||||
final_clock=(epoch + 1) / epochs)
|
||||
final_clock=(epoch + 1) / epochs,
|
||||
)
|
||||
for sample_index, sample in enumerate(samples):
|
||||
if sample_index >= num_samples:
|
||||
break
|
||||
clock = (epoch * num_samples + sample_index) / (epochs * num_samples) if train_phase and epochs > 0 else 0.0
|
||||
transcript = text_to_char_array(sample.transcript, Config.alphabet, context=sample.sample_id)
|
||||
clock = (
|
||||
(epoch * num_samples + sample_index) / (epochs * num_samples)
|
||||
if train_phase and epochs > 0
|
||||
else 0.0
|
||||
)
|
||||
transcript = text_to_char_array(
|
||||
sample.transcript, Config.alphabet, context=sample.sample_id
|
||||
)
|
||||
transcript = to_sparse_tuple(transcript)
|
||||
yield sample.sample_id, sample.audio, sample.audio_format.rate, transcript, clock
|
||||
|
||||
@ -128,31 +186,46 @@ def create_dataset(sources,
|
||||
|
||||
def batch_fn(sample_ids, features, features_len, transcripts):
|
||||
features = tf.data.Dataset.zip((features, features_len))
|
||||
features = features.padded_batch(batch_size, padded_shapes=([None, Config.n_input], []))
|
||||
features = features.padded_batch(
|
||||
batch_size, padded_shapes=([None, Config.n_input], [])
|
||||
)
|
||||
transcripts = transcripts.batch(batch_size).map(sparse_reshape)
|
||||
sample_ids = sample_ids.batch(batch_size)
|
||||
return tf.data.Dataset.zip((sample_ids, features, transcripts))
|
||||
|
||||
process_fn = partial(entry_to_features, train_phase=train_phase, augmentations=augmentations)
|
||||
process_fn = partial(
|
||||
entry_to_features, train_phase=train_phase, augmentations=augmentations
|
||||
)
|
||||
|
||||
dataset = (tf.data.Dataset.from_generator(remember_exception(generate_values, exception_box),
|
||||
output_types=(tf.string, tf.float32, tf.int32,
|
||||
(tf.int64, tf.int32, tf.int64), tf.float64))
|
||||
.map(process_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE))
|
||||
dataset = tf.data.Dataset.from_generator(
|
||||
remember_exception(generate_values, exception_box),
|
||||
output_types=(
|
||||
tf.string,
|
||||
tf.float32,
|
||||
tf.int32,
|
||||
(tf.int64, tf.int32, tf.int64),
|
||||
tf.float64,
|
||||
),
|
||||
).map(process_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
||||
if cache_path:
|
||||
dataset = dataset.cache(cache_path)
|
||||
dataset = (dataset.window(batch_size, drop_remainder=train_phase).flat_map(batch_fn)
|
||||
.prefetch(len(Config.available_devices)))
|
||||
dataset = (
|
||||
dataset.window(batch_size, drop_remainder=train_phase)
|
||||
.flat_map(batch_fn)
|
||||
.prefetch(len(Config.available_devices))
|
||||
)
|
||||
return dataset
|
||||
|
||||
|
||||
def split_audio_file(audio_path,
|
||||
def split_audio_file(
|
||||
audio_path,
|
||||
audio_format=DEFAULT_FORMAT,
|
||||
batch_size=1,
|
||||
aggressiveness=3,
|
||||
outlier_duration_ms=10000,
|
||||
outlier_batch_size=1,
|
||||
exception_box=None):
|
||||
exception_box=None,
|
||||
):
|
||||
def generate_values():
|
||||
frames = read_frames_from_file(audio_path)
|
||||
segments = vad_split(frames, aggressiveness=aggressiveness)
|
||||
@ -166,17 +239,23 @@ def split_audio_file(audio_path,
|
||||
return time_start, time_end, features, features_len
|
||||
|
||||
def create_batch_set(bs, criteria):
|
||||
return (tf.data.Dataset
|
||||
.from_generator(remember_exception(generate_values, exception_box),
|
||||
output_types=(tf.int32, tf.int32, tf.float32))
|
||||
return (
|
||||
tf.data.Dataset.from_generator(
|
||||
remember_exception(generate_values, exception_box),
|
||||
output_types=(tf.int32, tf.int32, tf.float32),
|
||||
)
|
||||
.map(to_mfccs, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
||||
.filter(criteria)
|
||||
.padded_batch(bs, padded_shapes=([], [], [None, Config.n_input], [])))
|
||||
.padded_batch(bs, padded_shapes=([], [], [None, Config.n_input], []))
|
||||
)
|
||||
|
||||
nds = create_batch_set(batch_size,
|
||||
lambda start, end, f, fl: end - start <= int(outlier_duration_ms))
|
||||
ods = create_batch_set(outlier_batch_size,
|
||||
lambda start, end, f, fl: end - start > int(outlier_duration_ms))
|
||||
nds = create_batch_set(
|
||||
batch_size, lambda start, end, f, fl: end - start <= int(outlier_duration_ms)
|
||||
)
|
||||
ods = create_batch_set(
|
||||
outlier_batch_size,
|
||||
lambda start, end, f, fl: end - start > int(outlier_duration_ms),
|
||||
)
|
||||
dataset = nds.concatenate(ods)
|
||||
dataset = dataset.prefetch(len(Config.available_devices))
|
||||
return dataset
|
||||
|
@ -1,6 +1,7 @@
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import os
|
||||
|
||||
import absl.flags
|
||||
|
||||
FLAGS = absl.flags.FLAGS
|
||||
@ -12,179 +13,448 @@ def create_flags():
|
||||
|
||||
f = absl.flags
|
||||
|
||||
f.DEFINE_string('train_files', '', 'comma separated list of files specifying the dataset used for training. Multiple files will get merged. If empty, training will not be run.')
|
||||
f.DEFINE_string('dev_files', '', 'comma separated list of files specifying the datasets used for validation. Multiple files will get reported separately. If empty, validation will not be run.')
|
||||
f.DEFINE_string('test_files', '', 'comma separated list of files specifying the datasets used for testing. Multiple files will get reported separately. If empty, the model will not be tested.')
|
||||
f.DEFINE_string('metrics_files', '', 'comma separated list of files specifying the datasets used for tracking of metrics (after validation step). Currently the only metric is the CTC loss but without affecting the tracking of best validation loss. Multiple files will get reported separately. If empty, metrics will not be computed.')
|
||||
f.DEFINE_string(
|
||||
"train_files",
|
||||
"",
|
||||
"comma separated list of files specifying the dataset used for training. Multiple files will get merged. If empty, training will not be run.",
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"dev_files",
|
||||
"",
|
||||
"comma separated list of files specifying the datasets used for validation. Multiple files will get reported separately. If empty, validation will not be run.",
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"test_files",
|
||||
"",
|
||||
"comma separated list of files specifying the datasets used for testing. Multiple files will get reported separately. If empty, the model will not be tested.",
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"metrics_files",
|
||||
"",
|
||||
"comma separated list of files specifying the datasets used for tracking of metrics (after validation step). Currently the only metric is the CTC loss but without affecting the tracking of best validation loss. Multiple files will get reported separately. If empty, metrics will not be computed.",
|
||||
)
|
||||
|
||||
f.DEFINE_string('read_buffer', '1MB', 'buffer-size for reading samples from datasets (supports file-size suffixes KB, MB, GB, TB)')
|
||||
f.DEFINE_string('feature_cache', '', 'cache MFCC features to disk to speed up future training runs on the same data. This flag specifies the path where cached features extracted from --train_files will be saved. If empty, or if online augmentation flags are enabled, caching will be disabled.')
|
||||
f.DEFINE_integer('cache_for_epochs', 0, 'after how many epochs the feature cache is invalidated again - 0 for "never"')
|
||||
f.DEFINE_string(
|
||||
"read_buffer",
|
||||
"1MB",
|
||||
"buffer-size for reading samples from datasets (supports file-size suffixes KB, MB, GB, TB)",
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"feature_cache",
|
||||
"",
|
||||
"cache MFCC features to disk to speed up future training runs on the same data. This flag specifies the path where cached features extracted from --train_files will be saved. If empty, or if online augmentation flags are enabled, caching will be disabled.",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"cache_for_epochs",
|
||||
0,
|
||||
'after how many epochs the feature cache is invalidated again - 0 for "never"',
|
||||
)
|
||||
|
||||
f.DEFINE_integer('feature_win_len', 32, 'feature extraction audio window length in milliseconds')
|
||||
f.DEFINE_integer('feature_win_step', 20, 'feature extraction window step length in milliseconds')
|
||||
f.DEFINE_integer('audio_sample_rate', 16000, 'sample rate value expected by model')
|
||||
f.DEFINE_boolean('normalize_sample_rate', True, 'normalize sample rate of all train_files to --audio_sample_rate')
|
||||
f.DEFINE_integer(
|
||||
"feature_win_len", 32, "feature extraction audio window length in milliseconds"
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"feature_win_step", 20, "feature extraction window step length in milliseconds"
|
||||
)
|
||||
f.DEFINE_integer("audio_sample_rate", 16000, "sample rate value expected by model")
|
||||
f.DEFINE_boolean(
|
||||
"normalize_sample_rate",
|
||||
True,
|
||||
"normalize sample rate of all train_files to --audio_sample_rate",
|
||||
)
|
||||
|
||||
# Data Augmentation
|
||||
# ================
|
||||
|
||||
f.DEFINE_multi_string('augment', None, 'specifies an augmentation of the training samples. Format is "--augment operation[param1=value1, ...]"')
|
||||
f.DEFINE_multi_string(
|
||||
"augment",
|
||||
None,
|
||||
'specifies an augmentation of the training samples. Format is "--augment operation[param1=value1, ...]"',
|
||||
)
|
||||
|
||||
# Global Constants
|
||||
# ================
|
||||
|
||||
f.DEFINE_integer('epochs', 75, 'how many epochs (complete runs through the train files) to train for')
|
||||
f.DEFINE_integer(
|
||||
"epochs",
|
||||
75,
|
||||
"how many epochs (complete runs through the train files) to train for",
|
||||
)
|
||||
|
||||
f.DEFINE_float('dropout_rate', 0.05, 'dropout rate for feedforward layers')
|
||||
f.DEFINE_float('dropout_rate2', -1.0, 'dropout rate for layer 2 - defaults to dropout_rate')
|
||||
f.DEFINE_float('dropout_rate3', -1.0, 'dropout rate for layer 3 - defaults to dropout_rate')
|
||||
f.DEFINE_float('dropout_rate4', 0.0, 'dropout rate for layer 4 - defaults to 0.0')
|
||||
f.DEFINE_float('dropout_rate5', 0.0, 'dropout rate for layer 5 - defaults to 0.0')
|
||||
f.DEFINE_float('dropout_rate6', -1.0, 'dropout rate for layer 6 - defaults to dropout_rate')
|
||||
f.DEFINE_float("dropout_rate", 0.05, "dropout rate for feedforward layers")
|
||||
f.DEFINE_float(
|
||||
"dropout_rate2", -1.0, "dropout rate for layer 2 - defaults to dropout_rate"
|
||||
)
|
||||
f.DEFINE_float(
|
||||
"dropout_rate3", -1.0, "dropout rate for layer 3 - defaults to dropout_rate"
|
||||
)
|
||||
f.DEFINE_float("dropout_rate4", 0.0, "dropout rate for layer 4 - defaults to 0.0")
|
||||
f.DEFINE_float("dropout_rate5", 0.0, "dropout rate for layer 5 - defaults to 0.0")
|
||||
f.DEFINE_float(
|
||||
"dropout_rate6", -1.0, "dropout rate for layer 6 - defaults to dropout_rate"
|
||||
)
|
||||
|
||||
f.DEFINE_float('relu_clip', 20.0, 'ReLU clipping value for non-recurrent layers')
|
||||
f.DEFINE_float("relu_clip", 20.0, "ReLU clipping value for non-recurrent layers")
|
||||
|
||||
# Adam optimizer(http://arxiv.org/abs/1412.6980) parameters
|
||||
|
||||
f.DEFINE_float('beta1', 0.9, 'beta 1 parameter of Adam optimizer')
|
||||
f.DEFINE_float('beta2', 0.999, 'beta 2 parameter of Adam optimizer')
|
||||
f.DEFINE_float('epsilon', 1e-8, 'epsilon parameter of Adam optimizer')
|
||||
f.DEFINE_float('learning_rate', 0.001, 'learning rate of Adam optimizer')
|
||||
f.DEFINE_float("beta1", 0.9, "beta 1 parameter of Adam optimizer")
|
||||
f.DEFINE_float("beta2", 0.999, "beta 2 parameter of Adam optimizer")
|
||||
f.DEFINE_float("epsilon", 1e-8, "epsilon parameter of Adam optimizer")
|
||||
f.DEFINE_float("learning_rate", 0.001, "learning rate of Adam optimizer")
|
||||
|
||||
# Batch sizes
|
||||
|
||||
f.DEFINE_integer('train_batch_size', 1, 'number of elements in a training batch')
|
||||
f.DEFINE_integer('dev_batch_size', 1, 'number of elements in a validation batch')
|
||||
f.DEFINE_integer('test_batch_size', 1, 'number of elements in a test batch')
|
||||
f.DEFINE_integer("train_batch_size", 1, "number of elements in a training batch")
|
||||
f.DEFINE_integer("dev_batch_size", 1, "number of elements in a validation batch")
|
||||
f.DEFINE_integer("test_batch_size", 1, "number of elements in a test batch")
|
||||
|
||||
f.DEFINE_integer('export_batch_size', 1, 'number of elements per batch on the exported graph')
|
||||
f.DEFINE_integer(
|
||||
"export_batch_size", 1, "number of elements per batch on the exported graph"
|
||||
)
|
||||
|
||||
# Performance
|
||||
|
||||
f.DEFINE_integer('inter_op_parallelism_threads', 0, 'number of inter-op parallelism threads - see tf.ConfigProto for more details. USE OF THIS FLAG IS UNSUPPORTED')
|
||||
f.DEFINE_integer('intra_op_parallelism_threads', 0, 'number of intra-op parallelism threads - see tf.ConfigProto for more details. USE OF THIS FLAG IS UNSUPPORTED')
|
||||
f.DEFINE_boolean('use_allow_growth', False, 'use Allow Growth flag which will allocate only required amount of GPU memory and prevent full allocation of available GPU memory')
|
||||
f.DEFINE_boolean('load_cudnn', False, 'Specifying this flag allows one to convert a CuDNN RNN checkpoint to a checkpoint capable of running on a CPU graph.')
|
||||
f.DEFINE_boolean('train_cudnn', False, 'use CuDNN RNN backend for training on GPU. Note that checkpoints created with this flag can only be used with CuDNN RNN, i.e. fine tuning on a CPU device will not work')
|
||||
f.DEFINE_boolean('automatic_mixed_precision', False, 'whether to allow automatic mixed precision training. USE OF THIS FLAG IS UNSUPPORTED. Checkpoints created with automatic mixed precision training will not be usable without mixed precision.')
|
||||
f.DEFINE_integer(
|
||||
"inter_op_parallelism_threads",
|
||||
0,
|
||||
"number of inter-op parallelism threads - see tf.ConfigProto for more details. USE OF THIS FLAG IS UNSUPPORTED",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"intra_op_parallelism_threads",
|
||||
0,
|
||||
"number of intra-op parallelism threads - see tf.ConfigProto for more details. USE OF THIS FLAG IS UNSUPPORTED",
|
||||
)
|
||||
f.DEFINE_boolean(
|
||||
"use_allow_growth",
|
||||
False,
|
||||
"use Allow Growth flag which will allocate only required amount of GPU memory and prevent full allocation of available GPU memory",
|
||||
)
|
||||
f.DEFINE_boolean(
|
||||
"load_cudnn",
|
||||
False,
|
||||
"Specifying this flag allows one to convert a CuDNN RNN checkpoint to a checkpoint capable of running on a CPU graph.",
|
||||
)
|
||||
f.DEFINE_boolean(
|
||||
"train_cudnn",
|
||||
False,
|
||||
"use CuDNN RNN backend for training on GPU. Note that checkpoints created with this flag can only be used with CuDNN RNN, i.e. fine tuning on a CPU device will not work",
|
||||
)
|
||||
f.DEFINE_boolean(
|
||||
"automatic_mixed_precision",
|
||||
False,
|
||||
"whether to allow automatic mixed precision training. USE OF THIS FLAG IS UNSUPPORTED. Checkpoints created with automatic mixed precision training will not be usable without mixed precision.",
|
||||
)
|
||||
|
||||
# Sample limits
|
||||
|
||||
f.DEFINE_integer('limit_train', 0, 'maximum number of elements to use from train set - 0 means no limit')
|
||||
f.DEFINE_integer('limit_dev', 0, 'maximum number of elements to use from validation set - 0 means no limit')
|
||||
f.DEFINE_integer('limit_test', 0, 'maximum number of elements to use from test set - 0 means no limit')
|
||||
f.DEFINE_integer(
|
||||
"limit_train",
|
||||
0,
|
||||
"maximum number of elements to use from train set - 0 means no limit",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"limit_dev",
|
||||
0,
|
||||
"maximum number of elements to use from validation set - 0 means no limit",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"limit_test",
|
||||
0,
|
||||
"maximum number of elements to use from test set - 0 means no limit",
|
||||
)
|
||||
|
||||
# Sample order
|
||||
|
||||
f.DEFINE_boolean('reverse_train', False, 'if to reverse sample order of the train set')
|
||||
f.DEFINE_boolean('reverse_dev', False, 'if to reverse sample order of the dev set')
|
||||
f.DEFINE_boolean('reverse_test', False, 'if to reverse sample order of the test set')
|
||||
f.DEFINE_boolean(
|
||||
"reverse_train", False, "if to reverse sample order of the train set"
|
||||
)
|
||||
f.DEFINE_boolean("reverse_dev", False, "if to reverse sample order of the dev set")
|
||||
f.DEFINE_boolean(
|
||||
"reverse_test", False, "if to reverse sample order of the test set"
|
||||
)
|
||||
|
||||
# Checkpointing
|
||||
|
||||
f.DEFINE_string('checkpoint_dir', '', 'directory from which checkpoints are loaded and to which they are saved - defaults to directory "stt/checkpoints" within user\'s data home specified by the XDG Base Directory Specification')
|
||||
f.DEFINE_string('load_checkpoint_dir', '', 'directory in which checkpoints are stored - defaults to directory "stt/checkpoints" within user\'s data home specified by the XDG Base Directory Specification')
|
||||
f.DEFINE_string('save_checkpoint_dir', '', 'directory to which checkpoints are saved - defaults to directory "stt/checkpoints" within user\'s data home specified by the XDG Base Directory Specification')
|
||||
f.DEFINE_integer('checkpoint_secs', 600, 'checkpoint saving interval in seconds')
|
||||
f.DEFINE_integer('max_to_keep', 5, 'number of checkpoint files to keep - default value is 5')
|
||||
f.DEFINE_string('load_train', 'auto', 'what checkpoint to load before starting the training process. "last" for loading most recent epoch checkpoint, "best" for loading best validation loss checkpoint, "init" for initializing a new checkpoint, "auto" for trying several options.')
|
||||
f.DEFINE_string('load_evaluate', 'auto', 'what checkpoint to load for evaluation tasks (test epochs, model export, single file inference, etc). "last" for loading most recent epoch checkpoint, "best" for loading best validation loss checkpoint, "auto" for trying several options.')
|
||||
f.DEFINE_string(
|
||||
"checkpoint_dir",
|
||||
"",
|
||||
'directory from which checkpoints are loaded and to which they are saved - defaults to directory "stt/checkpoints" within user\'s data home specified by the XDG Base Directory Specification',
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"load_checkpoint_dir",
|
||||
"",
|
||||
'directory in which checkpoints are stored - defaults to directory "stt/checkpoints" within user\'s data home specified by the XDG Base Directory Specification',
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"save_checkpoint_dir",
|
||||
"",
|
||||
'directory to which checkpoints are saved - defaults to directory "stt/checkpoints" within user\'s data home specified by the XDG Base Directory Specification',
|
||||
)
|
||||
f.DEFINE_integer("checkpoint_secs", 600, "checkpoint saving interval in seconds")
|
||||
f.DEFINE_integer(
|
||||
"max_to_keep", 5, "number of checkpoint files to keep - default value is 5"
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"load_train",
|
||||
"auto",
|
||||
'what checkpoint to load before starting the training process. "last" for loading most recent epoch checkpoint, "best" for loading best validation loss checkpoint, "init" for initializing a new checkpoint, "auto" for trying several options.',
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"load_evaluate",
|
||||
"auto",
|
||||
'what checkpoint to load for evaluation tasks (test epochs, model export, single file inference, etc). "last" for loading most recent epoch checkpoint, "best" for loading best validation loss checkpoint, "auto" for trying several options.',
|
||||
)
|
||||
|
||||
# Transfer Learning
|
||||
|
||||
f.DEFINE_integer('drop_source_layers', 0, 'single integer for how many layers to drop from source model (to drop just output == 1, drop penultimate and output ==2, etc)')
|
||||
f.DEFINE_integer(
|
||||
"drop_source_layers",
|
||||
0,
|
||||
"single integer for how many layers to drop from source model (to drop just output == 1, drop penultimate and output ==2, etc)",
|
||||
)
|
||||
|
||||
# Exporting
|
||||
|
||||
f.DEFINE_string('export_dir', '', 'directory in which exported models are stored - if omitted, the model won\'t get exported')
|
||||
f.DEFINE_boolean('remove_export', False, 'whether to remove old exported models')
|
||||
f.DEFINE_boolean('export_tflite', False, 'export a graph ready for TF Lite engine')
|
||||
f.DEFINE_integer('n_steps', 16, 'how many timesteps to process at once by the export graph, higher values mean more latency')
|
||||
f.DEFINE_boolean('export_zip', False, 'export a TFLite model and package with LM and info.json')
|
||||
f.DEFINE_string('export_file_name', 'output_graph', 'name for the exported model file name')
|
||||
f.DEFINE_integer('export_beam_width', 500, 'default beam width to embed into exported graph')
|
||||
f.DEFINE_string(
|
||||
"export_dir",
|
||||
"",
|
||||
"directory in which exported models are stored - if omitted, the model won't get exported",
|
||||
)
|
||||
f.DEFINE_boolean("remove_export", False, "whether to remove old exported models")
|
||||
f.DEFINE_boolean("export_tflite", False, "export a graph ready for TF Lite engine")
|
||||
f.DEFINE_integer(
|
||||
"n_steps",
|
||||
16,
|
||||
"how many timesteps to process at once by the export graph, higher values mean more latency",
|
||||
)
|
||||
f.DEFINE_boolean(
|
||||
"export_zip", False, "export a TFLite model and package with LM and info.json"
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"export_file_name", "output_graph", "name for the exported model file name"
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"export_beam_width", 500, "default beam width to embed into exported graph"
|
||||
)
|
||||
|
||||
# Model metadata
|
||||
|
||||
f.DEFINE_string('export_author_id', 'author', 'author of the exported model. GitHub user or organization name used to uniquely identify the author of this model')
|
||||
f.DEFINE_string('export_model_name', 'model', 'name of the exported model. Must not contain forward slashes.')
|
||||
f.DEFINE_string('export_model_version', '0.0.1', 'semantic version of the exported model. See https://semver.org/. This is fully controlled by you as author of the model and has no required connection with Coqui STT versions')
|
||||
f.DEFINE_string(
|
||||
"export_author_id",
|
||||
"author",
|
||||
"author of the exported model. GitHub user or organization name used to uniquely identify the author of this model",
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"export_model_name",
|
||||
"model",
|
||||
"name of the exported model. Must not contain forward slashes.",
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"export_model_version",
|
||||
"0.0.1",
|
||||
"semantic version of the exported model. See https://semver.org/. This is fully controlled by you as author of the model and has no required connection with Coqui STT versions",
|
||||
)
|
||||
|
||||
def str_val_equals_help(name, val_desc):
|
||||
f.DEFINE_string(name, '<{}>'.format(val_desc), val_desc)
|
||||
f.DEFINE_string(name, "<{}>".format(val_desc), val_desc)
|
||||
|
||||
str_val_equals_help('export_contact_info', 'public contact information of the author. Can be an email address, or a link to a contact form, issue tracker, or discussion forum. Must provide a way to reach the model authors')
|
||||
str_val_equals_help('export_license', 'SPDX identifier of the license of the exported model. See https://spdx.org/licenses/. If the license does not have an SPDX identifier, use the license name.')
|
||||
str_val_equals_help('export_language', 'language the model was trained on - IETF BCP 47 language tag including at least language, script and region subtags. E.g. "en-Latn-UK" or "de-Latn-DE" or "cmn-Hans-CN". Include as much info as you can without loss of precision. For example, if a model is trained on Scottish English, include the variant subtag: "en-Latn-GB-Scotland".')
|
||||
str_val_equals_help('export_min_stt_version', 'minimum Coqui STT version (inclusive) the exported model is compatible with')
|
||||
str_val_equals_help('export_max_stt_version', 'maximum Coqui STT version (inclusive) the exported model is compatible with')
|
||||
str_val_equals_help('export_description', 'Freeform description of the model being exported. Markdown accepted. You can also leave this flag unchanged and edit the generated .md file directly. Useful things to describe are demographic and acoustic characteristics of the data used to train the model, any architectural changes, names of public datasets that were used when applicable, hyperparameters used for training, evaluation results on standard benchmark datasets, etc.')
|
||||
str_val_equals_help(
|
||||
"export_contact_info",
|
||||
"public contact information of the author. Can be an email address, or a link to a contact form, issue tracker, or discussion forum. Must provide a way to reach the model authors",
|
||||
)
|
||||
str_val_equals_help(
|
||||
"export_license",
|
||||
"SPDX identifier of the license of the exported model. See https://spdx.org/licenses/. If the license does not have an SPDX identifier, use the license name.",
|
||||
)
|
||||
str_val_equals_help(
|
||||
"export_language",
|
||||
'language the model was trained on - IETF BCP 47 language tag including at least language, script and region subtags. E.g. "en-Latn-UK" or "de-Latn-DE" or "cmn-Hans-CN". Include as much info as you can without loss of precision. For example, if a model is trained on Scottish English, include the variant subtag: "en-Latn-GB-Scotland".',
|
||||
)
|
||||
str_val_equals_help(
|
||||
"export_min_stt_version",
|
||||
"minimum Coqui STT version (inclusive) the exported model is compatible with",
|
||||
)
|
||||
str_val_equals_help(
|
||||
"export_max_stt_version",
|
||||
"maximum Coqui STT version (inclusive) the exported model is compatible with",
|
||||
)
|
||||
str_val_equals_help(
|
||||
"export_description",
|
||||
"Freeform description of the model being exported. Markdown accepted. You can also leave this flag unchanged and edit the generated .md file directly. Useful things to describe are demographic and acoustic characteristics of the data used to train the model, any architectural changes, names of public datasets that were used when applicable, hyperparameters used for training, evaluation results on standard benchmark datasets, etc.",
|
||||
)
|
||||
|
||||
# Reporting
|
||||
|
||||
f.DEFINE_integer('log_level', 1, 'log level for console logs - 0: DEBUG, 1: INFO, 2: WARN, 3: ERROR')
|
||||
f.DEFINE_boolean('show_progressbar', True, 'Show progress for training, validation and testing processes. Log level should be > 0.')
|
||||
f.DEFINE_integer(
|
||||
"log_level",
|
||||
1,
|
||||
"log level for console logs - 0: DEBUG, 1: INFO, 2: WARN, 3: ERROR",
|
||||
)
|
||||
f.DEFINE_boolean(
|
||||
"show_progressbar",
|
||||
True,
|
||||
"Show progress for training, validation and testing processes. Log level should be > 0.",
|
||||
)
|
||||
|
||||
f.DEFINE_boolean('log_placement', False, 'whether to log device placement of the operators to the console')
|
||||
f.DEFINE_integer('report_count', 5, 'number of phrases for each of best WER, median WER and worst WER to print out during a WER report')
|
||||
f.DEFINE_boolean(
|
||||
"log_placement",
|
||||
False,
|
||||
"whether to log device placement of the operators to the console",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"report_count",
|
||||
5,
|
||||
"number of phrases for each of best WER, median WER and worst WER to print out during a WER report",
|
||||
)
|
||||
|
||||
f.DEFINE_string('summary_dir', '', 'target directory for TensorBoard summaries - defaults to directory "stt/summaries" within user\'s data home specified by the XDG Base Directory Specification')
|
||||
f.DEFINE_string(
|
||||
"summary_dir",
|
||||
"",
|
||||
'target directory for TensorBoard summaries - defaults to directory "stt/summaries" within user\'s data home specified by the XDG Base Directory Specification',
|
||||
)
|
||||
|
||||
f.DEFINE_string('test_output_file', '', 'path to a file to save all src/decoded/distance/loss tuples generated during a test epoch')
|
||||
f.DEFINE_string(
|
||||
"test_output_file",
|
||||
"",
|
||||
"path to a file to save all src/decoded/distance/loss tuples generated during a test epoch",
|
||||
)
|
||||
|
||||
# Geometry
|
||||
|
||||
f.DEFINE_integer('n_hidden', 2048, 'layer width to use when initialising layers')
|
||||
f.DEFINE_boolean('layer_norm', False, 'wether to use layer-normalization after each fully-connected layer (except the last one)')
|
||||
f.DEFINE_integer("n_hidden", 2048, "layer width to use when initialising layers")
|
||||
f.DEFINE_boolean(
|
||||
"layer_norm",
|
||||
False,
|
||||
"wether to use layer-normalization after each fully-connected layer (except the last one)",
|
||||
)
|
||||
|
||||
# Initialization
|
||||
|
||||
f.DEFINE_integer('random_seed', 4568, 'default random seed that is used to initialize variables')
|
||||
f.DEFINE_integer(
|
||||
"random_seed", 4568, "default random seed that is used to initialize variables"
|
||||
)
|
||||
|
||||
# Early Stopping
|
||||
|
||||
f.DEFINE_boolean('early_stop', False, 'Enable early stopping mechanism over validation dataset. If validation is not being run, early stopping is disabled.')
|
||||
f.DEFINE_integer('es_epochs', 25, 'Number of epochs with no improvement after which training will be stopped. Loss is not stored in the checkpoint so when checkpoint is revived it starts the loss calculation from start at that point')
|
||||
f.DEFINE_float('es_min_delta', 0.05, 'Minimum change in loss to qualify as an improvement. This value will also be used in Reduce learning rate on plateau')
|
||||
f.DEFINE_boolean(
|
||||
"early_stop",
|
||||
False,
|
||||
"Enable early stopping mechanism over validation dataset. If validation is not being run, early stopping is disabled.",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"es_epochs",
|
||||
25,
|
||||
"Number of epochs with no improvement after which training will be stopped. Loss is not stored in the checkpoint so when checkpoint is revived it starts the loss calculation from start at that point",
|
||||
)
|
||||
f.DEFINE_float(
|
||||
"es_min_delta",
|
||||
0.05,
|
||||
"Minimum change in loss to qualify as an improvement. This value will also be used in Reduce learning rate on plateau",
|
||||
)
|
||||
|
||||
# Reduce learning rate on plateau
|
||||
|
||||
f.DEFINE_boolean('reduce_lr_on_plateau', False, 'Enable reducing the learning rate if a plateau is reached. This is the case if the validation loss did not improve for some epochs.')
|
||||
f.DEFINE_integer('plateau_epochs', 10, 'Number of epochs to consider for RLROP. Has to be smaller than es_epochs from early stopping')
|
||||
f.DEFINE_float('plateau_reduction', 0.1, 'Multiplicative factor to apply to the current learning rate if a plateau has occurred.')
|
||||
f.DEFINE_boolean('force_initialize_learning_rate', False, 'Force re-initialization of learning rate which was previously reduced.')
|
||||
f.DEFINE_boolean(
|
||||
"reduce_lr_on_plateau",
|
||||
False,
|
||||
"Enable reducing the learning rate if a plateau is reached. This is the case if the validation loss did not improve for some epochs.",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"plateau_epochs",
|
||||
10,
|
||||
"Number of epochs to consider for RLROP. Has to be smaller than es_epochs from early stopping",
|
||||
)
|
||||
f.DEFINE_float(
|
||||
"plateau_reduction",
|
||||
0.1,
|
||||
"Multiplicative factor to apply to the current learning rate if a plateau has occurred.",
|
||||
)
|
||||
f.DEFINE_boolean(
|
||||
"force_initialize_learning_rate",
|
||||
False,
|
||||
"Force re-initialization of learning rate which was previously reduced.",
|
||||
)
|
||||
|
||||
# Decoder
|
||||
|
||||
f.DEFINE_boolean('bytes_output_mode', False, 'enable Bytes Output Mode mode. When this is used the model outputs UTF-8 byte values directly rather than using an alphabet mapping. The --alphabet_config_path option will be ignored. See the training documentation for more details.')
|
||||
f.DEFINE_string('alphabet_config_path', 'data/alphabet.txt', 'path to the configuration file specifying the alphabet used by the network. See the comment in data/alphabet.txt for a description of the format.')
|
||||
f.DEFINE_string('scorer_path', '', 'path to the external scorer file.')
|
||||
f.DEFINE_alias('scorer', 'scorer_path')
|
||||
f.DEFINE_integer('beam_width', 1024, 'beam width used in the CTC decoder when building candidate transcriptions')
|
||||
f.DEFINE_float('lm_alpha', 0.931289039105002, 'the alpha hyperparameter of the CTC decoder. Language Model weight.')
|
||||
f.DEFINE_float('lm_beta', 1.1834137581510284, 'the beta hyperparameter of the CTC decoder. Word insertion weight.')
|
||||
f.DEFINE_float('cutoff_prob', 1.0, 'only consider characters until this probability mass is reached. 1.0 = disabled.')
|
||||
f.DEFINE_integer('cutoff_top_n', 300, 'only process this number of characters sorted by probability mass for each time step. If bigger than alphabet size, disabled.')
|
||||
f.DEFINE_boolean(
|
||||
"bytes_output_mode",
|
||||
False,
|
||||
"enable Bytes Output Mode mode. When this is used the model outputs UTF-8 byte values directly rather than using an alphabet mapping. The --alphabet_config_path option will be ignored. See the training documentation for more details.",
|
||||
)
|
||||
f.DEFINE_string(
|
||||
"alphabet_config_path",
|
||||
"data/alphabet.txt",
|
||||
"path to the configuration file specifying the alphabet used by the network. See the comment in data/alphabet.txt for a description of the format.",
|
||||
)
|
||||
f.DEFINE_string("scorer_path", "", "path to the external scorer file.")
|
||||
f.DEFINE_alias("scorer", "scorer_path")
|
||||
f.DEFINE_integer(
|
||||
"beam_width",
|
||||
1024,
|
||||
"beam width used in the CTC decoder when building candidate transcriptions",
|
||||
)
|
||||
f.DEFINE_float(
|
||||
"lm_alpha",
|
||||
0.931289039105002,
|
||||
"the alpha hyperparameter of the CTC decoder. Language Model weight.",
|
||||
)
|
||||
f.DEFINE_float(
|
||||
"lm_beta",
|
||||
1.1834137581510284,
|
||||
"the beta hyperparameter of the CTC decoder. Word insertion weight.",
|
||||
)
|
||||
f.DEFINE_float(
|
||||
"cutoff_prob",
|
||||
1.0,
|
||||
"only consider characters until this probability mass is reached. 1.0 = disabled.",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"cutoff_top_n",
|
||||
300,
|
||||
"only process this number of characters sorted by probability mass for each time step. If bigger than alphabet size, disabled.",
|
||||
)
|
||||
|
||||
# Inference mode
|
||||
|
||||
f.DEFINE_string('one_shot_infer', '', 'one-shot inference mode: specify a wav file and the script will load the checkpoint and perform inference on it.')
|
||||
f.DEFINE_string(
|
||||
"one_shot_infer",
|
||||
"",
|
||||
"one-shot inference mode: specify a wav file and the script will load the checkpoint and perform inference on it.",
|
||||
)
|
||||
|
||||
# Optimizer mode
|
||||
|
||||
f.DEFINE_float('lm_alpha_max', 5, 'the maximum of the alpha hyperparameter of the CTC decoder explored during hyperparameter optimization. Language Model weight.')
|
||||
f.DEFINE_float('lm_beta_max', 5, 'the maximum beta hyperparameter of the CTC decoder explored during hyperparameter optimization. Word insertion weight.')
|
||||
f.DEFINE_integer('n_trials', 2400, 'the number of trials to run during hyperparameter optimization.')
|
||||
f.DEFINE_float(
|
||||
"lm_alpha_max",
|
||||
5,
|
||||
"the maximum of the alpha hyperparameter of the CTC decoder explored during hyperparameter optimization. Language Model weight.",
|
||||
)
|
||||
f.DEFINE_float(
|
||||
"lm_beta_max",
|
||||
5,
|
||||
"the maximum beta hyperparameter of the CTC decoder explored during hyperparameter optimization. Word insertion weight.",
|
||||
)
|
||||
f.DEFINE_integer(
|
||||
"n_trials",
|
||||
2400,
|
||||
"the number of trials to run during hyperparameter optimization.",
|
||||
)
|
||||
|
||||
# Register validators for paths which require a file to be specified
|
||||
|
||||
f.register_validator('alphabet_config_path',
|
||||
f.register_validator(
|
||||
"alphabet_config_path",
|
||||
os.path.isfile,
|
||||
message='The file pointed to by --alphabet_config_path must exist and be readable.')
|
||||
message="The file pointed to by --alphabet_config_path must exist and be readable.",
|
||||
)
|
||||
|
||||
f.register_validator('one_shot_infer',
|
||||
f.register_validator(
|
||||
"one_shot_infer",
|
||||
lambda value: not value or os.path.isfile(value),
|
||||
message='The file pointed to by --one_shot_infer must exist and be readable.')
|
||||
message="The file pointed to by --one_shot_infer must exist and be readable.",
|
||||
)
|
||||
|
||||
|
||||
# sphinx-doc: training_ref_flags_end
|
||||
|
@ -6,4 +6,4 @@ def get_available_gpus(config):
|
||||
Returns the number of GPUs available on this system.
|
||||
"""
|
||||
local_device_protos = device_lib.list_local_devices(session_config=config)
|
||||
return [x.name for x in local_device_protos if x.device_type == 'GPU']
|
||||
return [x.name for x in local_device_protos if x.device_type == "GPU"]
|
||||
|
@ -1,21 +1,21 @@
|
||||
import heapq
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
import heapq
|
||||
import semver
|
||||
import random
|
||||
|
||||
from multiprocessing import Pool
|
||||
from collections import namedtuple
|
||||
from multiprocessing import Pool
|
||||
|
||||
import semver
|
||||
|
||||
KILO = 1024
|
||||
KILOBYTE = 1 * KILO
|
||||
MEGABYTE = KILO * KILOBYTE
|
||||
GIGABYTE = KILO * MEGABYTE
|
||||
TERABYTE = KILO * GIGABYTE
|
||||
SIZE_PREFIX_LOOKUP = {'k': KILOBYTE, 'm': MEGABYTE, 'g': GIGABYTE, 't': TERABYTE}
|
||||
SIZE_PREFIX_LOOKUP = {"k": KILOBYTE, "m": MEGABYTE, "g": GIGABYTE, "t": TERABYTE}
|
||||
|
||||
ValueRange = namedtuple('ValueRange', 'start end r')
|
||||
ValueRange = namedtuple("ValueRange", "start end r")
|
||||
|
||||
|
||||
def parse_file_size(file_size):
|
||||
@ -23,39 +23,49 @@ def parse_file_size(file_size):
|
||||
if len(file_size) == 0:
|
||||
return 0
|
||||
n = int(keep_only_digits(file_size))
|
||||
if file_size[-1] == 'b':
|
||||
if file_size[-1] == "b":
|
||||
file_size = file_size[:-1]
|
||||
e = file_size[-1]
|
||||
return SIZE_PREFIX_LOOKUP[e] * n if e in SIZE_PREFIX_LOOKUP else n
|
||||
|
||||
|
||||
def keep_only_digits(txt):
|
||||
return ''.join(filter(str.isdigit, txt))
|
||||
return "".join(filter(str.isdigit, txt))
|
||||
|
||||
|
||||
def secs_to_hours(secs):
|
||||
hours, remainder = divmod(secs, 3600)
|
||||
minutes, seconds = divmod(remainder, 60)
|
||||
return '%d:%02d:%02d' % (hours, minutes, seconds)
|
||||
return "%d:%02d:%02d" % (hours, minutes, seconds)
|
||||
|
||||
|
||||
def check_ctcdecoder_version():
|
||||
ds_version_s = open(os.path.join(os.path.dirname(__file__), '../VERSION')).read().strip()
|
||||
ds_version_s = (
|
||||
open(os.path.join(os.path.dirname(__file__), "../VERSION")).read().strip()
|
||||
)
|
||||
|
||||
try:
|
||||
# pylint: disable=import-outside-toplevel
|
||||
from coqui_stt_ctcdecoder import __version__ as decoder_version
|
||||
except ImportError as e:
|
||||
if e.msg.find('__version__') > 0:
|
||||
print("Coqui STT version ({ds_version}) requires CTC decoder to expose __version__. "
|
||||
"Please upgrade the coqui_stt_ctcdecoder package to version {ds_version}".format(ds_version=ds_version_s))
|
||||
if e.msg.find("__version__") > 0:
|
||||
print(
|
||||
"Coqui STT version ({ds_version}) requires CTC decoder to expose __version__. "
|
||||
"Please upgrade the coqui_stt_ctcdecoder package to version {ds_version}".format(
|
||||
ds_version=ds_version_s
|
||||
)
|
||||
)
|
||||
sys.exit(1)
|
||||
raise e
|
||||
|
||||
rv = semver.compare(ds_version_s, decoder_version)
|
||||
if rv != 0:
|
||||
print("Coqui STT version ({}) and CTC decoder version ({}) do not match. "
|
||||
"Please ensure matching versions are in use.".format(ds_version_s, decoder_version))
|
||||
print(
|
||||
"Coqui STT version ({}) and CTC decoder version ({}) do not match. "
|
||||
"Please ensure matching versions are in use.".format(
|
||||
ds_version_s, decoder_version
|
||||
)
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
return rv
|
||||
@ -65,6 +75,7 @@ class Interleaved:
|
||||
"""Collection that lazily combines sorted collections in an interleaving fashion.
|
||||
During iteration the next smallest element from all the sorted collections is always picked.
|
||||
The collections must support iter() and len()."""
|
||||
|
||||
def __init__(self, *iterables, key=lambda obj: obj, reverse=False):
|
||||
self.iterables = iterables
|
||||
self.key = key
|
||||
@ -83,6 +94,7 @@ class LenMap:
|
||||
Wrapper around python map() output object that preserves the original collection length
|
||||
by implementing __len__.
|
||||
"""
|
||||
|
||||
def __init__(self, fn, iterable):
|
||||
try:
|
||||
self.length = len(iterable)
|
||||
@ -108,11 +120,21 @@ class LimitingPool:
|
||||
"""Limits unbound ahead-processing of multiprocessing.Pool's imap method
|
||||
before items get consumed by the iteration caller.
|
||||
This prevents OOM issues in situations where items represent larger memory allocations."""
|
||||
def __init__(self, processes=None, initializer=None, initargs=None, process_ahead=None, sleeping_for=0.1):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
processes=None,
|
||||
initializer=None,
|
||||
initargs=None,
|
||||
process_ahead=None,
|
||||
sleeping_for=0.1,
|
||||
):
|
||||
self.process_ahead = os.cpu_count() if process_ahead is None else process_ahead
|
||||
self.sleeping_for = sleeping_for
|
||||
self.processed = 0
|
||||
self.pool = Pool(processes=processes, initializer=initializer, initargs=initargs)
|
||||
self.pool = Pool(
|
||||
processes=processes, initializer=initializer, initargs=initargs
|
||||
)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
@ -139,6 +161,7 @@ class LimitingPool:
|
||||
class ExceptionBox:
|
||||
"""Helper class for passing-back and re-raising an exception from inside a TensorFlow dataset generator.
|
||||
Used in conjunction with `remember_exception`."""
|
||||
|
||||
def __init__(self):
|
||||
self.exception = None
|
||||
|
||||
@ -152,6 +175,7 @@ class ExceptionBox:
|
||||
def remember_exception(iterable, exception_box=None):
|
||||
"""Wraps a TensorFlow dataset generator for catching its actual exceptions
|
||||
that would otherwise just interrupt iteration w/o bubbling up."""
|
||||
|
||||
def do_iterate():
|
||||
try:
|
||||
yield from iterable()
|
||||
@ -159,6 +183,7 @@ def remember_exception(iterable, exception_box=None):
|
||||
return
|
||||
except Exception as ex: # pylint: disable = broad-except
|
||||
exception_box.exception = ex
|
||||
|
||||
return iterable if exception_box is None else do_iterate
|
||||
|
||||
|
||||
@ -174,30 +199,34 @@ def get_value_range(value, target_type):
|
||||
Any "missing" values are filled so that ValueRange always includes [start,end,r].
|
||||
"""
|
||||
if isinstance(value, str):
|
||||
if '~' in value:
|
||||
parts = value.split('~')
|
||||
if "~" in value:
|
||||
parts = value.split("~")
|
||||
if len(parts) != 2:
|
||||
raise ValueError('Cannot parse value range')
|
||||
raise ValueError("Cannot parse value range")
|
||||
value = parts[0]
|
||||
r = parts[1]
|
||||
else:
|
||||
r = 0 # if no <r> supplied, use 0
|
||||
parts = value.split(':')
|
||||
parts = value.split(":")
|
||||
if len(parts) == 1:
|
||||
parts.append(parts[0]) # only one <value> given, so double it
|
||||
if len(parts) != 2:
|
||||
raise ValueError('Cannot parse value range')
|
||||
raise ValueError("Cannot parse value range")
|
||||
return ValueRange(target_type(parts[0]), target_type(parts[1]), target_type(r))
|
||||
if isinstance(value, tuple):
|
||||
if len(value) == 2:
|
||||
return ValueRange(target_type(value[0]), target_type(value[1]), target_type(0))
|
||||
return ValueRange(
|
||||
target_type(value[0]), target_type(value[1]), target_type(0)
|
||||
)
|
||||
if len(value) == 3:
|
||||
return ValueRange(target_type(value[0]), target_type(value[1]), target_type(value[2]))
|
||||
return ValueRange(
|
||||
target_type(value[0]), target_type(value[1]), target_type(value[2])
|
||||
)
|
||||
else:
|
||||
raise ValueError('Cannot convert to ValueRange: Wrong tuple size')
|
||||
raise ValueError("Cannot convert to ValueRange: Wrong tuple size")
|
||||
if isinstance(value, int) or isinstance(value, float):
|
||||
return ValueRange(target_type(value), target_type(value), target_type(0))
|
||||
raise ValueError('Cannot convert to ValueRange: Wrong tuple size')
|
||||
raise ValueError("Cannot convert to ValueRange: Wrong tuple size")
|
||||
|
||||
|
||||
def int_range(value):
|
||||
@ -217,20 +246,25 @@ def pick_value_from_range(value_range, clock=None):
|
||||
|
||||
def tf_pick_value_from_range(value_range, clock=None, double_precision=False):
|
||||
import tensorflow as tf # pylint: disable=import-outside-toplevel
|
||||
|
||||
if clock is None:
|
||||
clock = tf.random.stateless_uniform([], seed=(-1, 1), dtype=tf.float64)
|
||||
else:
|
||||
clock = tf.maximum(tf.constant(0.0, dtype=tf.float64),
|
||||
tf.minimum(tf.constant(1.0, dtype=tf.float64), clock))
|
||||
clock = tf.maximum(
|
||||
tf.constant(0.0, dtype=tf.float64),
|
||||
tf.minimum(tf.constant(1.0, dtype=tf.float64), clock),
|
||||
)
|
||||
value = value_range.start + clock * (value_range.end - value_range.start)
|
||||
if value_range.r:
|
||||
# if the option <r> (<value>~<r>, randomization radius) is supplied,
|
||||
# sample the value from a uniform distribution with "radius" <r>
|
||||
value = tf.random.stateless_uniform([],
|
||||
value = tf.random.stateless_uniform(
|
||||
[],
|
||||
minval=value - value_range.r,
|
||||
maxval=value + value_range.r,
|
||||
seed=(clock * tf.int32.min, clock * tf.int32.max),
|
||||
dtype=tf.float64)
|
||||
dtype=tf.float64,
|
||||
)
|
||||
if isinstance(value_range.start, int):
|
||||
return tf.cast(tf.math.round(value), tf.int64 if double_precision else tf.int32)
|
||||
return tf.cast(value, tf.float64 if double_precision else tf.float32)
|
||||
|
@ -3,33 +3,72 @@ import importlib
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
|
||||
from .helpers import secs_to_hours
|
||||
from collections import Counter
|
||||
|
||||
from .helpers import secs_to_hours
|
||||
|
||||
|
||||
def get_counter():
|
||||
return Counter({'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0, 'imported_time': 0, 'total_time': 0})
|
||||
return Counter(
|
||||
{
|
||||
"all": 0,
|
||||
"failed": 0,
|
||||
"invalid_label": 0,
|
||||
"too_short": 0,
|
||||
"too_long": 0,
|
||||
"imported_time": 0,
|
||||
"total_time": 0,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def get_imported_samples(counter):
|
||||
return counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long'] - counter['invalid_label']
|
||||
return (
|
||||
counter["all"]
|
||||
- counter["failed"]
|
||||
- counter["too_short"]
|
||||
- counter["too_long"]
|
||||
- counter["invalid_label"]
|
||||
)
|
||||
|
||||
|
||||
def print_import_report(counter, sample_rate, max_secs):
|
||||
print('Imported %d samples.' % (get_imported_samples(counter)))
|
||||
if counter['failed'] > 0:
|
||||
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
|
||||
if counter['invalid_label'] > 0:
|
||||
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
|
||||
if counter['too_short'] > 0:
|
||||
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
|
||||
if counter['too_long'] > 0:
|
||||
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], max_secs))
|
||||
print('Final amount of imported audio: %s from %s.' % (secs_to_hours(counter['imported_time'] / sample_rate), secs_to_hours(counter['total_time'] / sample_rate)))
|
||||
print("Imported %d samples." % (get_imported_samples(counter)))
|
||||
if counter["failed"] > 0:
|
||||
print("Skipped %d samples that failed upon conversion." % counter["failed"])
|
||||
if counter["invalid_label"] > 0:
|
||||
print(
|
||||
"Skipped %d samples that failed on transcript validation."
|
||||
% counter["invalid_label"]
|
||||
)
|
||||
if counter["too_short"] > 0:
|
||||
print(
|
||||
"Skipped %d samples that were too short to match the transcript."
|
||||
% counter["too_short"]
|
||||
)
|
||||
if counter["too_long"] > 0:
|
||||
print(
|
||||
"Skipped %d samples that were longer than %d seconds."
|
||||
% (counter["too_long"], max_secs)
|
||||
)
|
||||
print(
|
||||
"Final amount of imported audio: %s from %s."
|
||||
% (
|
||||
secs_to_hours(counter["imported_time"] / sample_rate),
|
||||
secs_to_hours(counter["total_time"] / sample_rate),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def get_importers_parser(description):
|
||||
parser = argparse.ArgumentParser(description=description)
|
||||
parser.add_argument('--validate_label_locale', help='Path to a Python file defining a |validate_label| function for your locale. WARNING: THIS WILL ADD THIS FILE\'s DIRECTORY INTO PYTHONPATH.')
|
||||
parser.add_argument(
|
||||
"--validate_label_locale",
|
||||
help="Path to a Python file defining a |validate_label| function for your locale. WARNING: THIS WILL ADD THIS FILE's DIRECTORY INTO PYTHONPATH.",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_validate_label(args):
|
||||
"""
|
||||
Expects an argparse.Namespace argument to search for validate_label_locale parameter.
|
||||
@ -43,19 +82,22 @@ def get_validate_label(args):
|
||||
:type: function
|
||||
"""
|
||||
# Python 3.5 does not support passing a pathlib.Path to os.path.* methods
|
||||
if 'validate_label_locale' not in args or (args.validate_label_locale is None):
|
||||
print('WARNING: No --validate_label_locale specified, your might end with inconsistent dataset.')
|
||||
if "validate_label_locale" not in args or (args.validate_label_locale is None):
|
||||
print(
|
||||
"WARNING: No --validate_label_locale specified, your might end with inconsistent dataset."
|
||||
)
|
||||
return validate_label_eng
|
||||
validate_label_locale = str(args.validate_label_locale)
|
||||
if not os.path.exists(os.path.abspath(validate_label_locale)):
|
||||
print('ERROR: Inexistent --validate_label_locale specified. Please check.')
|
||||
print("ERROR: Inexistent --validate_label_locale specified. Please check.")
|
||||
return None
|
||||
module_dir = os.path.abspath(os.path.dirname(validate_label_locale))
|
||||
sys.path.insert(1, module_dir)
|
||||
fname = os.path.basename(validate_label_locale).replace('.py', '')
|
||||
fname = os.path.basename(validate_label_locale).replace(".py", "")
|
||||
locale_module = importlib.import_module(fname, package=None)
|
||||
return locale_module.validate_label
|
||||
|
||||
|
||||
# Validate and normalize transcriptions. Returns a cleaned version of the label
|
||||
# or None if it's invalid.
|
||||
def validate_label_eng(label):
|
||||
@ -72,7 +114,7 @@ def validate_label_eng(label):
|
||||
label = label.replace("?", "")
|
||||
label = label.replace("!", "")
|
||||
label = label.replace(":", "")
|
||||
label = label.replace("\"", "")
|
||||
label = label.replace('"', "")
|
||||
label = label.strip()
|
||||
label = label.lower()
|
||||
|
||||
|
@ -4,6 +4,7 @@ into HDFS storage using Tensorflow's C++ FileStream API.
|
||||
Currently only includes wrappers for Google's GCS, but this can easily be expanded for AWS S3 buckets.
|
||||
"""
|
||||
import os
|
||||
|
||||
from tensorflow.io import gfile
|
||||
|
||||
|
||||
@ -12,7 +13,7 @@ def is_remote_path(path):
|
||||
Returns True iff the path is one of the remote formats that this
|
||||
module supports
|
||||
"""
|
||||
return path.startswith('gs://') or path.startswith('hdfs://')
|
||||
return path.startswith("gs://") or path.startswith("hdfs://")
|
||||
|
||||
|
||||
def path_exists_remote(path):
|
||||
@ -32,7 +33,9 @@ def copy_remote(src, dst, overwrite=False):
|
||||
return gfile.copy(src, dst, overwrite)
|
||||
|
||||
|
||||
def open_remote(path, mode='r', buffering=-1, encoding=None, newline=None, closefd=True, opener=None):
|
||||
def open_remote(
|
||||
path, mode="r", buffering=-1, encoding=None, newline=None, closefd=True, opener=None
|
||||
):
|
||||
"""
|
||||
Wrapper around open() method that can handle remote paths like `gs://...`
|
||||
off Google Cloud using Tensorflow's IO helpers.
|
||||
@ -45,7 +48,15 @@ def open_remote(path, mode='r', buffering=-1, encoding=None, newline=None, close
|
||||
"""
|
||||
if is_remote_path(path):
|
||||
return gfile.GFile(path, mode=mode)
|
||||
return open(path, mode, buffering=buffering, encoding=encoding, newline=newline, closefd=closefd, opener=opener)
|
||||
return open(
|
||||
path,
|
||||
mode,
|
||||
buffering=buffering,
|
||||
encoding=encoding,
|
||||
newline=newline,
|
||||
closefd=closefd,
|
||||
opener=opener,
|
||||
)
|
||||
|
||||
|
||||
def isdir_remote(path):
|
||||
|
@ -1,42 +1,43 @@
|
||||
from __future__ import print_function
|
||||
|
||||
import progressbar
|
||||
import sys
|
||||
|
||||
from .flags import FLAGS
|
||||
import progressbar
|
||||
|
||||
from .flags import FLAGS
|
||||
|
||||
# Logging functions
|
||||
# =================
|
||||
|
||||
|
||||
def prefix_print(prefix, message):
|
||||
print(prefix + ('\n' + prefix).join(message.split('\n')))
|
||||
print(prefix + ("\n" + prefix).join(message.split("\n")))
|
||||
|
||||
|
||||
def log_debug(message):
|
||||
if FLAGS.log_level == 0:
|
||||
prefix_print('D ', message)
|
||||
prefix_print("D ", message)
|
||||
|
||||
|
||||
def log_info(message):
|
||||
if FLAGS.log_level <= 1:
|
||||
prefix_print('I ', message)
|
||||
prefix_print("I ", message)
|
||||
|
||||
|
||||
def log_warn(message):
|
||||
if FLAGS.log_level <= 2:
|
||||
prefix_print('W ', message)
|
||||
prefix_print("W ", message)
|
||||
|
||||
|
||||
def log_error(message):
|
||||
if FLAGS.log_level <= 3:
|
||||
prefix_print('E ', message)
|
||||
prefix_print("E ", message)
|
||||
|
||||
|
||||
def create_progressbar(*args, **kwargs):
|
||||
# Progress bars in stdout by default
|
||||
if 'fd' not in kwargs:
|
||||
kwargs['fd'] = sys.stdout
|
||||
if "fd" not in kwargs:
|
||||
kwargs["fd"] = sys.stdout
|
||||
|
||||
if FLAGS.show_progressbar:
|
||||
return progressbar.ProgressBar(*args, **kwargs)
|
||||
|
@ -1,45 +1,47 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
import io
|
||||
import csv
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import tarfile
|
||||
|
||||
from pathlib import Path
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
from .helpers import KILOBYTE, MEGABYTE, GIGABYTE, Interleaved, LenMap
|
||||
from .audio import (
|
||||
Sample,
|
||||
AUDIO_TYPE_PCM,
|
||||
AUDIO_TYPE_OPUS,
|
||||
AUDIO_TYPE_PCM,
|
||||
SERIALIZABLE_AUDIO_TYPES,
|
||||
Sample,
|
||||
get_loadable_audio_type_from_extension,
|
||||
write_wav
|
||||
write_wav,
|
||||
)
|
||||
from .io import open_remote, is_remote_path
|
||||
from .helpers import GIGABYTE, KILOBYTE, MEGABYTE, Interleaved, LenMap
|
||||
from .io import is_remote_path, open_remote
|
||||
|
||||
BIG_ENDIAN = 'big'
|
||||
BIG_ENDIAN = "big"
|
||||
INT_SIZE = 4
|
||||
BIGINT_SIZE = 2 * INT_SIZE
|
||||
MAGIC = b'SAMPLEDB'
|
||||
MAGIC = b"SAMPLEDB"
|
||||
|
||||
BUFFER_SIZE = 1 * MEGABYTE
|
||||
REVERSE_BUFFER_SIZE = 16 * KILOBYTE
|
||||
CACHE_SIZE = 1 * GIGABYTE
|
||||
|
||||
SCHEMA_KEY = 'schema'
|
||||
CONTENT_KEY = 'content'
|
||||
MIME_TYPE_KEY = 'mime-type'
|
||||
MIME_TYPE_TEXT = 'text/plain'
|
||||
CONTENT_TYPE_SPEECH = 'speech'
|
||||
CONTENT_TYPE_TRANSCRIPT = 'transcript'
|
||||
SCHEMA_KEY = "schema"
|
||||
CONTENT_KEY = "content"
|
||||
MIME_TYPE_KEY = "mime-type"
|
||||
MIME_TYPE_TEXT = "text/plain"
|
||||
CONTENT_TYPE_SPEECH = "speech"
|
||||
CONTENT_TYPE_TRANSCRIPT = "transcript"
|
||||
|
||||
|
||||
class LabeledSample(Sample):
|
||||
"""In-memory labeled audio sample representing an utterance.
|
||||
Derived from util.audio.Sample and used by sample collection readers and writers."""
|
||||
def __init__(self, audio_type, raw_data, transcript, audio_format=None, sample_id=None):
|
||||
|
||||
def __init__(
|
||||
self, audio_type, raw_data, transcript, audio_format=None, sample_id=None
|
||||
):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
@ -55,7 +57,9 @@ class LabeledSample(Sample):
|
||||
Tracking ID - should indicate sample's origin as precisely as possible.
|
||||
It is typically assigned by collection readers.
|
||||
"""
|
||||
super().__init__(audio_type, raw_data, audio_format=audio_format, sample_id=sample_id)
|
||||
super().__init__(
|
||||
audio_type, raw_data, audio_format=audio_format, sample_id=sample_id
|
||||
)
|
||||
self.transcript = transcript
|
||||
|
||||
|
||||
@ -65,13 +69,14 @@ class PackedSample:
|
||||
have the child process do the loading/unpacking of the sample, allowing for parallel file
|
||||
I/O.
|
||||
"""
|
||||
|
||||
def __init__(self, filename, audio_type, label):
|
||||
self.filename = filename
|
||||
self.audio_type = audio_type
|
||||
self.label = label
|
||||
|
||||
def unpack(self):
|
||||
with open_remote(self.filename, 'rb') as audio_file:
|
||||
with open_remote(self.filename, "rb") as audio_file:
|
||||
data = audio_file.read()
|
||||
if self.label is None:
|
||||
s = Sample(self.audio_type, data, sample_id=self.filename)
|
||||
@ -83,7 +88,7 @@ def unpack_maybe(sample):
|
||||
"""
|
||||
Loads the supplied sample from disk (or the network) if the audio isn't loaded in to memory already.
|
||||
"""
|
||||
if hasattr(sample, 'unpack'):
|
||||
if hasattr(sample, "unpack"):
|
||||
realized_sample = sample.unpack()
|
||||
else:
|
||||
realized_sample = sample
|
||||
@ -117,13 +122,16 @@ def load_sample(filename, label=None):
|
||||
|
||||
class DirectSDBWriter:
|
||||
"""Sample collection writer for creating a Sample DB (SDB) file"""
|
||||
def __init__(self,
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
sdb_filename,
|
||||
buffering=BUFFER_SIZE,
|
||||
audio_type=AUDIO_TYPE_OPUS,
|
||||
bitrate=None,
|
||||
id_prefix=None,
|
||||
labeled=True):
|
||||
labeled=True,
|
||||
):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
@ -148,7 +156,7 @@ class DirectSDBWriter:
|
||||
raise ValueError('Audio type "{}" not supported'.format(audio_type))
|
||||
self.audio_type = audio_type
|
||||
self.bitrate = bitrate
|
||||
self.sdb_file = open_remote(sdb_filename, 'wb', buffering=buffering)
|
||||
self.sdb_file = open_remote(sdb_filename, "wb", buffering=buffering)
|
||||
self.offsets = []
|
||||
self.num_samples = 0
|
||||
|
||||
@ -156,7 +164,9 @@ class DirectSDBWriter:
|
||||
|
||||
schema_entries = [{CONTENT_KEY: CONTENT_TYPE_SPEECH, MIME_TYPE_KEY: audio_type}]
|
||||
if self.labeled:
|
||||
schema_entries.append({CONTENT_KEY: CONTENT_TYPE_TRANSCRIPT, MIME_TYPE_KEY: MIME_TYPE_TEXT})
|
||||
schema_entries.append(
|
||||
{CONTENT_KEY: CONTENT_TYPE_TRANSCRIPT, MIME_TYPE_KEY: MIME_TYPE_TEXT}
|
||||
)
|
||||
meta_data = {SCHEMA_KEY: schema_entries}
|
||||
meta_data = json.dumps(meta_data).encode()
|
||||
self.write_big_int(len(meta_data))
|
||||
@ -177,20 +187,23 @@ class DirectSDBWriter:
|
||||
def add(self, sample):
|
||||
def to_bytes(n):
|
||||
return n.to_bytes(INT_SIZE, BIG_ENDIAN)
|
||||
|
||||
sample.change_audio_type(self.audio_type, bitrate=self.bitrate)
|
||||
opus = sample.audio.getbuffer()
|
||||
opus_len = to_bytes(len(opus))
|
||||
if self.labeled:
|
||||
transcript = sample.transcript.encode()
|
||||
transcript_len = to_bytes(len(transcript))
|
||||
entry_len = to_bytes(len(opus_len) + len(opus) + len(transcript_len) + len(transcript))
|
||||
buffer = b''.join([entry_len, opus_len, opus, transcript_len, transcript])
|
||||
entry_len = to_bytes(
|
||||
len(opus_len) + len(opus) + len(transcript_len) + len(transcript)
|
||||
)
|
||||
buffer = b"".join([entry_len, opus_len, opus, transcript_len, transcript])
|
||||
else:
|
||||
entry_len = to_bytes(len(opus_len) + len(opus))
|
||||
buffer = b''.join([entry_len, opus_len, opus])
|
||||
buffer = b"".join([entry_len, opus_len, opus])
|
||||
self.offsets.append(self.sdb_file.tell())
|
||||
self.sdb_file.write(buffer)
|
||||
sample.sample_id = '{}:{}'.format(self.id_prefix, self.num_samples)
|
||||
sample.sample_id = "{}:{}".format(self.id_prefix, self.num_samples)
|
||||
self.num_samples += 1
|
||||
return sample.sample_id
|
||||
|
||||
@ -221,12 +234,15 @@ class DirectSDBWriter:
|
||||
|
||||
class SDB: # pylint: disable=too-many-instance-attributes
|
||||
"""Sample collection reader for reading a Sample DB (SDB) file"""
|
||||
def __init__(self,
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
sdb_filename,
|
||||
buffering=BUFFER_SIZE,
|
||||
id_prefix=None,
|
||||
labeled=True,
|
||||
reverse=False):
|
||||
reverse=False,
|
||||
):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
@ -244,30 +260,36 @@ class SDB: # pylint: disable=too-many-instance-attributes
|
||||
"""
|
||||
self.sdb_filename = sdb_filename
|
||||
self.id_prefix = sdb_filename if id_prefix is None else id_prefix
|
||||
self.sdb_file = open_remote(sdb_filename, 'rb', buffering=REVERSE_BUFFER_SIZE if reverse else buffering)
|
||||
self.sdb_file = open_remote(
|
||||
sdb_filename, "rb", buffering=REVERSE_BUFFER_SIZE if reverse else buffering
|
||||
)
|
||||
self.offsets = []
|
||||
if self.sdb_file.read(len(MAGIC)) != MAGIC:
|
||||
raise RuntimeError('No Sample Database')
|
||||
raise RuntimeError("No Sample Database")
|
||||
meta_chunk_len = self.read_big_int()
|
||||
self.meta = json.loads(self.sdb_file.read(meta_chunk_len).decode())
|
||||
if SCHEMA_KEY not in self.meta:
|
||||
raise RuntimeError('Missing schema')
|
||||
raise RuntimeError("Missing schema")
|
||||
self.schema = self.meta[SCHEMA_KEY]
|
||||
|
||||
speech_columns = self.find_columns(content=CONTENT_TYPE_SPEECH, mime_type=SERIALIZABLE_AUDIO_TYPES)
|
||||
speech_columns = self.find_columns(
|
||||
content=CONTENT_TYPE_SPEECH, mime_type=SERIALIZABLE_AUDIO_TYPES
|
||||
)
|
||||
if not speech_columns:
|
||||
raise RuntimeError('No speech data (missing in schema)')
|
||||
raise RuntimeError("No speech data (missing in schema)")
|
||||
self.speech_index = speech_columns[0]
|
||||
self.audio_type = self.schema[self.speech_index][MIME_TYPE_KEY]
|
||||
|
||||
self.transcript_index = None
|
||||
if labeled is not False:
|
||||
transcript_columns = self.find_columns(content=CONTENT_TYPE_TRANSCRIPT, mime_type=MIME_TYPE_TEXT)
|
||||
transcript_columns = self.find_columns(
|
||||
content=CONTENT_TYPE_TRANSCRIPT, mime_type=MIME_TYPE_TEXT
|
||||
)
|
||||
if transcript_columns:
|
||||
self.transcript_index = transcript_columns[0]
|
||||
else:
|
||||
if labeled is True:
|
||||
raise RuntimeError('No transcript data (missing in schema)')
|
||||
raise RuntimeError("No transcript data (missing in schema)")
|
||||
|
||||
sample_chunk_len = self.read_big_int()
|
||||
self.sdb_file.seek(sample_chunk_len + BIGINT_SIZE, 1)
|
||||
@ -290,12 +312,16 @@ class SDB: # pylint: disable=too-many-instance-attributes
|
||||
if mime_type is not None:
|
||||
criteria.append((MIME_TYPE_KEY, mime_type))
|
||||
if len(criteria) == 0:
|
||||
raise ValueError('At least one of "content" or "mime-type" has to be provided')
|
||||
raise ValueError(
|
||||
'At least one of "content" or "mime-type" has to be provided'
|
||||
)
|
||||
matches = []
|
||||
for index, column in enumerate(self.schema):
|
||||
matched = 0
|
||||
for field, value in criteria:
|
||||
if column[field] == value or (isinstance(value, list) and column[field] in value):
|
||||
if column[field] == value or (
|
||||
isinstance(value, list) and column[field] in value
|
||||
):
|
||||
matched += 1
|
||||
if matched == len(criteria):
|
||||
matches.append(index)
|
||||
@ -306,8 +332,11 @@ class SDB: # pylint: disable=too-many-instance-attributes
|
||||
column_data = [None] * len(columns)
|
||||
found = 0
|
||||
if not 0 <= row_index < len(self.offsets):
|
||||
raise ValueError('Wrong sample index: {} - has to be between 0 and {}'
|
||||
.format(row_index, len(self.offsets) - 1))
|
||||
raise ValueError(
|
||||
"Wrong sample index: {} - has to be between 0 and {}".format(
|
||||
row_index, len(self.offsets) - 1
|
||||
)
|
||||
)
|
||||
self.sdb_file.seek(self.offsets[row_index] + INT_SIZE)
|
||||
for index in range(len(self.schema)):
|
||||
chunk_len = self.read_int()
|
||||
@ -321,13 +350,17 @@ class SDB: # pylint: disable=too-many-instance-attributes
|
||||
return tuple(column_data)
|
||||
|
||||
def __getitem__(self, i):
|
||||
sample_id = '{}:{}'.format(self.id_prefix, i)
|
||||
sample_id = "{}:{}".format(self.id_prefix, i)
|
||||
if self.transcript_index is None:
|
||||
[audio_data] = self.read_row(i, self.speech_index)
|
||||
return Sample(self.audio_type, audio_data, sample_id=sample_id)
|
||||
audio_data, transcript = self.read_row(i, self.speech_index, self.transcript_index)
|
||||
audio_data, transcript = self.read_row(
|
||||
i, self.speech_index, self.transcript_index
|
||||
)
|
||||
transcript = transcript.decode()
|
||||
return LabeledSample(self.audio_type, audio_data, transcript, sample_id=sample_id)
|
||||
return LabeledSample(
|
||||
self.audio_type, audio_data, transcript, sample_id=sample_id
|
||||
)
|
||||
|
||||
def __iter__(self):
|
||||
for i in range(len(self.offsets)):
|
||||
@ -346,10 +379,8 @@ class SDB: # pylint: disable=too-many-instance-attributes
|
||||
|
||||
class CSVWriter: # pylint: disable=too-many-instance-attributes
|
||||
"""Sample collection writer for writing a CSV data-set and all its referenced WAV samples"""
|
||||
def __init__(self,
|
||||
csv_filename,
|
||||
absolute_paths=False,
|
||||
labeled=True):
|
||||
|
||||
def __init__(self, csv_filename, absolute_paths=False, labeled=True):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
@ -372,11 +403,11 @@ class CSVWriter: # pylint: disable=too-many-instance-attributes
|
||||
raise RuntimeError('"{}" already existing'.format(self.csv_dir))
|
||||
os.mkdir(str(self.csv_dir))
|
||||
self.absolute_paths = absolute_paths
|
||||
fieldnames = ['wav_filename', 'wav_filesize']
|
||||
fieldnames = ["wav_filename", "wav_filesize"]
|
||||
self.labeled = labeled
|
||||
if labeled:
|
||||
fieldnames.append('transcript')
|
||||
self.csv_file = open_remote(csv_filename, 'w', encoding='utf-8', newline='')
|
||||
fieldnames.append("transcript")
|
||||
self.csv_file = open_remote(csv_filename, "w", encoding="utf-8", newline="")
|
||||
self.csv_writer = csv.DictWriter(self.csv_file, fieldnames=fieldnames)
|
||||
self.csv_writer.writeheader()
|
||||
self.counter = 0
|
||||
@ -385,17 +416,19 @@ class CSVWriter: # pylint: disable=too-many-instance-attributes
|
||||
return self
|
||||
|
||||
def add(self, sample):
|
||||
sample_filename = self.csv_dir / 'sample{0:08d}.wav'.format(self.counter)
|
||||
sample_filename = self.csv_dir / "sample{0:08d}.wav".format(self.counter)
|
||||
self.counter += 1
|
||||
sample.change_audio_type(AUDIO_TYPE_PCM)
|
||||
write_wav(str(sample_filename), sample.audio, audio_format=sample.audio_format)
|
||||
sample.sample_id = str(sample_filename.relative_to(self.csv_base_dir))
|
||||
row = {
|
||||
'wav_filename': str(sample_filename.absolute()) if self.absolute_paths else sample.sample_id,
|
||||
'wav_filesize': sample_filename.stat().st_size
|
||||
"wav_filename": str(sample_filename.absolute())
|
||||
if self.absolute_paths
|
||||
else sample.sample_id,
|
||||
"wav_filesize": sample_filename.stat().st_size,
|
||||
}
|
||||
if self.labeled:
|
||||
row['transcript'] = sample.transcript
|
||||
row["transcript"] = sample.transcript
|
||||
self.csv_writer.writerow(row)
|
||||
return sample.sample_id
|
||||
|
||||
@ -412,11 +445,8 @@ class CSVWriter: # pylint: disable=too-many-instance-attributes
|
||||
|
||||
class TarWriter: # pylint: disable=too-many-instance-attributes
|
||||
"""Sample collection writer for writing a CSV data-set and all its referenced WAV samples to a tar file."""
|
||||
def __init__(self,
|
||||
tar_filename,
|
||||
gz=False,
|
||||
labeled=True,
|
||||
include=None):
|
||||
|
||||
def __init__(self, tar_filename, gz=False, labeled=True, include=None):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
@ -432,17 +462,19 @@ class TarWriter: # pylint: disable=too-many-instance-attributes
|
||||
|
||||
Currently only works with local files (not gs:// or hdfs://...)
|
||||
"""
|
||||
self.tar = tarfile.open(tar_filename, 'w:gz' if gz else 'w')
|
||||
samples_dir = tarfile.TarInfo('samples')
|
||||
self.tar = tarfile.open(tar_filename, "w:gz" if gz else "w")
|
||||
samples_dir = tarfile.TarInfo("samples")
|
||||
samples_dir.type = tarfile.DIRTYPE
|
||||
self.tar.addfile(samples_dir)
|
||||
if include:
|
||||
for include_path in include:
|
||||
self.tar.add(include_path, recursive=False, arcname=Path(include_path).name)
|
||||
fieldnames = ['wav_filename', 'wav_filesize']
|
||||
self.tar.add(
|
||||
include_path, recursive=False, arcname=Path(include_path).name
|
||||
)
|
||||
fieldnames = ["wav_filename", "wav_filesize"]
|
||||
self.labeled = labeled
|
||||
if labeled:
|
||||
fieldnames.append('transcript')
|
||||
fieldnames.append("transcript")
|
||||
self.csv_file = io.StringIO()
|
||||
self.csv_writer = csv.DictWriter(self.csv_file, fieldnames=fieldnames)
|
||||
self.csv_writer.writeheader()
|
||||
@ -452,7 +484,7 @@ class TarWriter: # pylint: disable=too-many-instance-attributes
|
||||
return self
|
||||
|
||||
def add(self, sample):
|
||||
sample_filename = 'samples/sample{0:08d}.wav'.format(self.counter)
|
||||
sample_filename = "samples/sample{0:08d}.wav".format(self.counter)
|
||||
self.counter += 1
|
||||
sample.change_audio_type(AUDIO_TYPE_PCM)
|
||||
sample_file = io.BytesIO()
|
||||
@ -462,21 +494,18 @@ class TarWriter: # pylint: disable=too-many-instance-attributes
|
||||
sample_tar = tarfile.TarInfo(sample_filename)
|
||||
sample_tar.size = sample_size
|
||||
self.tar.addfile(sample_tar, sample_file)
|
||||
row = {
|
||||
'wav_filename': sample_filename,
|
||||
'wav_filesize': sample_size
|
||||
}
|
||||
row = {"wav_filename": sample_filename, "wav_filesize": sample_size}
|
||||
if self.labeled:
|
||||
row['transcript'] = sample.transcript
|
||||
row["transcript"] = sample.transcript
|
||||
self.csv_writer.writerow(row)
|
||||
return sample_filename
|
||||
|
||||
def close(self):
|
||||
if self.csv_file and self.tar:
|
||||
csv_tar = tarfile.TarInfo('samples.csv')
|
||||
csv_tar = tarfile.TarInfo("samples.csv")
|
||||
csv_tar.size = self.csv_file.tell()
|
||||
self.csv_file.seek(0)
|
||||
self.tar.addfile(csv_tar, io.BytesIO(self.csv_file.read().encode('utf8')))
|
||||
self.tar.addfile(csv_tar, io.BytesIO(self.csv_file.read().encode("utf8")))
|
||||
if self.tar:
|
||||
self.tar.close()
|
||||
|
||||
@ -489,6 +518,7 @@ class TarWriter: # pylint: disable=too-many-instance-attributes
|
||||
|
||||
class SampleList:
|
||||
"""Sample collection base class with samples loaded from a list of in-memory paths."""
|
||||
|
||||
def __init__(self, samples, labeled=True, reverse=False):
|
||||
"""
|
||||
Parameters
|
||||
@ -507,7 +537,9 @@ class SampleList:
|
||||
|
||||
def __getitem__(self, i):
|
||||
sample_spec = self.samples[i]
|
||||
return load_sample(sample_spec[0], label=sample_spec[2] if self.labeled else None)
|
||||
return load_sample(
|
||||
sample_spec[0], label=sample_spec[2] if self.labeled else None
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.samples)
|
||||
@ -516,6 +548,7 @@ class SampleList:
|
||||
class CSV(SampleList):
|
||||
"""Sample collection reader for reading a Coqui STT CSV file
|
||||
Automatically orders samples by CSV column wav_filesize (if available)."""
|
||||
|
||||
def __init__(self, csv_filename, labeled=None, reverse=False):
|
||||
"""
|
||||
Parameters
|
||||
@ -531,30 +564,34 @@ class CSV(SampleList):
|
||||
If the order of the samples should be reversed
|
||||
"""
|
||||
rows = []
|
||||
with open_remote(csv_filename, 'r', encoding='utf8') as csv_file:
|
||||
with open_remote(csv_filename, "r", encoding="utf8") as csv_file:
|
||||
reader = csv.DictReader(csv_file)
|
||||
if 'transcript' in reader.fieldnames:
|
||||
if "transcript" in reader.fieldnames:
|
||||
if labeled is None:
|
||||
labeled = True
|
||||
elif labeled:
|
||||
raise RuntimeError('No transcript data (missing CSV column)')
|
||||
raise RuntimeError("No transcript data (missing CSV column)")
|
||||
for row in reader:
|
||||
wav_filename = Path(row['wav_filename'])
|
||||
if not wav_filename.is_absolute() and not is_remote_path(row['wav_filename']):
|
||||
wav_filename = Path(row["wav_filename"])
|
||||
if not wav_filename.is_absolute() and not is_remote_path(
|
||||
row["wav_filename"]
|
||||
):
|
||||
wav_filename = Path(csv_filename).parent / wav_filename
|
||||
wav_filename = str(wav_filename)
|
||||
else:
|
||||
# Pathlib otherwise removes a / from filenames like hdfs://
|
||||
wav_filename = row['wav_filename']
|
||||
wav_filesize = int(row['wav_filesize']) if 'wav_filesize' in row else 0
|
||||
wav_filename = row["wav_filename"]
|
||||
wav_filesize = int(row["wav_filesize"]) if "wav_filesize" in row else 0
|
||||
if labeled:
|
||||
rows.append((wav_filename, wav_filesize, row['transcript']))
|
||||
rows.append((wav_filename, wav_filesize, row["transcript"]))
|
||||
else:
|
||||
rows.append((wav_filename, wav_filesize))
|
||||
super(CSV, self).__init__(rows, labeled=labeled, reverse=reverse)
|
||||
|
||||
|
||||
def samples_from_source(sample_source, buffering=BUFFER_SIZE, labeled=None, reverse=False):
|
||||
def samples_from_source(
|
||||
sample_source, buffering=BUFFER_SIZE, labeled=None, reverse=False
|
||||
):
|
||||
"""
|
||||
Loads samples from a sample source file.
|
||||
|
||||
@ -577,14 +614,16 @@ def samples_from_source(sample_source, buffering=BUFFER_SIZE, labeled=None, reve
|
||||
iterable of util.sample_collections.LabeledSample or util.audio.Sample instances supporting len.
|
||||
"""
|
||||
ext = os.path.splitext(sample_source)[1].lower()
|
||||
if ext == '.sdb':
|
||||
if ext == ".sdb":
|
||||
return SDB(sample_source, buffering=buffering, labeled=labeled, reverse=reverse)
|
||||
if ext == '.csv':
|
||||
if ext == ".csv":
|
||||
return CSV(sample_source, labeled=labeled, reverse=reverse)
|
||||
raise ValueError('Unknown file type: "{}"'.format(ext))
|
||||
|
||||
|
||||
def samples_from_sources(sample_sources, buffering=BUFFER_SIZE, labeled=None, reverse=False):
|
||||
def samples_from_sources(
|
||||
sample_sources, buffering=BUFFER_SIZE, labeled=None, reverse=False
|
||||
):
|
||||
"""
|
||||
Loads and combines samples from a list of source files. Sources are combined in an interleaving way to
|
||||
keep default sample order from shortest to longest.
|
||||
@ -616,14 +655,22 @@ def samples_from_sources(sample_sources, buffering=BUFFER_SIZE, labeled=None, re
|
||||
"""
|
||||
sample_sources = list(sample_sources)
|
||||
if len(sample_sources) == 0:
|
||||
raise ValueError('No files')
|
||||
raise ValueError("No files")
|
||||
if len(sample_sources) == 1:
|
||||
return samples_from_source(sample_sources[0], buffering=buffering, labeled=labeled, reverse=reverse)
|
||||
return samples_from_source(
|
||||
sample_sources[0], buffering=buffering, labeled=labeled, reverse=reverse
|
||||
)
|
||||
|
||||
# If we wish to interleave based on duration, we have to unpack the audio. Note that this unpacking should
|
||||
# be done lazily onn the fly so that it respects the LimitingPool logic used in the feeding code.
|
||||
cols = [LenMap(
|
||||
unpack_maybe, samples_from_source(source, buffering=buffering, labeled=labeled, reverse=reverse))
|
||||
for source in sample_sources]
|
||||
cols = [
|
||||
LenMap(
|
||||
unpack_maybe,
|
||||
samples_from_source(
|
||||
source, buffering=buffering, labeled=labeled, reverse=reverse
|
||||
),
|
||||
)
|
||||
for source in sample_sources
|
||||
]
|
||||
|
||||
return Interleaved(*cols, key=lambda s: s.duration, reverse=reverse)
|
||||
|
@ -1,10 +1,12 @@
|
||||
import codecs
|
||||
import unicodedata
|
||||
|
||||
|
||||
class STMSegment(object):
|
||||
r"""
|
||||
Representation of an individual segment in an STM file.
|
||||
"""
|
||||
|
||||
def __init__(self, stm_line):
|
||||
tokens = stm_line.split()
|
||||
self._filename = tokens[0]
|
||||
@ -19,9 +21,11 @@ class STMSegment(object):
|
||||
# We need to do the encode-decode dance here because encode
|
||||
# returns a bytes() object on Python 3, and text_to_char_array
|
||||
# expects a string.
|
||||
self._transcript = unicodedata.normalize("NFKD", self._transcript.strip()) \
|
||||
.encode("ascii", "ignore") \
|
||||
self._transcript = (
|
||||
unicodedata.normalize("NFKD", self._transcript.strip())
|
||||
.encode("ascii", "ignore")
|
||||
.decode("ascii", "ignore")
|
||||
)
|
||||
|
||||
@property
|
||||
def filename(self):
|
||||
@ -51,6 +55,7 @@ class STMSegment(object):
|
||||
def transcript(self):
|
||||
return self._transcript
|
||||
|
||||
|
||||
def parse_stm_file(stm_file):
|
||||
r"""
|
||||
Parses an STM file at ``stm_file`` into a list of :class:`STMSegment`.
|
||||
|
@ -1,9 +1,11 @@
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import numpy as np
|
||||
import struct
|
||||
|
||||
def text_to_char_array(transcript, alphabet, context=''):
|
||||
import numpy as np
|
||||
|
||||
|
||||
def text_to_char_array(transcript, alphabet, context=""):
|
||||
r"""
|
||||
Given a transcript string, map characters to
|
||||
integers and return a numpy array representing the processed string.
|
||||
@ -13,15 +15,20 @@ def text_to_char_array(transcript, alphabet, context=''):
|
||||
# Provide the row context (especially wav_filename) for alphabet errors
|
||||
raise ValueError(
|
||||
'Alphabet cannot encode transcript "{}" while processing sample "{}", '
|
||||
'check that your alphabet contains all characters in the training corpus. '
|
||||
'Missing characters are: {}.'
|
||||
.format(transcript, context, list(ch for ch in transcript if not alphabet.CanEncodeSingle(ch))))
|
||||
"check that your alphabet contains all characters in the training corpus. "
|
||||
"Missing characters are: {}.".format(
|
||||
transcript,
|
||||
context,
|
||||
list(ch for ch in transcript if not alphabet.CanEncodeSingle(ch)),
|
||||
)
|
||||
)
|
||||
|
||||
encoded = alphabet.Encode(transcript)
|
||||
if len(encoded) == 0:
|
||||
raise ValueError('While processing {}: Found an empty transcript! '
|
||||
'You must include a transcript for all training data.'
|
||||
.format(context))
|
||||
raise ValueError(
|
||||
"While processing {}: Found an empty transcript! "
|
||||
"You must include a transcript for all training data.".format(context)
|
||||
)
|
||||
return encoded
|
||||
|
||||
|
||||
@ -35,6 +42,7 @@ def text_to_char_array(transcript, alphabet, context=''):
|
||||
# version 1.0. This software is distributed without any warranty. For more
|
||||
# information, see <http://creativecommons.org/publicdomain/zero/1.0>
|
||||
|
||||
|
||||
def levenshtein(a, b):
|
||||
"Calculates the Levenshtein distance between a and b."
|
||||
n, m = len(a), len(b)
|
||||
|
191
transcribe.py
191
transcribe.py
@ -2,24 +2,32 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
import tensorflow as tf
|
||||
import tensorflow.compat.v1.logging as tflogging
|
||||
|
||||
tflogging.set_verbosity(tflogging.ERROR)
|
||||
import logging
|
||||
logging.getLogger('sox').setLevel(logging.ERROR)
|
||||
import glob
|
||||
|
||||
logging.getLogger("sox").setLevel(logging.ERROR)
|
||||
import glob
|
||||
from multiprocessing import Process, cpu_count
|
||||
|
||||
from coqui_stt_ctcdecoder import Scorer, ctc_beam_search_decoder_batch
|
||||
from coqui_stt_training.util.audio import AudioFile
|
||||
from coqui_stt_training.util.config import Config, initialize_globals
|
||||
from coqui_stt_training.util.feeding import split_audio_file
|
||||
from coqui_stt_training.util.flags import create_flags, FLAGS
|
||||
from coqui_stt_training.util.logging import log_error, log_info, log_progress, create_progressbar
|
||||
from coqui_stt_ctcdecoder import ctc_beam_search_decoder_batch, Scorer
|
||||
from multiprocessing import Process, cpu_count
|
||||
from coqui_stt_training.util.flags import FLAGS, create_flags
|
||||
from coqui_stt_training.util.logging import (
|
||||
create_progressbar,
|
||||
log_error,
|
||||
log_info,
|
||||
log_progress,
|
||||
)
|
||||
|
||||
|
||||
def fail(message, code=1):
|
||||
@ -28,8 +36,11 @@ def fail(message, code=1):
|
||||
|
||||
|
||||
def transcribe_file(audio_path, tlog_path):
|
||||
from coqui_stt_training.train import create_model # pylint: disable=cyclic-import,import-outside-toplevel
|
||||
from coqui_stt_training.train import ( # pylint: disable=cyclic-import,import-outside-toplevel
|
||||
create_model,
|
||||
)
|
||||
from coqui_stt_training.util.checkpoints import load_graph_for_evaluation
|
||||
|
||||
initialize_globals()
|
||||
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta, FLAGS.scorer_path, Config.alphabet)
|
||||
try:
|
||||
@ -37,16 +48,23 @@ def transcribe_file(audio_path, tlog_path):
|
||||
except NotImplementedError:
|
||||
num_processes = 1
|
||||
with AudioFile(audio_path, as_path=True) as wav_path:
|
||||
data_set = split_audio_file(wav_path,
|
||||
data_set = split_audio_file(
|
||||
wav_path,
|
||||
batch_size=FLAGS.batch_size,
|
||||
aggressiveness=FLAGS.vad_aggressiveness,
|
||||
outlier_duration_ms=FLAGS.outlier_duration_ms,
|
||||
outlier_batch_size=FLAGS.outlier_batch_size)
|
||||
iterator = tf.data.Iterator.from_structure(data_set.output_types, data_set.output_shapes,
|
||||
output_classes=data_set.output_classes)
|
||||
outlier_batch_size=FLAGS.outlier_batch_size,
|
||||
)
|
||||
iterator = tf.data.Iterator.from_structure(
|
||||
data_set.output_types,
|
||||
data_set.output_shapes,
|
||||
output_classes=data_set.output_classes,
|
||||
)
|
||||
batch_time_start, batch_time_end, batch_x, batch_x_len = iterator.get_next()
|
||||
no_dropout = [None] * 6
|
||||
logits, _ = create_model(batch_x=batch_x, seq_length=batch_x_len, dropout=no_dropout)
|
||||
logits, _ = create_model(
|
||||
batch_x=batch_x, seq_length=batch_x_len, dropout=no_dropout
|
||||
)
|
||||
transposed = tf.nn.softmax(tf.transpose(logits, [1, 0, 2]))
|
||||
tf.train.get_or_create_global_step()
|
||||
with tf.Session(config=Config.session_config) as session:
|
||||
@ -55,30 +73,43 @@ def transcribe_file(audio_path, tlog_path):
|
||||
transcripts = []
|
||||
while True:
|
||||
try:
|
||||
starts, ends, batch_logits, batch_lengths = \
|
||||
session.run([batch_time_start, batch_time_end, transposed, batch_x_len])
|
||||
starts, ends, batch_logits, batch_lengths = session.run(
|
||||
[batch_time_start, batch_time_end, transposed, batch_x_len]
|
||||
)
|
||||
except tf.errors.OutOfRangeError:
|
||||
break
|
||||
decoded = ctc_beam_search_decoder_batch(batch_logits, batch_lengths, Config.alphabet, FLAGS.beam_width,
|
||||
decoded = ctc_beam_search_decoder_batch(
|
||||
batch_logits,
|
||||
batch_lengths,
|
||||
Config.alphabet,
|
||||
FLAGS.beam_width,
|
||||
num_processes=num_processes,
|
||||
scorer=scorer)
|
||||
scorer=scorer,
|
||||
)
|
||||
decoded = list(d[0][1] for d in decoded)
|
||||
transcripts.extend(zip(starts, ends, decoded))
|
||||
transcripts.sort(key=lambda t: t[0])
|
||||
transcripts = [{'start': int(start),
|
||||
'end': int(end),
|
||||
'transcript': transcript} for start, end, transcript in transcripts]
|
||||
with open(tlog_path, 'w') as tlog_file:
|
||||
transcripts = [
|
||||
{"start": int(start), "end": int(end), "transcript": transcript}
|
||||
for start, end, transcript in transcripts
|
||||
]
|
||||
with open(tlog_path, "w") as tlog_file:
|
||||
json.dump(transcripts, tlog_file, default=float)
|
||||
|
||||
|
||||
def transcribe_many(src_paths, dst_paths):
|
||||
pbar = create_progressbar(prefix='Transcribing files | ', max_value=len(src_paths)).start()
|
||||
pbar = create_progressbar(
|
||||
prefix="Transcribing files | ", max_value=len(src_paths)
|
||||
).start()
|
||||
for i in range(len(src_paths)):
|
||||
p = Process(target=transcribe_file, args=(src_paths[i], dst_paths[i]))
|
||||
p.start()
|
||||
p.join()
|
||||
log_progress('Transcribed file {} of {} from "{}" to "{}"'.format(i + 1, len(src_paths), src_paths[i], dst_paths[i]))
|
||||
log_progress(
|
||||
'Transcribed file {} of {} from "{}" to "{}"'.format(
|
||||
i + 1, len(src_paths), src_paths[i], dst_paths[i]
|
||||
)
|
||||
)
|
||||
pbar.update(i)
|
||||
pbar.finish()
|
||||
|
||||
@ -99,70 +130,116 @@ def resolve(base_path, spec_path):
|
||||
def main(_):
|
||||
if not FLAGS.src or not os.path.exists(FLAGS.src):
|
||||
# path not given or non-existant
|
||||
fail('You have to specify which file or catalog to transcribe via the --src flag.')
|
||||
fail(
|
||||
"You have to specify which file or catalog to transcribe via the --src flag."
|
||||
)
|
||||
else:
|
||||
# path given and exists
|
||||
src_path = os.path.abspath(FLAGS.src)
|
||||
if os.path.isfile(src_path):
|
||||
if src_path.endswith('.catalog'):
|
||||
if src_path.endswith(".catalog"):
|
||||
# Transcribe batch of files via ".catalog" file (from DSAlign)
|
||||
if FLAGS.dst:
|
||||
fail('Parameter --dst not supported if --src points to a catalog')
|
||||
fail("Parameter --dst not supported if --src points to a catalog")
|
||||
catalog_dir = os.path.dirname(src_path)
|
||||
with open(src_path, 'r') as catalog_file:
|
||||
with open(src_path, "r") as catalog_file:
|
||||
catalog_entries = json.load(catalog_file)
|
||||
catalog_entries = [(resolve(catalog_dir, e['audio']), resolve(catalog_dir, e['tlog'])) for e in catalog_entries]
|
||||
catalog_entries = [
|
||||
(resolve(catalog_dir, e["audio"]), resolve(catalog_dir, e["tlog"]))
|
||||
for e in catalog_entries
|
||||
]
|
||||
if any(map(lambda e: not os.path.isfile(e[0]), catalog_entries)):
|
||||
fail('Missing source file(s) in catalog')
|
||||
if not FLAGS.force and any(map(lambda e: os.path.isfile(e[1]), catalog_entries)):
|
||||
fail('Destination file(s) from catalog already existing, use --force for overwriting')
|
||||
if any(map(lambda e: not os.path.isdir(os.path.dirname(e[1])), catalog_entries)):
|
||||
fail('Missing destination directory for at least one catalog entry')
|
||||
fail("Missing source file(s) in catalog")
|
||||
if not FLAGS.force and any(
|
||||
map(lambda e: os.path.isfile(e[1]), catalog_entries)
|
||||
):
|
||||
fail(
|
||||
"Destination file(s) from catalog already existing, use --force for overwriting"
|
||||
)
|
||||
if any(
|
||||
map(
|
||||
lambda e: not os.path.isdir(os.path.dirname(e[1])),
|
||||
catalog_entries,
|
||||
)
|
||||
):
|
||||
fail("Missing destination directory for at least one catalog entry")
|
||||
src_paths, dst_paths = zip(*paths)
|
||||
transcribe_many(src_paths, dst_paths)
|
||||
else:
|
||||
# Transcribe one file
|
||||
dst_path = os.path.abspath(FLAGS.dst) if FLAGS.dst else os.path.splitext(src_path)[0] + '.tlog'
|
||||
dst_path = (
|
||||
os.path.abspath(FLAGS.dst)
|
||||
if FLAGS.dst
|
||||
else os.path.splitext(src_path)[0] + ".tlog"
|
||||
)
|
||||
if os.path.isfile(dst_path):
|
||||
if FLAGS.force:
|
||||
transcribe_one(src_path, dst_path)
|
||||
else:
|
||||
fail('Destination file "{}" already existing - use --force for overwriting'.format(dst_path), code=0)
|
||||
fail(
|
||||
'Destination file "{}" already existing - use --force for overwriting'.format(
|
||||
dst_path
|
||||
),
|
||||
code=0,
|
||||
)
|
||||
elif os.path.isdir(os.path.dirname(dst_path)):
|
||||
transcribe_one(src_path, dst_path)
|
||||
else:
|
||||
fail('Missing destination directory')
|
||||
fail("Missing destination directory")
|
||||
elif os.path.isdir(src_path):
|
||||
# Transcribe all files in dir
|
||||
print("Transcribing all WAV files in --src")
|
||||
if FLAGS.dst:
|
||||
fail('Destination file not supported for batch decoding jobs.')
|
||||
fail("Destination file not supported for batch decoding jobs.")
|
||||
else:
|
||||
if not FLAGS.recursive:
|
||||
print("If you wish to recursively scan --src, then you must use --recursive")
|
||||
print(
|
||||
"If you wish to recursively scan --src, then you must use --recursive"
|
||||
)
|
||||
wav_paths = glob.glob(src_path + "/*.wav")
|
||||
else:
|
||||
wav_paths = glob.glob(src_path + "/**/*.wav")
|
||||
dst_paths = [path.replace('.wav','.tlog') for path in wav_paths]
|
||||
dst_paths = [path.replace(".wav", ".tlog") for path in wav_paths]
|
||||
transcribe_many(wav_paths, dst_paths)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
create_flags()
|
||||
tf.app.flags.DEFINE_string('src', '', 'Source path to an audio file or directory or catalog file.'
|
||||
'Catalog files should be formatted from DSAlign. A directory will'
|
||||
'be recursively searched for audio. If --dst not set, transcription logs (.tlog) will be '
|
||||
'written in-place using the source filenames with '
|
||||
'suffix ".tlog" instead of ".wav".')
|
||||
tf.app.flags.DEFINE_string('dst', '', 'path for writing the transcription log or logs (.tlog). '
|
||||
'If --src is a directory, this one also has to be a directory '
|
||||
'and the required sub-dir tree of --src will get replicated.')
|
||||
tf.app.flags.DEFINE_boolean('recursive', False, 'scan dir of audio recursively')
|
||||
tf.app.flags.DEFINE_boolean('force', False, 'Forces re-transcribing and overwriting of already existing '
|
||||
'transcription logs (.tlog)')
|
||||
tf.app.flags.DEFINE_integer('vad_aggressiveness', 3, 'How aggressive (0=lowest, 3=highest) the VAD should '
|
||||
'split audio')
|
||||
tf.app.flags.DEFINE_integer('batch_size', 40, 'Default batch size')
|
||||
tf.app.flags.DEFINE_float('outlier_duration_ms', 10000, 'Duration in ms after which samples are considered outliers')
|
||||
tf.app.flags.DEFINE_integer('outlier_batch_size', 1, 'Batch size for duration outliers (defaults to 1)')
|
||||
tf.app.flags.DEFINE_string(
|
||||
"src",
|
||||
"",
|
||||
"Source path to an audio file or directory or catalog file."
|
||||
"Catalog files should be formatted from DSAlign. A directory will"
|
||||
"be recursively searched for audio. If --dst not set, transcription logs (.tlog) will be "
|
||||
"written in-place using the source filenames with "
|
||||
'suffix ".tlog" instead of ".wav".',
|
||||
)
|
||||
tf.app.flags.DEFINE_string(
|
||||
"dst",
|
||||
"",
|
||||
"path for writing the transcription log or logs (.tlog). "
|
||||
"If --src is a directory, this one also has to be a directory "
|
||||
"and the required sub-dir tree of --src will get replicated.",
|
||||
)
|
||||
tf.app.flags.DEFINE_boolean("recursive", False, "scan dir of audio recursively")
|
||||
tf.app.flags.DEFINE_boolean(
|
||||
"force",
|
||||
False,
|
||||
"Forces re-transcribing and overwriting of already existing "
|
||||
"transcription logs (.tlog)",
|
||||
)
|
||||
tf.app.flags.DEFINE_integer(
|
||||
"vad_aggressiveness",
|
||||
3,
|
||||
"How aggressive (0=lowest, 3=highest) the VAD should " "split audio",
|
||||
)
|
||||
tf.app.flags.DEFINE_integer("batch_size", 40, "Default batch size")
|
||||
tf.app.flags.DEFINE_float(
|
||||
"outlier_duration_ms",
|
||||
10000,
|
||||
"Duration in ms after which samples are considered outliers",
|
||||
)
|
||||
tf.app.flags.DEFINE_integer(
|
||||
"outlier_batch_size", 1, "Batch size for duration outliers (defaults to 1)"
|
||||
)
|
||||
tf.app.run(main)
|
||||
|
Loading…
Reference in New Issue
Block a user