STT-tensorflow/tensorflow/python/distribute/tpu_strategy_test.py
Ken Franko c74e9eca85 Apply name change(experimental_run_v2 -> run) for all callers in Tensorflow.
PiperOrigin-RevId: 301617216
Change-Id: I17624641a96dac369b52833d9c72c3d4d2172596
2020-03-18 10:35:05 -07:00

220 lines
7.4 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for TPUStrategy."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.distribute import tpu_strategy as tpu_lib
from tensorflow.python.distribute.cluster_resolver import tpu_cluster_resolver
from tensorflow.python.eager import def_function
from tensorflow.python.eager import remote
from tensorflow.python.eager import test
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import flags
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.tpu import device_assignment as device_assignment_lib
from tensorflow.python.tpu import tpu_strategy_util
FLAGS = flags.FLAGS
flags.DEFINE_string("tpu", "", "Name of TPU to connect to.")
flags.DEFINE_string("project", None, "Name of GCP project with TPU.")
flags.DEFINE_string("zone", None, "Name of GCP zone with TPU.")
def get_tpu_cluster_resolver():
resolver = tpu_cluster_resolver.TPUClusterResolver(
tpu=FLAGS.tpu,
zone=FLAGS.zone,
project=FLAGS.project,
)
return resolver
def get_tpu_strategy():
resolver = get_tpu_cluster_resolver()
remote.connect_to_cluster(resolver)
tpu_strategy_util.initialize_tpu_system(resolver)
return tpu_lib.TPUStrategy(resolver)
class TPUStrategyTest(test.TestCase):
def test_multiple_initialize_system(self):
resolver = get_tpu_cluster_resolver()
remote.connect_to_cluster(resolver)
tpu_strategy_util.initialize_tpu_system(resolver)
with test.mock.patch.object(logging, "warning") as mock_log:
tpu_strategy_util.initialize_tpu_system(resolver)
self.assertRegex(str(mock_log.call_args), "already been initialized")
def test_sequential_experimental_runs(self):
resolver = get_tpu_cluster_resolver()
remote.connect_to_cluster(resolver)
topology = tpu_strategy_util.initialize_tpu_system(resolver)
# Computation replicated to all cores.
device_assignment = device_assignment_lib.DeviceAssignment.build(
topology, num_replicas=2)
strategy = tpu_lib.TPUStrategy(
resolver, device_assignment=device_assignment)
# Computation on the 1st core.
device_assignment2 = device_assignment_lib.DeviceAssignment.build(
topology, num_replicas=1)
strategy2 = tpu_lib.TPUStrategy(
resolver, device_assignment=device_assignment2)
def computation(x):
return math_ops.square(x)
@def_function.function
def train_step():
outputs = strategy.experimental_local_results(
strategy.run(computation, args=([2., 2.],)))
outputs2 = strategy2.run(
computation, args=([outputs[0]],))
return outputs2
self.assertAllEqual([[16., 16.]], train_step())
def test_device_switch_case(self):
strategy = get_tpu_strategy()
with strategy.scope():
a = variables.Variable(1)
inference_iteration = variables.Variable(-1)
def inference_fn(x, i):
return a + x + i
@def_function.function
def run_inference(x):
def do_inference(device, inference_fn, i):
with ops.device(device):
return inference_fn(x, i)
branch_fns = {
0: (lambda: do_inference("/device:TPU:0", inference_fn, 0)),
1: (lambda: do_inference("/device:TPU:1", inference_fn, 1)),
}
branch_index = inference_iteration.assign_add(1, use_locking=True) % 2
return control_flow_ops.switch_case(branch_index, branch_fns)
self.assertAllEqual(2., run_inference(1)) # Use TPU core 0.
self.assertAllEqual(3., run_inference(1)) # Use TPU core 1.
def test_recover_from_compilation_failures(self):
# TODO(b/148150981): Stop skipping this test once recovery works
# for non-local TPU.
if FLAGS.tpu:
self.skipTest("Recovery fails for non-local TPU, see b/148150981")
strategy = get_tpu_strategy()
@def_function.function
def compilation_failure_run():
def computation():
return random_ops.random_gamma([10], [0.5, 1.5])
return strategy.run(computation)
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"TPU compilation failed"):
compilation_failure_run()
@def_function.function
def good_run():
def computation():
return random_ops.random_normal([10])
return strategy.run(computation)
good_run()
def test_computation_on_subset_cores(self):
resolver = get_tpu_cluster_resolver()
remote.connect_to_cluster(resolver)
topology = tpu_strategy_util.initialize_tpu_system(resolver)
all_core_strategy = tpu_lib.TPUStrategy(resolver)
with all_core_strategy.scope():
v = variables.Variable(0.0,
aggregation=variables.VariableAggregation.MEAN)
# Computation on the 1st core.
device_assignment = device_assignment_lib.DeviceAssignment.build(
topology, num_replicas=1)
first_core_strategy = tpu_lib.TPUStrategy(
resolver, device_assignment=device_assignment)
# Computation on the 2nd core.
device_assignment2 = device_assignment_lib.DeviceAssignment(
topology, [[[0, 0, 0, 1]]])
second_core_strategy = tpu_lib.TPUStrategy(
resolver, device_assignment=device_assignment2)
@def_function.function
def train_step():
def step_fn():
return v + 1.0
all_core_strategy.run(step_fn)
r1 = first_core_strategy.run(step_fn)
r2 = second_core_strategy.run(step_fn)
return r1 + r2
train_step()
self.assertAllEqual(2., train_step())
def test_worker_devices_on_subset_cores(self):
resolver = get_tpu_cluster_resolver()
remote.connect_to_cluster(resolver)
topology = tpu_strategy_util.initialize_tpu_system(resolver)
# Strategy for the 1st core.
device_assignment = device_assignment_lib.DeviceAssignment.build(
topology, num_replicas=1)
first_core_strategy = tpu_lib.TPUStrategy(
resolver, device_assignment=device_assignment)
# Strategy for the 2nd core.
device_assignment2 = device_assignment_lib.DeviceAssignment(
topology, [[[0, 0, 0, 1]]])
second_core_strategy = tpu_lib.TPUStrategy(
resolver, device_assignment=device_assignment2)
self.assertLen(first_core_strategy.extended.worker_devices, 1)
self.assertEndsWith(first_core_strategy.extended.worker_devices[0],
"device:TPU:0")
self.assertLen(second_core_strategy.extended.worker_devices, 1)
self.assertEndsWith(second_core_strategy.extended.worker_devices[0],
"device:TPU:1")
if __name__ == "__main__":
test.main()