CV2 importer: Writes additional train-all.csv with all validated samples except speakers and/or transcripts already in dev or test
This commit is contained in:
parent
33cba89227
commit
3871cdc67f
@ -31,11 +31,14 @@ MAX_SECS = 10
|
|||||||
|
|
||||||
|
|
||||||
def _preprocess_data(tsv_dir, audio_dir, space_after_every_character=False):
|
def _preprocess_data(tsv_dir, audio_dir, space_after_every_character=False):
|
||||||
for dataset in ["train", "test", "dev", "validated", "other"]:
|
exclude = []
|
||||||
input_tsv = os.path.join(os.path.abspath(tsv_dir), dataset + ".tsv")
|
for dataset in ["test", "dev", "train", "validated", "other"]:
|
||||||
if os.path.isfile(input_tsv):
|
set_samples = _maybe_convert_set(dataset, tsv_dir, audio_dir, space_after_every_character)
|
||||||
print("Loading TSV file: ", input_tsv)
|
if dataset in ["test", "dev"]:
|
||||||
_maybe_convert_set(input_tsv, audio_dir, space_after_every_character)
|
exclude += set_samples
|
||||||
|
if dataset == "validated":
|
||||||
|
_maybe_convert_set("train-all", tsv_dir, audio_dir, space_after_every_character,
|
||||||
|
rows=set_samples, exclude=exclude)
|
||||||
|
|
||||||
|
|
||||||
def one_sample(sample):
|
def one_sample(sample):
|
||||||
@ -72,29 +75,36 @@ def one_sample(sample):
|
|||||||
counter["too_long"] += 1
|
counter["too_long"] += 1
|
||||||
else:
|
else:
|
||||||
# This one is good - keep it for the target CSV
|
# This one is good - keep it for the target CSV
|
||||||
rows.append((os.path.split(wav_filename)[-1], file_size, label))
|
rows.append((os.path.split(wav_filename)[-1], file_size, label, sample[2]))
|
||||||
counter["all"] += 1
|
counter["all"] += 1
|
||||||
counter["total_time"] += frames
|
counter["total_time"] += frames
|
||||||
|
|
||||||
return (counter, rows)
|
return (counter, rows)
|
||||||
|
|
||||||
|
|
||||||
def _maybe_convert_set(input_tsv, audio_dir, space_after_every_character=None):
|
def _maybe_convert_set(dataset, tsv_dir, audio_dir, space_after_every_character=None, rows=None, exclude=None):
|
||||||
output_csv = os.path.join(
|
exclude_transcripts = set()
|
||||||
audio_dir, os.path.split(input_tsv)[-1].replace("tsv", "csv")
|
exclude_speakers = set()
|
||||||
)
|
if exclude is not None:
|
||||||
print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
|
for sample in exclude:
|
||||||
|
exclude_transcripts.add(sample[2])
|
||||||
|
exclude_speakers.add(sample[3])
|
||||||
|
|
||||||
|
if rows is None:
|
||||||
|
rows = []
|
||||||
|
input_tsv = os.path.join(os.path.abspath(tsv_dir), dataset + ".tsv")
|
||||||
|
if not os.path.isfile(input_tsv):
|
||||||
|
return rows
|
||||||
|
print("Loading TSV file: ", input_tsv)
|
||||||
# Get audiofile path and transcript for each sentence in tsv
|
# Get audiofile path and transcript for each sentence in tsv
|
||||||
samples = []
|
samples = []
|
||||||
with open(input_tsv, encoding="utf-8") as input_tsv_file:
|
with open(input_tsv, encoding="utf-8") as input_tsv_file:
|
||||||
reader = csv.DictReader(input_tsv_file, delimiter="\t")
|
reader = csv.DictReader(input_tsv_file, delimiter="\t")
|
||||||
for row in reader:
|
for row in reader:
|
||||||
samples.append((os.path.join(audio_dir, row["path"]), row["sentence"]))
|
samples.append((os.path.join(audio_dir, row["path"]), row["sentence"], row["client_id"]))
|
||||||
|
|
||||||
counter = get_counter()
|
counter = get_counter()
|
||||||
num_samples = len(samples)
|
num_samples = len(samples)
|
||||||
rows = []
|
|
||||||
|
|
||||||
print("Importing mp3 files...")
|
print("Importing mp3 files...")
|
||||||
pool = Pool()
|
pool = Pool()
|
||||||
@ -107,12 +117,21 @@ def _maybe_convert_set(input_tsv, audio_dir, space_after_every_character=None):
|
|||||||
pool.close()
|
pool.close()
|
||||||
pool.join()
|
pool.join()
|
||||||
|
|
||||||
|
imported_samples = get_imported_samples(counter)
|
||||||
|
assert counter["all"] == num_samples
|
||||||
|
assert len(rows) == imported_samples
|
||||||
|
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
||||||
|
|
||||||
|
output_csv = os.path.join(os.path.abspath(audio_dir), dataset + ".csv")
|
||||||
|
print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
|
||||||
with open(output_csv, "w", encoding="utf-8") as output_csv_file:
|
with open(output_csv, "w", encoding="utf-8") as output_csv_file:
|
||||||
print("Writing CSV file for DeepSpeech.py as: ", output_csv)
|
print("Writing CSV file for DeepSpeech.py as: ", output_csv)
|
||||||
writer = csv.DictWriter(output_csv_file, fieldnames=FIELDNAMES)
|
writer = csv.DictWriter(output_csv_file, fieldnames=FIELDNAMES)
|
||||||
writer.writeheader()
|
writer.writeheader()
|
||||||
bar = progressbar.ProgressBar(max_value=len(rows), widgets=SIMPLE_BAR)
|
bar = progressbar.ProgressBar(max_value=len(rows), widgets=SIMPLE_BAR)
|
||||||
for filename, file_size, transcript in bar(rows):
|
for filename, file_size, transcript, speaker in bar(rows):
|
||||||
|
if transcript in exclude_transcripts or speaker in exclude_speakers:
|
||||||
|
continue
|
||||||
if space_after_every_character:
|
if space_after_every_character:
|
||||||
writer.writerow(
|
writer.writerow(
|
||||||
{
|
{
|
||||||
@ -129,12 +148,7 @@ def _maybe_convert_set(input_tsv, audio_dir, space_after_every_character=None):
|
|||||||
"transcript": transcript,
|
"transcript": transcript,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
return rows
|
||||||
imported_samples = get_imported_samples(counter)
|
|
||||||
assert counter["all"] == num_samples
|
|
||||||
assert len(rows) == imported_samples
|
|
||||||
|
|
||||||
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
|
|
||||||
|
|
||||||
|
|
||||||
def _maybe_convert_wav(mp3_filename, wav_filename):
|
def _maybe_convert_wav(mp3_filename, wav_filename):
|
||||||
|
Loading…
Reference in New Issue
Block a user