STT-tensorflow/tensorflow/lite/micro/kernels/pooling_test.cc
Nick Kreeger d39ff65920 Deprecate and remove testing/test_utils.h from TF Micro.
PiperOrigin-RevId: 335957483
Change-Id: I878ba86a6eaa01f331097240c019c57bb53688e8
2020-10-07 15:17:49 -07:00

717 lines
28 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstdint>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
#include "tensorflow/lite/micro/test_helpers.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
namespace tflite {
namespace testing {
namespace {
template <typename T>
void ValidatePoolingGoldens(TfLiteTensor* tensors, int tensors_size,
const TfLiteRegistration registration,
const int filter_height, const int filter_width,
const int stride_height, const int stride_width,
const T* golden, const int output_length,
TfLitePadding padding,
TfLiteFusedActivation activation, T* output_data) {
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLitePoolParams builtin_data = {padding,
stride_width,
stride_height,
filter_width,
filter_height,
activation,
{}};
micro::KernelRunner runner(
registration, tensors, tensors_size, inputs_array, outputs_array,
reinterpret_cast<void*>(&builtin_data), micro_test::reporter);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
for (int i = 0; i < output_length; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f);
}
}
void TestAveragePoolFloat(const int* input_dims_data, const float* input_data,
const int filter_height, const int filter_width,
const int stride_height, const int stride_width,
const float* expected_output_data,
const int* output_dims_data, TfLitePadding padding,
TfLiteFusedActivation activation,
float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateFloatTensor(input_data, input_dims),
CreateFloatTensor(output_data, output_dims),
};
const TfLiteRegistration registration =
tflite::ops::micro::Register_AVERAGE_POOL_2D();
ValidatePoolingGoldens(tensors, tensors_size, registration, filter_height,
filter_width, stride_height, stride_width,
expected_output_data, output_dims_count, padding,
activation, output_data);
}
template <typename T>
void TestAveragePoolQuantized(
const int* input_dims_data, const T* input_data, const float input_scale,
const int input_zero_point, const int filter_height, const int filter_width,
const int stride_height, const int stride_width,
const T* expected_output_data, const int* output_dims_data,
const float output_scale, const int output_zero_point,
TfLitePadding padding, TfLiteFusedActivation activation, T* output_data) {
static_assert(sizeof(T) == 1, "Only int8_t/uint8_t data types allowed.");
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, input_scale,
input_zero_point),
CreateQuantizedTensor(output_data, output_dims, output_scale,
output_zero_point),
};
const TfLiteRegistration registration =
tflite::ops::micro::Register_AVERAGE_POOL_2D();
ValidatePoolingGoldens(tensors, tensors_size, registration, filter_height,
filter_width, stride_height, stride_width,
expected_output_data, output_dims_count, padding,
activation, output_data);
}
void TestMaxPoolFloat(const int* input_dims_data, const float* input_data,
int filter_width, int filter_height, int stride_width,
int stride_height, const float* expected_output_data,
const int* output_dims_data, TfLitePadding padding,
TfLiteFusedActivation activation, float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateFloatTensor(input_data, input_dims),
CreateFloatTensor(output_data, output_dims),
};
const TfLiteRegistration registration =
tflite::ops::micro::Register_MAX_POOL_2D();
ValidatePoolingGoldens(tensors, tensors_size, registration, filter_height,
filter_width, stride_height, stride_width,
expected_output_data, output_dims_count, padding,
activation, output_data);
}
template <typename T>
void TestMaxPoolQuantized(const int* input_dims_data, const T* input_data,
const float input_scale, const int input_zero_point,
const int filter_height, const int filter_width,
const int stride_height, const int stride_width,
const T* expected_output_data,
const int* output_dims_data, const float output_scale,
const int output_zero_point, TfLitePadding padding,
TfLiteFusedActivation activation, T* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, input_scale,
input_zero_point),
CreateQuantizedTensor(output_data, output_dims, output_scale,
output_zero_point),
};
const TfLiteRegistration registration =
tflite::ops::micro::Register_MAX_POOL_2D();
ValidatePoolingGoldens(tensors, tensors_size, registration, filter_height,
filter_width, stride_height, stride_width,
expected_output_data, output_dims_count, padding,
activation, output_data);
}
} // namespace
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(SimpleAveragePoolTestFloat) {
const int input_shape[] = {4, 1, 2, 4, 1};
const float input_values[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const float golden[] = {2.75, 5.75};
const int output_shape[] = {4, 1, 1, 2, 1};
float output_data[2];
tflite::testing::TestAveragePoolFloat(
input_shape, input_values, filter_height, filter_width, stride_height,
stride_width, golden, output_shape, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestUint8) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values[] = {0, 24, 8, 16, 12, 8, 40, 28};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const uint8_t golden[] = {11, 23};
const int output_shape[] = {4, 1, 1, 2, 1};
uint8_t output_data[2];
const float input_scale = 0.25;
const int input_zero_point = 0;
const float output_scale = .25;
const int output_zero_point = 0;
tflite::testing::TestAveragePoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2ActNone) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const int8_t golden[] = {-1, 3};
const int output_shape[] = {4, 1, 1, 2, 1};
int8_t output_data[2];
const float input_scale = .25;
const int input_zero_point = 0;
const float output_scale = .25;
const int output_zero_point = 0;
tflite::testing::TestAveragePoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride1Stride2Relu) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 1;
const int stride_height = 2;
const int8_t golden[] = {0, 0, 3};
const int output_shape[] = {4, 1, 1, 3, 1};
int8_t output_data[3];
const float input_scale = .25;
const int input_zero_point = 0;
const float output_scale = .25;
const int output_zero_point = 0;
tflite::testing::TestAveragePoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu,
output_data);
}
TF_LITE_MICRO_TEST(
SimpleAveragePoolTestInt8PaddingValidStride2Stride1ReluN1To1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 1;
const int8_t golden[] = {-1, 3};
const int output_shape[] = {4, 1, 1, 2, 1};
int8_t output_data[2];
const float input_scale = .25;
const int input_zero_point = 0;
const float output_scale = .25;
const int output_zero_point = 0;
tflite::testing::TestAveragePoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActReluN1To1,
output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2Relu6) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values[] = {12, -24, 32, 16, 12, 8, 40, 28};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const int8_t golden[] = {2, 24};
const int output_shape[] = {4, 1, 1, 2, 1};
int8_t output_data[2];
const float input_scale = .25;
const int input_zero_point = 0;
const float output_scale = .25;
const int output_zero_point = 0;
tflite::testing::TestAveragePoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu6,
output_data);
}
TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingSameStride1ActNone) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values[] = {12, -24, 32, 16, 12, 8, 40, 28};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 1;
const int stride_height = 1;
const int8_t golden[] = {2, 14, 29, 22, 10, 24, 34, 28};
const int output_shape[] = {4, 1, 2, 4, 1};
int8_t output_data[8];
const float input_scale = .25;
const int input_zero_point = 0;
const float output_scale = .25;
const int output_zero_point = 0;
tflite::testing::TestAveragePoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloat) {
const int input_shape[] = {4, 1, 2, 4, 1};
const float input_values[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const float golden[] = {6, 10};
const int output_shape[] = {4, 1, 1, 2, 1};
float output_data[2];
tflite::testing::TestMaxPoolFloat(input_shape, input_values, filter_height,
filter_width, stride_height, stride_width,
golden, output_shape, kTfLitePaddingValid,
kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu) {
const int input_shape[] = {4, 1, 2, 4, 1};
const float input_values[] = {-1, -6, 2, 4, -3, -2, 10.5, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const float golden[] = {0, 10.5};
const int output_shape[] = {4, 1, 1, 2, 1};
float output_data[2];
tflite::testing::TestMaxPoolFloat(input_shape, input_values, filter_height,
filter_width, stride_height, stride_width,
golden, output_shape, kTfLitePaddingValid,
kTfLiteActRelu, output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatReluN1To1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const float input_values1[] = {-2.75, -6, 0.2, 0.4, -3, -2, -0.3, 0.7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const float golden1[] = {-1.0, 0.7};
const int output_shape[] = {4, 1, 1, 2, 1};
float output_data[2];
tflite::testing::TestMaxPoolFloat(input_shape, input_values1, filter_height,
filter_width, stride_height, stride_width,
golden1, output_shape, kTfLitePaddingValid,
kTfLiteActReluN1To1, output_data);
const float input_values2[] = {-2.75, -6, -2, -4, -3, -2, 10, -7};
const float golden2[] = {-1.0, 1.0};
tflite::testing::TestMaxPoolFloat(input_shape, input_values2, filter_height,
filter_width, stride_height, stride_width,
golden2, output_shape, kTfLitePaddingValid,
kTfLiteActReluN1To1, output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu6) {
const int input_shape[] = {4, 1, 2, 4, 1};
const float input_values1[] = {-1.5, -6, 12, 4, -3, -2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const float golden1[] = {0, 6};
const int output_shape[] = {4, 1, 1, 2, 1};
float output_data[2];
tflite::testing::TestMaxPoolFloat(input_shape, input_values1, filter_height,
filter_width, stride_height, stride_width,
golden1, output_shape, kTfLitePaddingValid,
kTfLiteActRelu6, output_data);
const float input_values2[] = {0, 4.5, 12, 4, 3, 2, 10, 7};
const float golden2[] = {4.5, 6};
tflite::testing::TestMaxPoolFloat(input_shape, input_values2, filter_height,
filter_width, stride_height, stride_width,
golden2, output_shape, kTfLitePaddingValid,
kTfLiteActRelu6, output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestPaddingSameStride1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const float input_values[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 1;
const int stride_height = 1;
const float golden[] = {6, 10, 10, 7, 3, 10, 10, 7};
const int output_shape[] = {4, 1, 2, 4, 1};
float output_data[8];
tflite::testing::TestMaxPoolFloat(input_shape, input_values, filter_height,
filter_width, stride_height, stride_width,
golden, output_shape, kTfLitePaddingSame,
kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestPaddingValidStride1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const float input_values[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 1;
const int stride_height = 1;
const float golden[] = {6, 10, 10};
const int output_shape[] = {4, 1, 1, 3, 1};
float output_data[8];
tflite::testing::TestMaxPoolFloat(input_shape, input_values, filter_height,
filter_width, stride_height, stride_width,
golden, output_shape, kTfLitePaddingValid,
kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestUInt8ActNone) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values[] = {0, 12, 4, 8, 6, 4, 20, 14};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const uint8_t golden[] = {12, 20};
const int output_shape[] = {4, 1, 1, 2, 1};
uint8_t output_data[2];
const float input_scale = 1.0;
const int input_zero_point = 0;
const float output_scale = 1.0;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values[] = {0, 4, 2, 4, 3, 2, 14, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const uint8_t golden[] = {4, 14};
const int output_shape[] = {4, 1, 1, 2, 1};
uint8_t output_data[2];
const float input_scale = 1.0;
const int input_zero_point = 4;
const float output_scale = 1.0;
const int output_zero_point = 4;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActReluN1To1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values[] = {0, 4, 2, 4, 3, 2, 14, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const uint8_t golden[] = {3, 5};
const int output_shape[] = {4, 1, 1, 2, 1};
uint8_t output_data[2];
const float input_scale = 1.0;
const int input_zero_point = 4;
const float output_scale = 1.0;
const int output_zero_point = 4;
tflite::testing::TestAveragePoolQuantized(
input_shape, input_values, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActReluN1To1,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu6) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values1[] = {12, 0, 36, 20, 6, 8, 32, 26};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const uint8_t golden1[] = {12, 24};
const int output_shape[] = {4, 1, 1, 2, 1};
uint8_t output_data[8];
const float input_scale = 0.5;
const int input_zero_point = 12;
const float output_scale = 0.5;
const int output_zero_point = 12;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu6,
output_data);
const uint8_t input_values2[] = {12, 21, 36, 16, 18, 16, 32, 26};
const uint8_t golden2[] = {21, 24};
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values2, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden2, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu6,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8PaddingSameStride1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values1[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 1;
const int stride_height = 1;
const uint8_t golden1[] = {6, 10, 10, 7, 3, 10, 10, 7};
const int output_shape[] = {4, 1, 2, 4, 1};
uint8_t output_data[8];
const float input_scale = 1.0;
const int input_zero_point = 0;
const float output_scale = 1.0;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8PaddingValidStride1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values1[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 1;
const int stride_height = 1;
const uint8_t golden1[] = {6, 10, 10};
const int output_shape[] = {4, 1, 1, 3, 1};
uint8_t output_data[3];
const float input_scale = 1.0;
const int input_zero_point = 0;
const float output_scale = 1.0;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(SimpleMaxPoolTestInt8ActNone) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values1[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const int8_t golden1[] = {6, 10};
const int output_shape[] = {4, 1, 1, 2, 1};
int8_t output_data[2];
const float input_scale = 1.0;
const int input_zero_point = 0;
const float output_scale = 1.0;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestInt8ActRelu) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values1[] = {-3, -12, 4, 8, -6, -4, 20, 14};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const int8_t golden1[] = {0, 20};
const int output_shape[] = {4, 1, 1, 2, 1};
int8_t output_data[2];
const float input_scale = 0.5;
const int input_zero_point = 0;
const float output_scale = 0.5;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestInt8ActReluN1To1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values1[] = {-2, -6, -2, -4, -3, -2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const int8_t golden1[] = {-1, 1};
const int output_shape[] = {4, 1, 1, 2, 1};
int8_t output_data[2];
const float input_scale = 1.0;
const int input_zero_point = 0;
const float output_scale = 1.0;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActReluN1To1,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestInt8ActRelu6) {
const int input_shape[] = {4, 1, 2, 4, 1};
const int8_t input_values1[] = {0, -6, 12, 4, -3, -2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 2;
const int stride_height = 2;
const int8_t golden1[] = {0, 6};
const int output_shape[] = {4, 1, 1, 2, 1};
int8_t output_data[2];
const float input_scale = 1.0;
const int input_zero_point = 0;
const float output_scale = 1.0;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu6,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8PaddingSameStride1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values1[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 1;
const int stride_height = 1;
const uint8_t golden1[] = {6, 10, 10, 7, 3, 10, 10, 7};
const int output_shape[] = {4, 1, 2, 4, 1};
uint8_t output_data[8];
const float input_scale = 1.0;
const int input_zero_point = 0;
const float output_scale = 1.0;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingSame, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TEST(MaxPoolTestUInt8PaddingValidStride1) {
const int input_shape[] = {4, 1, 2, 4, 1};
const uint8_t input_values1[] = {0, 6, 2, 4, 3, 2, 10, 7};
const int filter_width = 2;
const int filter_height = 2;
const int stride_width = 1;
const int stride_height = 1;
const uint8_t golden1[] = {6, 10, 10};
const int output_shape[] = {4, 1, 1, 3, 1};
uint8_t output_data[3];
const float input_scale = 1.0;
const int input_zero_point = 0;
const float output_scale = 1.0;
const int output_zero_point = 0;
tflite::testing::TestMaxPoolQuantized(
input_shape, input_values1, input_scale, input_zero_point, filter_height,
filter_width, stride_height, stride_width, golden1, output_shape,
output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TESTS_END