Merge pull request #2038 from mozilla/split-dev-test-epochs
Perform separate validation and test epochs per dataset when multiple files are specified (Fixes #1634 and #2043)
This commit is contained in:
commit
1e601d5c4a
@ -14,6 +14,7 @@ import progressbar
|
||||
import shutil
|
||||
import tensorflow as tf
|
||||
|
||||
from datetime import datetime
|
||||
from ds_ctcdecoder import ctc_beam_search_decoder, Scorer
|
||||
from evaluate import evaluate
|
||||
from six.moves import zip, range
|
||||
@ -21,7 +22,7 @@ from tensorflow.python.tools import freeze_graph
|
||||
from util.config import Config, initialize_globals
|
||||
from util.feeding import create_dataset, samples_to_mfccs, audiofile_to_features
|
||||
from util.flags import create_flags, FLAGS
|
||||
from util.logging import log_info, log_error, log_debug
|
||||
from util.logging import log_info, log_error, log_debug, log_progress, create_progressbar
|
||||
|
||||
|
||||
# Graph Creation
|
||||
@ -366,7 +367,7 @@ def train():
|
||||
# Create training and validation datasets
|
||||
train_set = create_dataset(FLAGS.train_files.split(','),
|
||||
batch_size=FLAGS.train_batch_size,
|
||||
cache_path=FLAGS.train_cached_features_path)
|
||||
cache_path=FLAGS.feature_cache)
|
||||
|
||||
iterator = tf.data.Iterator.from_structure(train_set.output_types,
|
||||
train_set.output_shapes,
|
||||
@ -376,10 +377,9 @@ def train():
|
||||
train_init_op = iterator.make_initializer(train_set)
|
||||
|
||||
if FLAGS.dev_files:
|
||||
dev_set = create_dataset(FLAGS.dev_files.split(','),
|
||||
batch_size=FLAGS.dev_batch_size,
|
||||
cache_path=FLAGS.dev_cached_features_path)
|
||||
dev_init_op = iterator.make_initializer(dev_set)
|
||||
dev_csvs = FLAGS.dev_files.split(',')
|
||||
dev_sets = [create_dataset([csv], batch_size=FLAGS.dev_batch_size) for csv in dev_csvs]
|
||||
dev_init_ops = [iterator.make_initializer(dev_set) for dev_set in dev_sets]
|
||||
|
||||
# Dropout
|
||||
dropout_rates = [tf.placeholder(tf.float32, name='dropout_{}'.format(i)) for i in range(6)]
|
||||
@ -445,7 +445,7 @@ def train():
|
||||
' - consider using load option "auto" or "init".' % FLAGS.load)
|
||||
sys.exit(1)
|
||||
|
||||
def run_set(set_name, init_op):
|
||||
def run_set(set_name, epoch, init_op, dataset=None):
|
||||
is_train = set_name == 'train'
|
||||
train_op = apply_gradient_op if is_train else []
|
||||
feed_dict = dropout_feed_dict if is_train else no_dropout_feed_dict
|
||||
@ -456,6 +456,7 @@ def train():
|
||||
step_summary_writer = step_summary_writers.get(set_name)
|
||||
checkpoint_time = time.time()
|
||||
|
||||
# Setup progress bar
|
||||
class LossWidget(progressbar.widgets.FormatLabel):
|
||||
def __init__(self):
|
||||
progressbar.widgets.FormatLabel.__init__(self, format='Loss: %(mean_loss)f')
|
||||
@ -464,12 +465,12 @@ def train():
|
||||
data['mean_loss'] = total_loss / step_count if step_count else 0.0
|
||||
return progressbar.widgets.FormatLabel.__call__(self, progress, data, **kwargs)
|
||||
|
||||
if FLAGS.show_progressbar:
|
||||
pbar = progressbar.ProgressBar(widgets=['Epoch {}'.format(epoch),
|
||||
' | ', progressbar.widgets.Timer(),
|
||||
' | Steps: ', progressbar.widgets.Counter(),
|
||||
' | ', LossWidget()])
|
||||
pbar.start()
|
||||
prefix = 'Epoch {} | {:>10}'.format(epoch, 'Training' if is_train else 'Validation')
|
||||
widgets = [' | ', progressbar.widgets.Timer(),
|
||||
' | Steps: ', progressbar.widgets.Counter(),
|
||||
' | ', LossWidget()]
|
||||
suffix = ' | Dataset: {}'.format(dataset) if dataset else None
|
||||
pbar = create_progressbar(prefix=prefix, widgets=widgets, suffix=suffix).start()
|
||||
|
||||
# Initialize iterator to the appropriate dataset
|
||||
session.run(init_op)
|
||||
@ -486,8 +487,7 @@ def train():
|
||||
total_loss += batch_loss
|
||||
step_count += 1
|
||||
|
||||
if FLAGS.show_progressbar:
|
||||
pbar.update(step_count)
|
||||
pbar.update(step_count)
|
||||
|
||||
step_summary_writer.add_summary(step_summary, current_step)
|
||||
|
||||
@ -495,31 +495,34 @@ def train():
|
||||
checkpoint_saver.save(session, checkpoint_path, global_step=current_step)
|
||||
checkpoint_time = time.time()
|
||||
|
||||
if FLAGS.show_progressbar:
|
||||
pbar.finish()
|
||||
|
||||
return total_loss / step_count
|
||||
pbar.finish()
|
||||
mean_loss = total_loss / step_count if step_count > 0 else 0.0
|
||||
return mean_loss, step_count
|
||||
|
||||
log_info('STARTING Optimization')
|
||||
train_start_time = datetime.utcnow()
|
||||
best_dev_loss = float('inf')
|
||||
dev_losses = []
|
||||
try:
|
||||
for epoch in range(FLAGS.epochs):
|
||||
# Training
|
||||
if not FLAGS.show_progressbar:
|
||||
log_info('Training epoch %d...' % epoch)
|
||||
train_loss = run_set('train', train_init_op)
|
||||
if not FLAGS.show_progressbar:
|
||||
log_info('Finished training epoch %d - loss: %f' % (epoch, train_loss))
|
||||
log_progress('Training epoch %d...' % epoch)
|
||||
train_loss, _ = run_set('train', epoch, train_init_op)
|
||||
log_progress('Finished training epoch %d - loss: %f' % (epoch, train_loss))
|
||||
checkpoint_saver.save(session, checkpoint_path, global_step=global_step)
|
||||
|
||||
if FLAGS.dev_files:
|
||||
# Validation
|
||||
if not FLAGS.show_progressbar:
|
||||
log_info('Validating epoch %d...' % epoch)
|
||||
dev_loss = run_set('dev', dev_init_op)
|
||||
if not FLAGS.show_progressbar:
|
||||
log_info('Finished validating epoch %d - loss: %f' % (epoch, dev_loss))
|
||||
dev_loss = 0.0
|
||||
total_steps = 0
|
||||
for csv, init_op in zip(dev_csvs, dev_init_ops):
|
||||
log_progress('Validating epoch %d on %s...' % (epoch, csv))
|
||||
set_loss, steps = run_set('dev', epoch, init_op, dataset=csv)
|
||||
dev_loss += set_loss * steps
|
||||
total_steps += steps
|
||||
log_progress('Finished validating epoch %d on %s - loss: %f' % (epoch, csv, set_loss))
|
||||
dev_loss = dev_loss / total_steps
|
||||
|
||||
dev_losses.append(dev_loss)
|
||||
|
||||
if dev_loss < best_dev_loss:
|
||||
@ -543,6 +546,7 @@ def train():
|
||||
break
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
log_info('FINISHED optimization in {}'.format(datetime.utcnow() - train_start_time))
|
||||
log_debug('Session closed.')
|
||||
|
||||
|
||||
|
@ -14,7 +14,7 @@ fi;
|
||||
|
||||
python -u DeepSpeech.py --noshow_progressbar --noearly_stop \
|
||||
--train_files ${ldc93s1_csv} --train_batch_size 1 \
|
||||
--train_cached_features_path '/tmp/ldc93s1_cache' \
|
||||
--feature_cache '/tmp/ldc93s1_cache' \
|
||||
--dev_files ${ldc93s1_csv} --dev_batch_size 1 \
|
||||
--test_files ${ldc93s1_csv} --test_batch_size 1 \
|
||||
--n_hidden 100 --epochs $epoch_count \
|
||||
|
129
evaluate.py
129
evaluate.py
@ -18,7 +18,7 @@ from util.config import Config, initialize_globals
|
||||
from util.evaluate_tools import calculate_report
|
||||
from util.feeding import create_dataset
|
||||
from util.flags import create_flags, FLAGS
|
||||
from util.logging import log_error
|
||||
from util.logging import log_error, log_progress, create_progressbar
|
||||
from util.text import levenshtein
|
||||
|
||||
|
||||
@ -45,12 +45,14 @@ def evaluate(test_csvs, create_model, try_loading):
|
||||
FLAGS.lm_binary_path, FLAGS.lm_trie_path,
|
||||
Config.alphabet)
|
||||
|
||||
test_set = create_dataset(test_csvs,
|
||||
batch_size=FLAGS.test_batch_size,
|
||||
cache_path=FLAGS.test_cached_features_path)
|
||||
it = test_set.make_one_shot_iterator()
|
||||
test_csvs = FLAGS.test_files.split(',')
|
||||
test_sets = [create_dataset([csv], batch_size=FLAGS.test_batch_size) for csv in test_csvs]
|
||||
iterator = tf.data.Iterator.from_structure(test_sets[0].output_types,
|
||||
test_sets[0].output_shapes,
|
||||
output_classes=test_sets[0].output_classes)
|
||||
test_init_ops = [iterator.make_initializer(test_set) for test_set in test_sets]
|
||||
|
||||
(batch_x, batch_x_len), batch_y = it.get_next()
|
||||
(batch_x, batch_x_len), batch_y = iterator.get_next()
|
||||
|
||||
# One rate per layer
|
||||
no_dropout = [None] * 6
|
||||
@ -67,10 +69,16 @@ def evaluate(test_csvs, create_model, try_loading):
|
||||
|
||||
tf.train.get_or_create_global_step()
|
||||
|
||||
with tf.Session(config=Config.session_config) as session:
|
||||
# Create a saver using variables from the above newly created graph
|
||||
saver = tf.train.Saver()
|
||||
# Get number of accessible CPU cores for this process
|
||||
try:
|
||||
num_processes = cpu_count()
|
||||
except NotImplementedError:
|
||||
num_processes = 1
|
||||
|
||||
# Create a saver using variables from the above newly created graph
|
||||
saver = tf.train.Saver()
|
||||
|
||||
with tf.Session(config=Config.session_config) as session:
|
||||
# Restore variables from training checkpoint
|
||||
loaded = try_loading(session, saver, 'best_dev_checkpoint', 'best validation')
|
||||
if not loaded:
|
||||
@ -79,70 +87,75 @@ def evaluate(test_csvs, create_model, try_loading):
|
||||
log_error('Checkpoint directory ({}) does not contain a valid checkpoint state.'.format(FLAGS.checkpoint_dir))
|
||||
exit(1)
|
||||
|
||||
logitses = []
|
||||
losses = []
|
||||
seq_lengths = []
|
||||
ground_truths = []
|
||||
def run_test(init_op, dataset):
|
||||
logitses = []
|
||||
losses = []
|
||||
seq_lengths = []
|
||||
ground_truths = []
|
||||
|
||||
print('Computing acoustic model predictions...')
|
||||
bar = progressbar.ProgressBar(widgets=['Steps: ', progressbar.Counter(), ' | ', progressbar.Timer()])
|
||||
bar = create_progressbar(prefix='Computing acoustic model predictions | ',
|
||||
widgets=['Steps: ', progressbar.Counter(), ' | ', progressbar.Timer()]).start()
|
||||
log_progress('Computing acoustic model predictions...')
|
||||
|
||||
step_count = 0
|
||||
step_count = 0
|
||||
|
||||
# First pass, compute losses and transposed logits for decoding
|
||||
while True:
|
||||
try:
|
||||
logits, loss_, lengths, transcripts = session.run([transposed, loss, batch_x_len, batch_y])
|
||||
except tf.errors.OutOfRangeError:
|
||||
break
|
||||
# Initialize iterator to the appropriate dataset
|
||||
session.run(init_op)
|
||||
|
||||
step_count += 1
|
||||
bar.update(step_count)
|
||||
# First pass, compute losses and transposed logits for decoding
|
||||
while True:
|
||||
try:
|
||||
logits, loss_, lengths, transcripts = session.run([transposed, loss, batch_x_len, batch_y])
|
||||
except tf.errors.OutOfRangeError:
|
||||
break
|
||||
|
||||
logitses.append(logits)
|
||||
losses.extend(loss_)
|
||||
seq_lengths.append(lengths)
|
||||
ground_truths.extend(sparse_tensor_value_to_texts(transcripts, Config.alphabet))
|
||||
step_count += 1
|
||||
bar.update(step_count)
|
||||
|
||||
bar.finish()
|
||||
logitses.append(logits)
|
||||
losses.extend(loss_)
|
||||
seq_lengths.append(lengths)
|
||||
ground_truths.extend(sparse_tensor_value_to_texts(transcripts, Config.alphabet))
|
||||
|
||||
predictions = []
|
||||
bar.finish()
|
||||
|
||||
# Get number of accessible CPU cores for this process
|
||||
try:
|
||||
num_processes = cpu_count()
|
||||
except NotImplementedError:
|
||||
num_processes = 1
|
||||
predictions = []
|
||||
|
||||
print('Decoding predictions...')
|
||||
bar = progressbar.ProgressBar(max_value=step_count,
|
||||
widget=progressbar.AdaptiveETA)
|
||||
bar = create_progressbar(max_value=step_count,
|
||||
prefix='Decoding predictions | ').start()
|
||||
log_progress('Decoding predictions...')
|
||||
|
||||
# Second pass, decode logits and compute WER and edit distance metrics
|
||||
for logits, seq_length in bar(zip(logitses, seq_lengths)):
|
||||
decoded = ctc_beam_search_decoder_batch(logits, seq_length, Config.alphabet, FLAGS.beam_width,
|
||||
num_processes=num_processes, scorer=scorer)
|
||||
predictions.extend(d[0][1] for d in decoded)
|
||||
# Second pass, decode logits and compute WER and edit distance metrics
|
||||
for logits, seq_length in bar(zip(logitses, seq_lengths)):
|
||||
decoded = ctc_beam_search_decoder_batch(logits, seq_length, Config.alphabet, FLAGS.beam_width,
|
||||
num_processes=num_processes, scorer=scorer)
|
||||
predictions.extend(d[0][1] for d in decoded)
|
||||
|
||||
distances = [levenshtein(a, b) for a, b in zip(ground_truths, predictions)]
|
||||
distances = [levenshtein(a, b) for a, b in zip(ground_truths, predictions)]
|
||||
|
||||
wer, cer, samples = calculate_report(ground_truths, predictions, distances, losses)
|
||||
mean_loss = np.mean(losses)
|
||||
wer, cer, samples = calculate_report(ground_truths, predictions, distances, losses)
|
||||
mean_loss = np.mean(losses)
|
||||
|
||||
# Take only the first report_count items
|
||||
report_samples = itertools.islice(samples, FLAGS.report_count)
|
||||
# Take only the first report_count items
|
||||
report_samples = itertools.islice(samples, FLAGS.report_count)
|
||||
|
||||
print('Test - WER: %f, CER: %f, loss: %f' %
|
||||
(wer, cer, mean_loss))
|
||||
print('-' * 80)
|
||||
for sample in report_samples:
|
||||
print('WER: %f, CER: %f, loss: %f' %
|
||||
(sample.wer, sample.distance, sample.loss))
|
||||
print(' - src: "%s"' % sample.src)
|
||||
print(' - res: "%s"' % sample.res)
|
||||
print('-' * 80)
|
||||
print('Test on %s - WER: %f, CER: %f, loss: %f' %
|
||||
(dataset, wer, cer, mean_loss))
|
||||
print('-' * 80)
|
||||
for sample in report_samples:
|
||||
print('WER: %f, CER: %f, loss: %f' %
|
||||
(sample.wer, sample.distance, sample.loss))
|
||||
print(' - src: "%s"' % sample.src)
|
||||
print(' - res: "%s"' % sample.res)
|
||||
print('-' * 80)
|
||||
|
||||
return samples
|
||||
return samples
|
||||
|
||||
samples = []
|
||||
for csv, init_op in zip(test_csvs, test_init_ops):
|
||||
print('Testing model on {}'.format(csv))
|
||||
samples.extend(run_test(init_op, dataset=csv))
|
||||
return samples
|
||||
|
||||
|
||||
def main(_):
|
||||
|
@ -63,7 +63,7 @@ def to_sparse_tuple(sequence):
|
||||
return indices, sequence, shape
|
||||
|
||||
|
||||
def create_dataset(csvs, batch_size, cache_path):
|
||||
def create_dataset(csvs, batch_size, cache_path=''):
|
||||
df = read_csvs(csvs)
|
||||
df.sort_values(by='wav_filesize', inplace=True)
|
||||
|
||||
|
@ -16,9 +16,7 @@ def create_flags():
|
||||
f.DEFINE_string('dev_files', '', 'comma separated list of files specifying the dataset used for validation. Multiple files will get merged. If empty, validation will not be run.')
|
||||
f.DEFINE_string('test_files', '', 'comma separated list of files specifying the dataset used for testing. Multiple files will get merged. If empty, the model will not be tested.')
|
||||
|
||||
f.DEFINE_string('train_cached_features_path', '', 'comma separated list of files specifying the dataset used for training. multiple files will get merged')
|
||||
f.DEFINE_string('dev_cached_features_path', '', 'comma separated list of files specifying the dataset used for validation. multiple files will get merged')
|
||||
f.DEFINE_string('test_cached_features_path', '', 'comma separated list of files specifying the dataset used for testing. multiple files will get merged')
|
||||
f.DEFINE_string('feature_cache', '', 'path where cached features extracted from --train_files will be saved. If empty, caching will be done in memory and no files will be written.')
|
||||
|
||||
f.DEFINE_integer('feature_win_len', 32, 'feature extraction audio window length in milliseconds')
|
||||
f.DEFINE_integer('feature_win_step', 20, 'feature extraction window step length in milliseconds')
|
||||
|
@ -1,5 +1,8 @@
|
||||
from __future__ import print_function
|
||||
|
||||
import progressbar
|
||||
import sys
|
||||
|
||||
from util.flags import FLAGS
|
||||
|
||||
|
||||
@ -28,3 +31,19 @@ def log_warn(message):
|
||||
def log_error(message):
|
||||
if FLAGS.log_level <= 3:
|
||||
prefix_print('E ', message)
|
||||
|
||||
|
||||
def create_progressbar(*args, **kwargs):
|
||||
# Progress bars in stdout by default
|
||||
if 'fd' not in kwargs:
|
||||
kwargs['fd'] = sys.stdout
|
||||
|
||||
if FLAGS.show_progressbar:
|
||||
return progressbar.ProgressBar(*args, **kwargs)
|
||||
|
||||
return progressbar.NullBar(*args, **kwargs)
|
||||
|
||||
|
||||
def log_progress(message):
|
||||
if not FLAGS.show_progressbar:
|
||||
log_info(message)
|
||||
|
Loading…
x
Reference in New Issue
Block a user