Merge pull request #2100 from lissyx/ts-wav-convert

Ensure TrainingSpeech is properly formatted
This commit is contained in:
lissyx 2019-05-06 16:11:28 +02:00 committed by GitHub
commit 41c3ffbed2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -14,6 +14,14 @@ sys.path.insert(1, os.path.join(sys.path[0], '..'))
import csv
import unidecode
import zipfile
import sox
import subprocess
import progressbar
from threading import RLock
from multiprocessing.dummy import Pool
from multiprocessing import cpu_count
from util.downloader import SIMPLE_BAR
from os import path
@ -21,7 +29,8 @@ from util.downloader import maybe_download
from util.text import validate_label
FIELDNAMES = ['wav_filename', 'wav_filesize', 'transcript']
MAX_SECS = 10
SAMPLE_RATE = 16000
MAX_SECS = 15
ARCHIVE_NAME = '2019-04-11_fr_FR'
ARCHIVE_DIR_NAME = 'ts_' + ARCHIVE_NAME
ARCHIVE_URL = 'https://s3.eu-west-3.amazonaws.com/audiocorp/releases/' + ARCHIVE_NAME + '.zip'
@ -63,6 +72,53 @@ def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
d for d in csv.DictReader(csv_f, delimiter=',')
if float(d['duration']) <= MAX_SECS
]
# Keep track of how many samples are good vs. problematic
counter = {'all': 0, 'failed': 0, 'invalid_label': 0, 'too_short': 0, 'too_long': 0}
lock = RLock()
num_samples = len(data)
rows = []
wav_root_dir = extracted_dir
def one_sample(sample):
""" Take a audio file, and optionally convert it to 16kHz WAV """
orig_filename = path.join(wav_root_dir, sample['path'])
# Storing wav files next to the wav ones - just with a different suffix
wav_filename = path.splitext(orig_filename)[0] + ".converted.wav"
_maybe_convert_wav(orig_filename, wav_filename)
file_size = -1
if path.exists(wav_filename):
file_size = path.getsize(wav_filename)
frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
label = sample['text']
with lock:
if file_size == -1:
# Excluding samples that failed upon conversion
counter['failed'] += 1
elif label is None:
# Excluding samples that failed on label validation
counter['invalid_label'] += 1
elif int(frames/SAMPLE_RATE*1000/10/2) < len(str(label)):
# Excluding samples that are too short to fit the transcript
counter['too_short'] += 1
elif frames/SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter['too_long'] += 1
else:
# This one is good - keep it for the target CSV
rows.append((wav_filename, file_size, label))
counter['all'] += 1
print("Importing wav files...")
pool = Pool(cpu_count())
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
for i, _ in enumerate(pool.imap_unordered(one_sample, data), start=1):
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
with open(target_csv_template.format('train'), 'w') as train_csv_file: # 80%
with open(target_csv_template.format('dev'), 'w') as dev_csv_file: # 10%
with open(target_csv_template.format('test'), 'w') as test_csv_file: # 10%
@ -73,11 +129,12 @@ def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
test_writer.writeheader()
for i, item in enumerate(data):
transcript = validate_label(cleanup_transcript(item['text'], english_compatible=english_compatible))
for i, item in enumerate(rows):
print('item', item)
transcript = validate_label(cleanup_transcript(item[2], english_compatible=english_compatible))
if not transcript:
continue
wav_filename = os.path.join(target_dir, extracted_data, item['path'])
wav_filename = os.path.join(target_dir, extracted_data, item[0])
i_mod = i % 10
if i_mod == 0:
writer = test_writer
@ -91,6 +148,25 @@ def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
transcript=transcript,
))
print('Imported %d samples.' % (counter['all'] - counter['failed'] - counter['too_short'] - counter['too_long']))
if counter['failed'] > 0:
print('Skipped %d samples that failed upon conversion.' % counter['failed'])
if counter['invalid_label'] > 0:
print('Skipped %d samples that failed on transcript validation.' % counter['invalid_label'])
if counter['too_short'] > 0:
print('Skipped %d samples that were too short to match the transcript.' % counter['too_short'])
if counter['too_long'] > 0:
print('Skipped %d samples that were longer than %d seconds.' % (counter['too_long'], MAX_SECS))
def _maybe_convert_wav(orig_filename, wav_filename):
if not path.exists(wav_filename):
transformer = sox.Transformer()
transformer.convert(samplerate=SAMPLE_RATE)
try:
transformer.build(orig_filename, wav_filename)
except sox.core.SoxError as ex:
print('SoX processing error', ex, orig_filename, wav_filename)
PUNCTUATIONS_REG = re.compile(r"\-,;!?.()\[\]*…—]")
MULTIPLE_SPACES_REG = re.compile(r'\s{2,}')