125 lines
4.3 KiB
C++
125 lines
4.3 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/compiler/xla/client/lib/qr.h"
|
|
|
|
#include "tensorflow/compiler/xla/array2d.h"
|
|
#include "tensorflow/compiler/xla/array3d.h"
|
|
#include "tensorflow/compiler/xla/client/lib/matrix.h"
|
|
#include "tensorflow/compiler/xla/client/xla_builder.h"
|
|
#include "tensorflow/compiler/xla/literal.h"
|
|
#include "tensorflow/compiler/xla/statusor.h"
|
|
#include "tensorflow/compiler/xla/test.h"
|
|
#include "tensorflow/compiler/xla/tests/client_library_test_base.h"
|
|
#include "tensorflow/compiler/xla/tests/literal_test_util.h"
|
|
#include "tensorflow/compiler/xla/tests/test_macros.h"
|
|
#include "tensorflow/compiler/xla/xla_data.pb.h"
|
|
#include "tensorflow/core/lib/core/status_test_util.h"
|
|
#include "tensorflow/core/platform/tf32_utils.h"
|
|
|
|
namespace {
|
|
|
|
using QrTest = xla::ClientLibraryTestBase;
|
|
|
|
XLA_TEST_F(QrTest, Simple) {
|
|
tensorflow::allow_tf32_execution(false); // Test fails with tf32 allowed
|
|
xla::XlaBuilder builder(TestName());
|
|
|
|
xla::Array2D<float> a_vals({
|
|
{4, 6, 8, 10},
|
|
{6, 45, 54, 63},
|
|
{8, 54, 146, 166},
|
|
{10, 63, 166, 310},
|
|
});
|
|
|
|
xla::XlaOp a;
|
|
auto a_data = CreateR2Parameter<float>(a_vals, 0, "a", &builder, &a);
|
|
TF_ASSERT_OK_AND_ASSIGN(
|
|
auto result,
|
|
xla::QRDecomposition(a, /*full_matrices=*/true, /*block_size=*/2));
|
|
|
|
// Verifies that the decomposition composes back to the original matrix.
|
|
//
|
|
// This isn't a terribly demanding test, (e.g., we should verify that Q is
|
|
// orthonormal and R is upper-triangular) but it's awkward to write such tests
|
|
// without more linear algebra libraries. It's easier to test the numerics
|
|
// from Python, anyway, where we have access to numpy and scipy.
|
|
xla::BatchDot(result.q, result.r, xla::PrecisionConfig::HIGHEST);
|
|
|
|
ComputeAndCompareR2<float>(&builder, a_vals, {a_data.get()},
|
|
xla::ErrorSpec(1e-4, 1e-4));
|
|
}
|
|
|
|
XLA_TEST_F(QrTest, ZeroDiagonal) {
|
|
tensorflow::allow_tf32_execution(false); // Test fails with tf32 allowed
|
|
xla::XlaBuilder builder(TestName());
|
|
|
|
xla::Array2D<float> a_vals({
|
|
{0, 1, 1},
|
|
{1, 0, 1},
|
|
{1, 1, 0},
|
|
});
|
|
|
|
xla::XlaOp a;
|
|
auto a_data = CreateR2Parameter<float>(a_vals, 0, "a", &builder, &a);
|
|
TF_ASSERT_OK_AND_ASSIGN(
|
|
auto result,
|
|
xla::QRDecomposition(a, /*full_matrices=*/true, /*block_size=*/8));
|
|
|
|
// Verifies that the decomposition composes back to the original matrix.
|
|
//
|
|
// This isn't a terribly demanding test, (e.g., we should verify that Q is
|
|
// orthonormal and R is upper-triangular) but it's awkward to write such tests
|
|
// without more linear algebra libraries. It's easier to test the numerics
|
|
// from Python, anyway, where we have access to numpy and scipy.
|
|
xla::BatchDot(result.q, result.r, xla::PrecisionConfig::HIGHEST);
|
|
|
|
ComputeAndCompareR2<float>(&builder, a_vals, {a_data.get()},
|
|
xla::ErrorSpec(1e-4, 1e-4));
|
|
}
|
|
|
|
XLA_TEST_F(QrTest, SimpleBatched) {
|
|
tensorflow::allow_tf32_execution(false); // Test fails with tf32 allowed
|
|
xla::XlaBuilder builder(TestName());
|
|
|
|
xla::Array3D<float> a_vals({
|
|
{
|
|
{4, 6, 8, 10},
|
|
{6, 45, 54, 63},
|
|
{8, 54, 146, 166},
|
|
{10, 63, 166, 310},
|
|
},
|
|
{
|
|
{16, 24, 8, 12},
|
|
{24, 61, 82, 48},
|
|
{8, 82, 456, 106},
|
|
{12, 48, 106, 62},
|
|
},
|
|
});
|
|
|
|
xla::XlaOp a;
|
|
auto a_data = CreateR3Parameter<float>(a_vals, 0, "a", &builder, &a);
|
|
TF_ASSERT_OK_AND_ASSIGN(
|
|
auto result,
|
|
xla::QRDecomposition(a, /*full_matrices=*/true, /*block_size=*/2));
|
|
|
|
xla::BatchDot(result.q, result.r, xla::PrecisionConfig::HIGHEST);
|
|
|
|
ComputeAndCompareR3<float>(&builder, a_vals, {a_data.get()},
|
|
xla::ErrorSpec(1e-4, 1e-4));
|
|
}
|
|
|
|
} // namespace
|