Merge pull request #2724 from DanBmh/master

Print best and worst results in a WER report.
This commit is contained in:
lissyx 2020-02-07 11:27:16 +01:00 committed by GitHub
commit 33efd9b7ff
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 57 additions and 37 deletions

View File

@ -2,14 +2,12 @@
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import itertools
import json
import sys
from multiprocessing import cpu_count
import absl.app
import numpy as np
import progressbar
import tensorflow as tf
import tensorflow.compat.v1 as tfv1
@ -18,10 +16,10 @@ from ds_ctcdecoder import ctc_beam_search_decoder_batch, Scorer
from six.moves import zip
from util.config import Config, initialize_globals
from util.evaluate_tools import calculate_report
from util.evaluate_tools import calculate_and_print_report
from util.feeding import create_dataset
from util.flags import create_flags, FLAGS
from util.logging import log_error, log_progress, create_progressbar
from util.logging import create_progressbar, log_error, log_progress
from util.helpers import check_ctcdecoder_version; check_ctcdecoder_version()
@ -132,24 +130,9 @@ def evaluate(test_csvs, create_model, try_loading):
bar.finish()
wer, cer, samples = calculate_report(wav_filenames, ground_truths, predictions, losses)
mean_loss = np.mean(losses)
# Take only the first report_count items
report_samples = itertools.islice(samples, FLAGS.report_count)
print('Test on %s - WER: %f, CER: %f, loss: %f' %
(dataset, wer, cer, mean_loss))
print('-' * 80)
for sample in report_samples:
print('WER: %f, CER: %f, loss: %f' %
(sample.wer, sample.cer, sample.loss))
print(' - wav: file://%s' % sample.wav_filename)
print(' - src: "%s"' % sample.src)
print(' - res: "%s"' % sample.res)
print('-' * 80)
return samples
# Print test summary
test_samples = calculate_and_print_report(wav_filenames, ground_truths, predictions, losses, dataset)
return test_samples
samples = []
for csv, init_op in zip(test_csvs, test_init_ops):

View File

@ -15,7 +15,7 @@ from six.moves import zip, range
from multiprocessing import JoinableQueue, Process, cpu_count, Manager
from deepspeech import Model
from util.evaluate_tools import calculate_report
from util.evaluate_tools import calculate_and_print_report
from util.flags import create_flags
r'''
@ -98,11 +98,8 @@ def main(args, _):
predictions.append(msg['prediction'])
wavlist.append(msg['wav'])
wer, cer, samples = calculate_report(wav_filenames, ground_truths, predictions, losses)
mean_loss = np.mean(losses)
print('Test - WER: %f, CER: %f, loss: %f' %
(wer, cer, mean_loss))
# Print test summary
_ = calculate_and_print_report(wav_filenames, ground_truths, predictions, losses, args.csv)
if args.dump:
with open(args.dump + '.txt', 'w') as ftxt, open(args.dump + '.out', 'w') as fout:

View File

@ -3,6 +3,7 @@
from __future__ import absolute_import, division, print_function
from multiprocessing.dummy import Pool
import numpy as np
from attrdict import AttrDict
@ -54,9 +55,9 @@ def process_decode_result(item):
})
def calculate_report(wav_filenames, labels, decodings, losses):
def calculate_and_print_report(wav_filenames, labels, decodings, losses, dataset_name):
r'''
This routine will calculate a WER report.
This routine will calculate and print a WER report.
It'll compute the `mean` WER and create ``Sample`` objects of the ``report_count`` top lowest
loss items from the provided WER results tuple (only items with WER!=0 and ordered by their WER).
'''
@ -65,13 +66,52 @@ def calculate_report(wav_filenames, labels, decodings, losses):
# Getting the WER and CER from the accumulated edit distances and lengths
samples_wer, samples_cer = wer_cer_batch(samples)
# Order the remaining items by their loss (lowest loss on top)
samples.sort(key=lambda s: s.loss)
# Reversed because the worst WER with the best loss is to identify systemic issues, where the acoustic model is confident,
# yet the result is completely off the mark. This can point to transcription errors and stuff like that.
samples.sort(key=lambda s: s.loss, reverse=True)
# Then order by descending WER/CER
# Then order by ascending WER/CER
if FLAGS.utf8:
samples.sort(key=lambda s: s.cer, reverse=True)
samples.sort(key=lambda s: s.cer)
else:
samples.sort(key=lambda s: s.wer, reverse=True)
samples.sort(key=lambda s: s.wer)
return samples_wer, samples_cer, samples
# Print the report
print_report(samples, losses, samples_wer, samples_cer, dataset_name)
return samples
def print_report(samples, losses, wer, cer, dataset_name):
""" Print a report summary and samples of best, median and worst results """
# Print summary
mean_loss = np.mean(losses)
print('Test on %s - WER: %f, CER: %f, loss: %f' % (dataset_name, wer, cer, mean_loss))
print('-' * 80)
best_samples = samples[:FLAGS.report_count]
worst_samples = samples[-FLAGS.report_count:]
median_index = int(len(samples) / 2)
median_left = int(FLAGS.report_count / 2)
median_right = FLAGS.report_count - median_left
median_samples = samples[median_index - median_left:median_index + median_right]
def print_single_sample(sample):
print('WER: %f, CER: %f, loss: %f' % (sample.wer, sample.cer, sample.loss))
print(' - wav: file://%s' % sample.wav_filename)
print(' - src: "%s"' % sample.src)
print(' - res: "%s"' % sample.res)
print('-' * 80)
print('Best WER:', '\n' + '-' * 80)
for s in best_samples:
print_single_sample(s)
print('Median WER:', '\n' + '-' * 80)
for s in median_samples:
print_single_sample(s)
print('Worst WER:', '\n' + '-' * 80)
for s in worst_samples:
print_single_sample(s)

View File

@ -118,7 +118,7 @@ def create_flags():
f.DEFINE_boolean('show_progressbar', True, 'Show progress for training, validation and testing processes. Log level should be > 0.')
f.DEFINE_boolean('log_placement', False, 'whether to log device placement of the operators to the console')
f.DEFINE_integer('report_count', 10, 'number of phrases with lowest WER(best matching) to print out during a WER report')
f.DEFINE_integer('report_count', 5, 'number of phrases for each of best WER, median WER and worst WER to print out during a WER report')
f.DEFINE_string('summary_dir', '', 'target directory for TensorBoard summaries - defaults to directory "deepspeech/summaries" within user\'s data home specified by the XDG Base Directory Specification')