50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from sklearn import metrics, cross_validation
|
|
from tensorflow.contrib import learn
|
|
import h5py
|
|
|
|
# Load dataset.
|
|
iris = learn.datasets.load_dataset('iris')
|
|
X_train, X_test, y_train, y_test = cross_validation.train_test_split(iris.data, iris.target,
|
|
test_size=0.2, random_state=42)
|
|
|
|
# Note that we are saving and load iris data as h5 format as a simple demonstration here.
|
|
h5f = h5py.File('test_hdf5.h5', 'w')
|
|
h5f.create_dataset('X_train', data=X_train)
|
|
h5f.create_dataset('X_test', data=X_test)
|
|
h5f.create_dataset('y_train', data=y_train)
|
|
h5f.create_dataset('y_test', data=y_test)
|
|
h5f.close()
|
|
|
|
h5f = h5py.File('test_hdf5.h5', 'r')
|
|
X_train = h5f['X_train']
|
|
X_test = h5f['X_test']
|
|
y_train = h5f['y_train']
|
|
y_test = h5f['y_test']
|
|
|
|
# Build 3 layer DNN with 10, 20, 10 units respectively.
|
|
classifier = learn.TensorFlowDNNClassifier(hidden_units=[10, 20, 10],
|
|
n_classes=3, steps=200)
|
|
|
|
# Fit and predict.
|
|
classifier.fit(X_train, y_train)
|
|
score = metrics.accuracy_score(y_test, classifier.predict(X_test))
|
|
print('Accuracy: {0:f}'.format(score))
|
|
|