STT-tensorflow/tensorflow/compiler/xla/util.cc
A. Unique TensorFlower b04d0985f3 [TF:XLA] Optimize the literal transpose operation
Optimize the literal transpose operation by avoiding item by item copies.
Transposing a F32{128, 64, 64, 32} with a {0, 3, 2, 1} permutation, on a Xeon E5-1650 v3, took ~40s before, and ~130ms after.
Made literal Reshape support not MonotonicDim0Major layouts.
Optimized the literal Relayout operation to use the new Copy() operation, and to hence cover all the primitive types.
Added unittest for the LiteralUtil::Populate() API.
Change: 155265178
2017-05-05 19:32:06 -07:00

298 lines
9.3 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/xla/util.h"
#include <stdarg.h>
#include "tensorflow/compiler/xla/legacy_flags/util_flags.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/strings/numbers.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/stacktrace.h"
namespace xla {
namespace {
// Adds a backtrace to the provided status iff the xla_status_add_backtrace flag
// is set. This is useful for quickly tracing status errors observed coming out
// of the service.
Status MaybeAddBacktrace(Status prior) {
DCHECK(!prior.ok());
if (legacy_flags::GetUtilFlags()->xla_status_add_backtrace) {
return Status{prior.code(),
tensorflow::strings::StrCat(prior.error_message(), " :: ",
tensorflow::CurrentStackTrace())};
} else {
return prior;
}
}
} // namespace
ScopedLoggingTimer::ScopedLoggingTimer(const string& label, int32 vlog_level)
: label(label), vlog_level(vlog_level) {
if (VLOG_IS_ON(vlog_level)) {
start_micros = tensorflow::Env::Default()->NowMicros();
}
}
ScopedLoggingTimer::~ScopedLoggingTimer() {
if (VLOG_IS_ON(vlog_level)) {
uint64 end_micros = tensorflow::Env::Default()->NowMicros();
double secs = (end_micros - start_micros) / 1000000.0;
LOG(INFO) << label << " time: "
<< tensorflow::strings::HumanReadableElapsedTime(secs);
}
}
Status AddStatus(Status prior, tensorflow::StringPiece context) {
CHECK(!prior.ok());
return Status{prior.code(), tensorflow::strings::StrCat(
context, ": ", prior.error_message())};
}
Status AppendStatus(Status prior, tensorflow::StringPiece context) {
CHECK(!prior.ok());
return Status{prior.code(), tensorflow::strings::StrCat(prior.error_message(),
": ", context)};
}
// Implementation note: we can't common these out (without using macros) because
// they all need to va_start/va_end their varargs in their frame.
Status InvalidArgument(const char* format, ...) {
string message;
va_list args;
va_start(args, format);
tensorflow::strings::Appendv(&message, format, args);
va_end(args);
return MaybeAddBacktrace(tensorflow::errors::InvalidArgument(message));
}
Status Unimplemented(const char* format, ...) {
string message;
va_list args;
va_start(args, format);
tensorflow::strings::Appendv(&message, format, args);
va_end(args);
return MaybeAddBacktrace(tensorflow::errors::Unimplemented(message));
}
Status InternalError(const char* format, ...) {
string message;
va_list args;
va_start(args, format);
tensorflow::strings::Appendv(&message, format, args);
va_end(args);
return MaybeAddBacktrace(tensorflow::errors::Internal(message));
}
Status FailedPrecondition(const char* format, ...) {
string message;
va_list args;
va_start(args, format);
tensorflow::strings::Appendv(&message, format, args);
va_end(args);
return MaybeAddBacktrace(tensorflow::errors::FailedPrecondition(message));
}
Status ResourceExhausted(const char* format, ...) {
string message;
va_list args;
va_start(args, format);
tensorflow::strings::Appendv(&message, format, args);
va_end(args);
return MaybeAddBacktrace(tensorflow::errors::ResourceExhausted(message));
}
Status NotFound(const char* format, ...) {
string message;
va_list args;
va_start(args, format);
tensorflow::strings::Appendv(&message, format, args);
va_end(args);
return MaybeAddBacktrace(tensorflow::errors::NotFound(message));
}
Status Unavailable(const char* format, ...) {
string message;
va_list args;
va_start(args, format);
tensorflow::strings::Appendv(&message, format, args);
va_end(args);
return MaybeAddBacktrace(tensorflow::errors::Unavailable(message));
}
string Reindent(tensorflow::StringPiece original,
const tensorflow::StringPiece indentation) {
std::vector<string> pieces = tensorflow::str_util::Split(
tensorflow::StringPiece(original.data(), original.size()), '\n');
return tensorflow::str_util::Join(
pieces, "\n", [indentation](string* out, string s) {
tensorflow::StringPiece piece(s);
tensorflow::str_util::RemoveWhitespaceContext(&piece);
tensorflow::strings::StrAppend(out, indentation, piece);
});
}
bool IsPermutation(tensorflow::gtl::ArraySlice<int64> permutation, int64 rank) {
if (rank != permutation.size()) {
return false;
}
std::vector<int64> output(permutation.size(), -1);
for (auto index : permutation) {
CHECK_GE(index, 0);
CHECK_LT(index, rank);
output[index] = 0;
}
return std::find(output.begin(), output.end(), -1) == output.end();
}
std::vector<int64> InversePermutation(
tensorflow::gtl::ArraySlice<int64> input_permutation) {
DCHECK(IsPermutation(input_permutation, input_permutation.size()));
std::vector<int64> output_permutation(input_permutation.size(), -1);
for (size_t i = 0; i < input_permutation.size(); ++i) {
output_permutation[input_permutation[i]] = i;
}
return output_permutation;
}
std::vector<int64> ComposePermutations(tensorflow::gtl::ArraySlice<int64> p1,
tensorflow::gtl::ArraySlice<int64> p2) {
CHECK_EQ(p1.size(), p2.size());
std::vector<int64> output;
for (size_t i = 0; i < p1.size(); ++i) {
output.push_back(p1[p2[i]]);
}
return output;
}
bool IsIdentityPermutation(tensorflow::gtl::ArraySlice<int64> p) {
for (int64 i = 0; i < p.size(); ++i) {
if (p[i] != i) {
return false;
}
}
return true;
}
PaddingConfig MakeNoPaddingConfig(int64 rank) {
PaddingConfig padding_config;
for (int64 dnum = 0; dnum < rank; ++dnum) {
auto dimension = padding_config.add_dimensions();
dimension->set_edge_padding_low(0);
dimension->set_edge_padding_high(0);
dimension->set_interior_padding(0);
}
return padding_config;
}
string HumanReadableNumFlops(double flops, double nanoseconds) {
if (nanoseconds == 0) {
return "NaN FLOP/s";
}
double nano_flops = flops / nanoseconds;
string throughput = tensorflow::strings::HumanReadableNum(
static_cast<int64>(nano_flops * 1e9));
tensorflow::StringPiece sp(throughput);
// Use the more common "G(FLOPS)", rather than "B(FLOPS)"
if (sp.ends_with("B") || // Ends in 'B', ignoring case
sp.ends_with("b")) {
*throughput.rbegin() = 'G';
}
throughput += "FLOP/s";
return throughput;
}
void LogLines(int sev, tensorflow::StringPiece text, const char* fname,
int lineno) {
const int orig_sev = sev;
if (sev == tensorflow::FATAL) {
sev = tensorflow::ERROR;
}
size_t cur = 0;
while (cur < text.size()) {
size_t eol = text.find('\n', cur);
if (eol == tensorflow::StringPiece::npos) {
eol = text.size();
}
auto msg = text.substr(cur, eol - cur);
tensorflow::internal::LogString(fname, lineno, sev,
string(msg.data(), msg.size()));
cur = eol + 1;
}
if (orig_sev == tensorflow::FATAL) {
tensorflow::internal::LogString(fname, lineno, orig_sev,
"Aborting due to errors.");
}
}
int64 Product(tensorflow::gtl::ArraySlice<int64> xs) {
return std::accumulate(xs.begin(), xs.end(), 1, std::multiplies<int64>());
}
std::vector<std::pair<int64, int64>> CommonFactors(
tensorflow::gtl::ArraySlice<int64> a,
tensorflow::gtl::ArraySlice<int64> b) {
CHECK_EQ(Product(a), Product(b));
if (0 == Product(a)) {
return {std::make_pair(0, 0), std::make_pair(a.size(), b.size())};
}
std::vector<std::pair<int64, int64>> bounds;
for (int64 i = 0, j = 0, prior_i = -1, prior_j = -1, partial_size_a = 1,
partial_size_b = 1;
;) {
if (partial_size_a == partial_size_b && (i > prior_i || j > prior_j)) {
std::tie(prior_i, prior_j) = std::make_pair(i, j);
bounds.emplace_back(i, j);
continue;
}
bool in_bounds_i = i < a.size();
bool in_bounds_j = j < b.size();
if (!(in_bounds_i || in_bounds_j)) {
break;
}
bool next_a =
partial_size_a < partial_size_b ||
(in_bounds_i &&
(!in_bounds_j || (partial_size_a == partial_size_b && a[i] <= b[j])));
bool next_b =
partial_size_b < partial_size_a ||
(in_bounds_j &&
(!in_bounds_i || (partial_size_b == partial_size_a && b[j] <= a[i])));
if (next_a) {
partial_size_a *= a[i];
++i;
}
if (next_b) {
partial_size_b *= b[j];
++j;
}
}
return bounds;
}
} // namespace xla