STT-tensorflow/tensorflow/lite/micro/kernels/pooling_test.cc
Jae H. Yoo f24d25d860 Rename kTfLiteActRelu1 to kTfLiteActReluN1To1
This CL renames `kTfLiteActRelu1` to `kTfLiteActReluN1To1` because it has minimum clipping at -1, not 0. Also, This CL finishes renaming because TFLite already uses `kTfLiteBuiltinReluN1To1`, `ActivationFunctionType_RELU_N1_TO_1` for this op.

PiperOrigin-RevId: 317589358
Change-Id: I2424104da45234346749b3921d563e9161e809cc
2020-06-21 21:32:44 -07:00

1114 lines
43 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstdint>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
#include "tensorflow/lite/micro/testing/test_utils.h"
namespace tflite {
namespace testing {
namespace {
void TestAveragePoolingFloat(std::initializer_list<int> input_dims_data,
std::initializer_list<float> input_data,
const int filter_height, const int filter_width,
const int stride_height, const int stride_width,
std::initializer_list<float> expected_output_data,
std::initializer_list<int> output_dims_data,
TfLitePadding padding,
TfLiteFusedActivation activation,
float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateFloatTensor(input_data, input_dims),
CreateFloatTensor(output_data, output_dims),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, micro_test::reporter, &context);
::tflite::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_AVERAGE_POOL_2D);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
TfLitePoolParams builtin_data = {padding, stride_width, stride_height,
filter_width, filter_height, activation};
const char* init_data = reinterpret_cast<const char*>(&builtin_data);
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
int temporaries_array_data[] = {0};
TfLiteIntArray* temporaries_array = IntArrayFromInts(temporaries_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = temporaries_array;
node.user_data = user_data;
node.builtin_data = reinterpret_cast<void*>(&builtin_data);
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
template <typename T>
void TestAveragePoolingQuantized(
std::initializer_list<int> input_dims_data,
std::initializer_list<T> input_data, const float input_min,
const float input_max, const int filter_height, const int filter_width,
const int stride_height, const int stride_width,
std::initializer_list<T> expected_output_data,
std::initializer_list<int> output_dims_data, float output_min,
float output_max, TfLitePadding padding, TfLiteFusedActivation activation,
T* output_data) {
static_assert(sizeof(T) == 1, "Only int8/uint8 data types allowed.");
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, input_min, input_max),
CreateQuantizedTensor(output_data, output_dims, output_min, output_max),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, micro_test::reporter, &context);
::tflite::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_AVERAGE_POOL_2D);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
TfLitePoolParams builtin_data = {padding, stride_width, stride_height,
filter_width, filter_height, activation};
const char* init_data = reinterpret_cast<const char*>(&builtin_data);
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
int temporaries_array_data[] = {0};
TfLiteIntArray* temporaries_array = IntArrayFromInts(temporaries_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = temporaries_array;
node.user_data = user_data;
node.builtin_data = reinterpret_cast<void*>(&builtin_data);
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
void TestMaxPoolFloat(std::initializer_list<int> input_dims_data,
std::initializer_list<float> input_data, int filter_width,
int filter_height, int stride_width, int stride_height,
std::initializer_list<float> expected_output_data,
std::initializer_list<int> output_dims_data,
TfLitePadding padding, TfLiteFusedActivation activation,
float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateFloatTensor(input_data, input_dims),
CreateFloatTensor(output_data, output_dims),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, micro_test::reporter, &context);
::tflite::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_MAX_POOL_2D);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
TfLitePoolParams builtin_data = {
padding, stride_width, stride_height,
filter_width, filter_height, activation,
};
const char* init_data = reinterpret_cast<const char*>(&builtin_data);
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
int temporaries_array_data[] = {0};
TfLiteIntArray* temporaries_array = IntArrayFromInts(temporaries_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = temporaries_array;
node.user_data = user_data;
node.builtin_data = reinterpret_cast<void*>(&builtin_data);
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
template <typename T>
void TestMaxPoolQuantized(std::initializer_list<int> input_dims_data,
std::initializer_list<T> input_data, float input_min,
float input_max, int filter_width, int filter_height,
int stride_width, int stride_height,
std::initializer_list<T> expected_output_data,
float output_min, float output_max,
std::initializer_list<int> output_dims_data,
TfLitePadding padding,
TfLiteFusedActivation activation, T* output_data) {
static_assert(sizeof(T) == 1, "Only int8/uint8 data types allowed.");
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, input_min, input_max),
CreateQuantizedTensor(output_data, output_dims, output_min, output_max),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, micro_test::reporter, &context);
::tflite::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_MAX_POOL_2D);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
TfLitePoolParams builtin_data = {
padding, stride_width, stride_height,
filter_width, filter_height, activation,
};
const char* init_data = reinterpret_cast<const char*>(&builtin_data);
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
int temporaries_array_data[] = {0};
TfLiteIntArray* temporaries_array = IntArrayFromInts(temporaries_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = temporaries_array;
node.user_data = user_data;
node.builtin_data = reinterpret_cast<void*>(&builtin_data);
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_EQ(expected_output_data.begin()[i], output_data[i]);
}
}
} // namespace
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(SimpleAveragePoolTestFloat) {
float output_data[2];
tflite::testing::TestAveragePoolingFloat({4, 1, 2, 4, 1}, // Input shape
{ // Input values
0., 6., 2., 4., 3., 2., 10., 7.},
2, 2, // filter width, filter height
2, 2, // stride width, stride height
{
// Output values
2.75,
5.75,
},
{4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestUint8) {
using tflite::testing::F2Q;
const float input_min = -15.9375;
const float input_max = 15.9375;
const float output_min = -15.9375;
const float output_max = 15.9375;
uint8_t output_data[2];
tflite::testing::TestAveragePoolingQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2Q(0., input_min, input_max),
F2Q(-6., input_min, input_max),
F2Q(2., input_min, input_max),
F2Q(4., input_min, input_max),
F2Q(3., input_min, input_max),
F2Q(2., input_min, input_max),
F2Q(-10., input_min, input_max),
F2Q(7., input_min, input_max),
},
input_min, input_max, // input quantization range
2, 2, // filter width, filter height
2, 2, // stride width, stride height
{
// Output values
F2Q(0., output_min, output_max),
F2Q(0.75, output_min, output_max),
},
{4, 1, 1, 2, 1}, // Output shape
output_min, output_max, // output quantization range
kTfLitePaddingValid, kTfLiteActRelu, output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2ActNone) {
using tflite::testing::F2QS;
const float input_min = -15.9375;
const float input_max = 15.8130;
const float output_min = -15.9375;
const float output_max = 15.8130;
int8_t output_data[2];
tflite::testing::TestAveragePoolingQuantized(
{4, 1, 2, 4, 1}, // Input shape
{ // Input values
F2QS(0., input_min, input_max), F2QS(-6., input_min, input_max),
F2QS(2., input_min, input_max), F2QS(4., input_min, input_max),
F2QS(3., input_min, input_max), F2QS(2., input_min, input_max),
F2QS(-10., input_min, input_max), F2QS(7., input_min, input_max)},
input_min, input_max, // input quantization range
2, 2, // filter height, filter width
2, 2, // stride height, stride width
{ // Output values
F2QS(-0.25, output_min, output_max), F2QS(0.75, output_min, output_max)},
{4, 1, 1, 2, 1}, // Output shape
output_min, output_max, // output quantization range
kTfLitePaddingValid, kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride1Stride2Relu) {
using tflite::testing::F2QS;
const float input_min = -15.9375;
const float input_max = 15.8130;
const float output_min = -15.9375;
const float output_max = 15.8130;
int8_t output_data[3];
tflite::testing::TestAveragePoolingQuantized(
{4, 1, 2, 4, 1}, // Input shape
{ // Input values
F2QS(0., input_min, input_max), F2QS(-6., input_min, input_max),
F2QS(2., input_min, input_max), F2QS(4., input_min, input_max),
F2QS(3., input_min, input_max), F2QS(2., input_min, input_max),
F2QS(-10., input_min, input_max), F2QS(7., input_min, input_max)},
input_min, input_max, // input quantization range
2, 2, // filter height, filter width
2, 1, // stride height, stride width
{ // Output values
F2QS(0., output_min, output_max), F2QS(0., output_min, output_max),
F2QS(0.75, output_min, output_max)},
{4, 1, 1, 3, 1}, // Output shape
output_min, output_max, // output quantization range
kTfLitePaddingValid, kTfLiteActRelu, output_data);
}
TF_LITE_MICRO_TEST(
SimpleAveragePoolTestInt8PaddingValidStride2Stride1ReluN1To1) {
using tflite::testing::F2QS;
const float input_min = -15.9375;
const float input_max = 15.8130;
const float output_min = -15.9375;
const float output_max = 15.8130;
int8_t output_data[2];
tflite::testing::TestAveragePoolingQuantized(
{4, 1, 2, 4, 1}, // Input shape
{ // Input values
F2QS(0., input_min, input_max), F2QS(-6., input_min, input_max),
F2QS(2., input_min, input_max), F2QS(4., input_min, input_max),
F2QS(3., input_min, input_max), F2QS(2., input_min, input_max),
F2QS(-10., input_min, input_max), F2QS(7., input_min, input_max)},
input_min, input_max, // input quantization range
2, 2, // filter height, filter width
1, 2, // stride height, stride width
{ // Output values
F2QS(-0.25, output_min, output_max), F2QS(0.75, output_min, output_max)},
{4, 1, 1, 2, 1}, // Output shape
output_min, output_max, // output quantization range
kTfLitePaddingValid, kTfLiteActReluN1To1, output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2Relu6) {
using tflite::testing::F2QS;
const float input_min = -15.9375;
const float input_max = 15.8130;
const float output_min = -15.9375;
const float output_max = 15.8130;
int8_t output_data[2];
tflite::testing::TestAveragePoolingQuantized(
{4, 1, 2, 4, 1}, // Input shape
{ // Input values
F2QS(3., input_min, input_max), F2QS(-6., input_min, input_max),
F2QS(8., input_min, input_max), F2QS(4., input_min, input_max),
F2QS(3., input_min, input_max), F2QS(2., input_min, input_max),
F2QS(10., input_min, input_max), F2QS(7., input_min, input_max)},
input_min, input_max, // input quantization range
2, 2, // filter height, filter width
2, 2, // stride height, stride width
{ // Output values
F2QS(0.5, output_min, output_max), F2QS(6., output_min, output_max)},
{4, 1, 1, 2, 1}, // Output shape
output_min, output_max, // output quantization range
kTfLitePaddingValid, kTfLiteActRelu6, output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingSameStride1ActNone) {
using tflite::testing::F2QS;
const float input_min = -15.9375;
const float input_max = 15.8130;
const float output_min = -15.9375;
const float output_max = 15.8130;
int8_t output_data[8];
tflite::testing::TestAveragePoolingQuantized(
{4, 1, 2, 4, 1}, // Input shape
{ // Input values
F2QS(3., input_min, input_max), F2QS(-6., input_min, input_max),
F2QS(8., input_min, input_max), F2QS(4., input_min, input_max),
F2QS(3., input_min, input_max), F2QS(2., input_min, input_max),
F2QS(10., input_min, input_max), F2QS(7., input_min, input_max)},
input_min, input_max, // input quantization range
2, 2, // filter height, filter width
1, 1, // stride height, stride width
{ // Output values
F2QS(0.5, output_min, output_max), F2QS(3.5, output_min, output_max),
F2QS(7.25, output_min, output_max), F2QS(5.5, output_min, output_max),
F2QS(2.5, output_min, output_max), F2QS(6., output_min, output_max),
F2QS(8.5, output_min, output_max), F2QS(7., output_min, output_max)},
{4, 1, 2, 4, 1}, // Output shape
output_min, output_max, // output quantization range
kTfLitePaddingSame, kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloat) {
float output_data[2];
tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1}, // Input shape
{ // Input values
0, 6, 2, 4, 3, 2, 10, 7},
2, 2, // filter width, filter height
2, 2, // stride width, stride height
{
// Output values
6,
10,
},
{4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu) {
float output_data[2];
tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1}, // Input shape
{
// Input values
-1, -6, 2, 4, //
-3, -2, 10.5, 7, //
},
2, 2, // filter width, filter height
2, 2, // stride width, stride height
{
// Output values
0.0,
10.5,
},
{4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu,
output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatReluN1To1) {
float output_data[2];
tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1}, // Input shape
{
// Input values
-2.75, -6, 0.2, 0.4, //
-3, -2, -0.3, 0.7, //
},
2, 2, // filter width, filter height
2, 2, // stride width, stride height
{
// Output values
-1.0,
0.7,
},
{4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActReluN1To1,
output_data);
tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1}, // Input shape
{
// Input values
-2.75, -6, -2, -4, //
-3, -2, 10, -7, //
},
2, 2, // filter width, filter height
2, 2, // stride width, stride height
{
// Output values
-1.0,
1.0,
},
{4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActReluN1To1,
output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu6) {
float output_data[2];
tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1}, // Input shape
{
// Input values
-1.5, -6, 12, 4, //
-3, -2, 10, 7, //
},
2, 2, // filter width, filter height
2, 2, // stride width, stride height
{
// Output values
0.0,
6.0,
},
{4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu6,
output_data);
tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1}, // Input shape
{
// Input values
0, 4.5, 12, 4, //
3, 2, 10, 7, //
},
2, 2, // filter width, filter height
2, 2, // stride width, stride height
{
// Output values
4.5,
6.0,
},
{4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu6,
output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestPaddingSameStride1) {
float output_data[8];
tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1}, // Input shape
{
// Input values
0, 6, 2, 4, //
3, 2, 10, 7, //
},
2, 2, // filter width, filter height
1, 1, // stride width, stride height
{
// Output values
6, 10, 10, 7, //
3, 10, 10, 7, //
},
{4, 1, 2, 4, 1}, // Output shape
kTfLitePaddingSame, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestPaddingValidStride1) {
float output_data[3];
tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1}, // Input shape
{
// Input values
0, 6, 2, 4, //
3, 2, 10, 7, //
},
2, 2, // filter width, filter height
1, 1, // stride width, stride height
{
// Output values
6,
10,
10,
},
{4, 1, 1, 3, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestUInt8ActNone) {
using tflite::testing::F2Q;
uint8_t output_data[2];
float input_min = 0;
float input_max = 15.9375;
float output_min = 0;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 2;
int stride_height = 2;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2Q(0, input_min, input_max),
F2Q(6, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(4, input_min, input_max),
F2Q(3, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(10, input_min, input_max),
F2Q(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2Q(6, output_min, output_max), F2Q(10, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu) {
using tflite::testing::F2Q;
uint8_t output_data[2];
float input_min = -15.9375;
float input_max = 15.9375;
float output_min = -15.9375;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 2;
int stride_height = 2;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2Q(-1.5, input_min, input_max),
F2Q(-6, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(4, input_min, input_max),
F2Q(-3, input_min, input_max),
F2Q(-2, input_min, input_max),
F2Q(10, input_min, input_max),
F2Q(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2Q(0, output_min, output_max), F2Q(10, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActReluN1To1) {
using tflite::testing::F2Q;
uint8_t output_data[2];
float input_min = -15.9375;
float input_max = 15.9375;
float output_min = -15.9375;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 2;
int stride_height = 2;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2Q(-1.7, input_min, input_max),
F2Q(-6, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(4, input_min, input_max),
F2Q(-3, input_min, input_max),
F2Q(-2, input_min, input_max),
F2Q(-10, input_min, input_max),
F2Q(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2Q(-1.0, output_min, output_max), F2Q(1.0, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActReluN1To1, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu6) {
using tflite::testing::F2Q;
uint8_t output_data[8];
float input_min = -15.9375;
float input_max = 15.9375;
float output_min = -15.9375;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 2;
int stride_height = 2;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2Q(0, input_min, input_max),
F2Q(-6, input_min, input_max),
F2Q(12, input_min, input_max),
F2Q(4, input_min, input_max),
F2Q(-3, input_min, input_max),
F2Q(-2, input_min, input_max),
F2Q(10, input_min, input_max),
F2Q(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2Q(0.0, output_min, output_max), F2Q(6.0, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu6, output_data);
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2Q(0, input_min, input_max),
F2Q(4.5, input_min, input_max),
F2Q(12, input_min, input_max),
F2Q(4, input_min, input_max),
F2Q(3, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(10, input_min, input_max),
F2Q(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2Q(4.5, output_min, output_max), F2Q(6.0, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu6, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8PaddingSameStride1) {
using tflite::testing::F2Q;
uint8_t output_data[8];
float input_min = 0;
float input_max = 15.9375;
float output_min = 0;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 1;
int stride_height = 1;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2Q(0, input_min, input_max),
F2Q(6, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(4, input_min, input_max),
F2Q(3, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(10, input_min, input_max),
F2Q(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{
// Output values
F2Q(6, output_min, output_max),
F2Q(10, output_min, output_max),
F2Q(10, output_min, output_max),
F2Q(7, output_min, output_max),
F2Q(3, output_min, output_max),
F2Q(10, output_min, output_max),
F2Q(10, output_min, output_max),
F2Q(7, output_min, output_max),
},
output_min, output_max, {4, 1, 2, 4, 1}, // Output shape
kTfLitePaddingSame, kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8PaddingValidStride1) {
using tflite::testing::F2Q;
uint8_t output_data[3];
float input_min = 0;
float input_max = 15.9375;
float output_min = 0;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 1;
int stride_height = 1;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2Q(0, input_min, input_max),
F2Q(6, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(4, input_min, input_max),
F2Q(3, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(10, input_min, input_max),
F2Q(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{
// Output values
F2Q(6, output_min, output_max),
F2Q(10, output_min, output_max),
F2Q(10, output_min, output_max),
},
output_min, output_max, {4, 1, 1, 3, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestInt8ActNone) {
using tflite::testing::F2QS;
int8_t output_data[2];
float input_min = 0;
float input_max = 15.9375;
float output_min = 0;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 2;
int stride_height = 2;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2QS(0, input_min, input_max),
F2QS(6, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(4, input_min, input_max),
F2QS(3, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(10, input_min, input_max),
F2QS(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2QS(6, output_min, output_max), F2QS(10, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu) {
using tflite::testing::F2QS;
int8_t output_data[2];
float input_min = -15.9375;
float input_max = 15.9375;
float output_min = -15.9375;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 2;
int stride_height = 2;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2QS(-1.5, input_min, input_max),
F2QS(-6, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(4, input_min, input_max),
F2QS(-3, input_min, input_max),
F2QS(-2, input_min, input_max),
F2QS(10, input_min, input_max),
F2QS(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2QS(0, output_min, output_max), F2QS(10, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActReluN1To1) {
using tflite::testing::F2QS;
int8_t output_data[2];
float input_min = -15.9375;
float input_max = 15.9375;
float output_min = -15.9375;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 2;
int stride_height = 2;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2QS(-1.7, input_min, input_max),
F2QS(-6, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(4, input_min, input_max),
F2QS(-3, input_min, input_max),
F2QS(-2, input_min, input_max),
F2QS(-10, input_min, input_max),
F2QS(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2QS(-1.0, output_min, output_max), F2QS(1.0, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActReluN1To1, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu6) {
using tflite::testing::F2QS;
int8_t output_data[8];
float input_min = -15.9375;
float input_max = 15.9375;
float output_min = -15.9375;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 2;
int stride_height = 2;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2QS(0, input_min, input_max),
F2QS(-6, input_min, input_max),
F2QS(12, input_min, input_max),
F2QS(4, input_min, input_max),
F2QS(-3, input_min, input_max),
F2QS(-2, input_min, input_max),
F2QS(10, input_min, input_max),
F2QS(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2QS(0.0, output_min, output_max), F2QS(6.0, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu6, output_data);
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2QS(0, input_min, input_max),
F2QS(4.5, input_min, input_max),
F2QS(12, input_min, input_max),
F2QS(4, input_min, input_max),
F2QS(3, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(10, input_min, input_max),
F2QS(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{// Output values
F2QS(4.5, output_min, output_max), F2QS(6.0, output_min, output_max)},
output_min, output_max, {4, 1, 1, 2, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActRelu6, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8PaddingSameStride1) {
using tflite::testing::F2QS;
int8_t output_data[8];
float input_min = 0;
float input_max = 15.9375;
float output_min = 0;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 1;
int stride_height = 1;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2QS(0, input_min, input_max),
F2QS(6, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(4, input_min, input_max),
F2QS(3, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(10, input_min, input_max),
F2QS(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{
// Output values
F2QS(6, output_min, output_max),
F2QS(10, output_min, output_max),
F2QS(10, output_min, output_max),
F2QS(7, output_min, output_max),
F2QS(3, output_min, output_max),
F2QS(10, output_min, output_max),
F2QS(10, output_min, output_max),
F2QS(7, output_min, output_max),
},
output_min, output_max, {4, 1, 2, 4, 1}, // Output shape
kTfLitePaddingSame, kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8PaddingValidStride1) {
using tflite::testing::F2QS;
int8_t output_data[3];
float input_min = 0;
float input_max = 15.9375;
float output_min = 0;
float output_max = 15.9375;
int filter_width = 2;
int filter_height = 2;
int stride_width = 1;
int stride_height = 1;
tflite::testing::TestMaxPoolQuantized(
{4, 1, 2, 4, 1}, // Input shape
{
// Input values
F2QS(0, input_min, input_max),
F2QS(6, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(4, input_min, input_max),
F2QS(3, input_min, input_max),
F2QS(2, input_min, input_max),
F2QS(10, input_min, input_max),
F2QS(7, input_min, input_max),
},
input_min, input_max, filter_width, filter_height, stride_width,
stride_height,
{
// Output values
F2QS(6, output_min, output_max),
F2QS(10, output_min, output_max),
F2QS(10, output_min, output_max),
},
output_min, output_max, {4, 1, 1, 3, 1}, // Output shape
kTfLitePaddingValid, kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TESTS_END