STT-tensorflow/tensorflow/python/ops/math_ops_test.py
Benoit Steiner a771598ad8 Merge changes from github.
Change: 138675832
2016-11-09 13:48:22 -08:00

296 lines
11 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.math_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import googletest
exp = np.exp
log = np.log
class ReduceTest(test_util.TensorFlowTestCase):
def testReduceAllDims(self):
x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
with self.test_session(use_gpu=True):
y_tf = math_ops.reduce_sum(x).eval()
self.assertEqual(y_tf, 21)
def testReduceExplicitDims(self):
x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
axis = np.array([[0], [1]])
with self.assertRaisesRegexp(ValueError, "must be at most rank 1"):
math_ops.reduce_sum(x, axis)
class LogSumExpTest(test_util.TensorFlowTestCase):
def testReduceLogSumExp(self):
for dtype in [np.float16, np.float32, np.double]:
x_np = np.random.rand(5, 5).astype(dtype)
with self.test_session(use_gpu=True):
y_tf_np = math_ops.reduce_logsumexp(x_np).eval()
y_np = log(np.sum(exp(x_np)))
self.assertAllClose(y_tf_np, y_np)
def testReductionIndices(self):
for dtype in [np.float16, np.float32, np.double]:
x_np = np.random.rand(5, 5).astype(dtype)
with self.test_session(use_gpu=True):
y_tf = math_ops.reduce_logsumexp(x_np, reduction_indices=[0])
y_np = log(np.sum(exp(x_np), axis=0))
self.assertShapeEqual(y_np, y_tf)
y_tf_np = y_tf.eval()
self.assertAllClose(y_tf_np, y_np)
def testReductionIndices2(self):
for dtype in [np.float16, np.float32, np.double]:
x_np = np.random.rand(5, 5).astype(dtype)
with self.test_session(use_gpu=True):
y_tf = math_ops.reduce_logsumexp(x_np, reduction_indices=0)
y_np = log(np.sum(exp(x_np), axis=0))
self.assertShapeEqual(y_np, y_tf)
y_tf_np = y_tf.eval()
self.assertAllClose(y_tf_np, y_np)
def testKeepDims(self):
for dtype in [np.float16, np.float32, np.double]:
x_np = np.random.rand(5, 5).astype(dtype)
with self.test_session(use_gpu=True):
y_tf_np = math_ops.reduce_logsumexp(x_np, keep_dims=True).eval()
self.assertEqual(y_tf_np.ndim, x_np.ndim)
y_np = log(np.sum(exp(x_np), keepdims=True))
self.assertAllClose(y_tf_np, y_np)
def testOverflow(self):
x = [1000, 1001, 1002, 1003]
for dtype in [np.float16, np.float32, np.double]:
x_np = np.array(x, dtype=dtype)
max_np = np.max(x_np)
with self.assertRaisesRegexp(RuntimeWarning,
"overflow encountered in exp"):
out = log(np.sum(exp(x_np)))
if out == np.inf:
raise RuntimeWarning("overflow encountered in exp")
with self.test_session(use_gpu=True):
x_tf = constant_op.constant(x_np, shape=x_np.shape)
y_tf_np = math_ops.reduce_logsumexp(x_tf).eval()
y_np = log(np.sum(exp(x_np - max_np))) + max_np
self.assertAllClose(y_tf_np, y_np)
def testUnderflow(self):
x = [-1000, -1001, -1002, -1003]
for dtype in [np.float16, np.float32, np.double]:
x_np = np.array(x, dtype=dtype)
max_np = np.max(x_np)
with self.assertRaisesRegexp(RuntimeWarning,
"divide by zero encountered in log"):
out = log(np.sum(exp(x_np)))
if out == -np.inf:
raise RuntimeWarning("divide by zero encountered in log")
with self.test_session(use_gpu=True):
x_tf = constant_op.constant(x_np, shape=x_np.shape)
y_tf_np = math_ops.reduce_logsumexp(x_tf).eval()
y_np = log(np.sum(exp(x_np - max_np))) + max_np
self.assertAllClose(y_tf_np, y_np)
class RoundTest(test_util.TensorFlowTestCase):
def testRounding(self):
x = [0.49, 0.7, -0.3, -0.8]
# TODO(nolivia): Remove this when RoundOp is forwards compatible
# x = np.arange(-5.0, 5.0, .25)
for dtype in [np.float32, np.double, np.int32]:
x_np = np.array(x, dtype=dtype)
with self.test_session(use_gpu=True):
x_tf = constant_op.constant(x_np, shape=x_np.shape)
y_tf = math_ops.round(x_tf)
y_tf_np = y_tf.eval()
y_np = np.round(x_np)
self.assertAllClose(y_tf_np, y_np, atol=1e-2)
class ModTest(test_util.TensorFlowTestCase):
def testFloat(self):
x = [0.5, 0.7, 0.3]
for dtype in [np.float32, np.double]:
# Test scalar and vector versions.
for denom in [x[0], [x[0]] * 3]:
x_np = np.array(x, dtype=dtype)
with self.test_session(use_gpu=True):
x_tf = constant_op.constant(x_np, shape=x_np.shape)
y_tf = math_ops.mod(x_tf, denom)
y_tf_np = y_tf.eval()
y_np = np.fmod(x_np, denom)
self.assertAllClose(y_tf_np, y_np, atol=1e-2)
def testFixed(self):
x = [5, 10, 23]
for dtype in [np.int32, np.int64]:
# Test scalar and vector versions.
for denom in [x[0], x]:
x_np = np.array(x, dtype=dtype)
with self.test_session(use_gpu=True):
x_tf = constant_op.constant(x_np, shape=x_np.shape)
y_tf = math_ops.mod(x_tf, denom)
y_tf_np = y_tf.eval()
y_np = np.mod(x_np, denom)
self.assertAllClose(y_tf_np, y_np)
class SquaredDifferenceTest(test_util.TensorFlowTestCase):
def testSquaredDifference(self):
for dtype in [np.int32, np.float16]:
x = np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype)
y = np.array([-3, -2, -1], dtype=dtype)
z = (x - y)*(x - y)
with self.test_session(use_gpu=True):
z_tf = math_ops.squared_difference(x, y).eval()
self.assertAllClose(z, z_tf)
class ScalarMulTest(test_util.TensorFlowTestCase):
def testAcceptsRefs(self):
var = variables.Variable(10)
result = math_ops.scalar_mul(3, var)
init = variables.global_variables_initializer()
with self.test_session(use_gpu=True) as sess:
sess.run(init)
self.assertEqual(30, result.eval())
def testAcceptsConstant(self):
const = constant_op.constant(10)
result = math_ops.scalar_mul(3, const)
with self.test_session(use_gpu=True):
self.assertEqual(30, result.eval())
def testAcceptsTensor(self):
tensor = array_ops.ones([10, 10])
result = math_ops.scalar_mul(3, tensor)
expected = array_ops.ones([10, 10]) * 3
with self.test_session(use_gpu=True):
self.assertAllEqual(expected.eval(), result.eval())
def testAcceptsIndexedSlices(self):
values = constant_op.constant([2, 3, 5, 7, 0, -1], shape=[3, 2])
indices = constant_op.constant([0, 2, 5])
x = math_ops.scalar_mul(-3, ops.IndexedSlices(values, indices))
with self.test_session(use_gpu=True):
self.assertAllEqual(x.values.eval(), [[-6, -9], [-15, -21], [0, 3]])
self.assertAllEqual(x.indices.eval(), [0, 2, 5])
class AccumulateNTest(test_util.TensorFlowTestCase):
def testFloat(self):
np.random.seed(12345)
x = [np.random.random((1, 2, 3, 4, 5)) - 0.5 for _ in range(5)]
tf_x = ops.convert_n_to_tensor(x)
for u in tf_x:
print("shape=%s" % u.get_shape())
with self.test_session(use_gpu=True):
self.assertAllClose(sum(x), math_ops.accumulate_n(tf_x).eval())
self.assertAllClose(x[0] * 5, math_ops.accumulate_n([tf_x[0]] * 5).eval())
def testInt(self):
np.random.seed(54321)
x = [np.random.randint(-128, 128, (5, 4, 3, 2, 1)) for _ in range(6)]
tf_x = ops.convert_n_to_tensor(x)
with self.test_session(use_gpu=True):
self.assertAllEqual(sum(x), math_ops.accumulate_n(tf_x).eval())
self.assertAllEqual(x[0] * 6, math_ops.accumulate_n([tf_x[0]] * 6).eval())
class DivAndModTest(test_util.TensorFlowTestCase):
# TODO(aselle): Test more types before exposing new division operators.
def intTestData(self):
nums = np.arange(-10, 10, 1).reshape(20, 1)
divs = np.arange(-3, 4, 2).reshape(1, 4)
return nums, divs
def floatTestData(self):
nums = np.arange(-10, 10, .25).reshape(80, 1)
divs = np.arange(-3, 0, .25).reshape(1, 12)
return nums, divs
def testFloorModInt(self):
nums, divs = self.intTestData()
with self.test_session():
# TODO(aselle): Change test to use % after switch
# tf_result = math_ops.floor_mod(nums, divs).eval()
tf_result = gen_math_ops.floor_mod(nums, divs).eval()
np_result = nums % divs
self.assertAllEqual(tf_result, np_result)
def testFloorModFloat(self):
nums, divs = self.floatTestData()
with self.test_session():
tf_result = math_ops.floor_mod(nums, divs).eval()
np_result = nums % divs
self.assertAllEqual(tf_result, np_result)
# TODO(aselle): put this test in once % switched to floormod
# tf2_result = (array_ops.constant(nums)
# % array_ops.constant(divs)).eval()
# self.assertAllEqual(tf2_result, tf_result)
def testDivideInt(self):
nums, divs = self.intTestData()
with self.test_session():
tf_result = math_ops.floor_div(nums, divs).eval()
np_result = nums // divs
self.assertAllEqual(tf_result, np_result)
# TODO(aselle): Put this test in once // is switched to floordiv
# tf2_result = (array_ops.constant(nums)
# // array_ops.constant(divs)).eval()
# self.assertAllEqual(tf2_result, tf_result)
def testConsistent(self):
nums, divs = self.intTestData()
with self.test_session():
tf_result = (
math_ops.floor_div(nums, divs) * divs + math_ops.floor_mod(nums, divs)
).eval()
tf_nums = array_ops.constant(nums)
tf_divs = array_ops.constant(divs)
tf2_result = (tf_nums // tf_divs * tf_divs + tf_nums % tf_divs).eval()
np_result = (nums // divs) * divs + (nums % divs)
self.assertAllEqual(tf_result, np_result)
self.assertAllEqual(tf_result, tf2_result)
if __name__ == "__main__":
googletest.main()