STT-tensorflow/tensorflow/examples/tutorials/estimators/abalone.py
Vijay Vasudevan 963674de71 More conversions of flags library to argparse.
Add argv to benchmark/main function so they can handle passing
command line arguments.
Change: 144254260
2017-01-11 15:08:53 -08:00

156 lines
5.2 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DNNRegressor with custom estimator for abalone dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tempfile
from six.moves import urllib
import numpy as np
import tensorflow as tf
FLAGS = None
tf.logging.set_verbosity(tf.logging.INFO)
# Learning rate for the model
LEARNING_RATE = 0.001
def maybe_download(train_data, test_data, predict_data):
"""Maybe downloads training data and returns train and test file names."""
if train_data:
train_file_name = train_data
else:
train_file = tempfile.NamedTemporaryFile(delete=False)
urllib.request.urlretrieve(
"http://download.tensorflow.org/data/abalone_train.csv",
train_file.name) # pylint: disable=line-too-long
train_file_name = train_file.name
train_file.close()
print("Training data is downloaded to %s" % train_file_name)
if test_data:
test_file_name = test_data
else:
test_file = tempfile.NamedTemporaryFile(delete=False)
urllib.request.urlretrieve(
"http://download.tensorflow.org/data/abalone_test.csv", test_file.name) # pylint: disable=line-too-long
test_file_name = test_file.name
test_file.close()
print("Test data is downloaded to %s" % test_file_name)
if predict_data:
predict_file_name = predict_data
else:
predict_file = tempfile.NamedTemporaryFile(delete=False)
urllib.request.urlretrieve(
"http://download.tensorflow.org/data/abalone_predict.csv",
predict_file.name) # pylint: disable=line-too-long
predict_file_name = predict_file.name
predict_file.close()
print("Prediction data is downloaded to %s" % predict_file_name)
return train_file_name, test_file_name, predict_file_name
# pylint: disable=unused-argument
def model_fn(features, targets, mode, params):
"""Model function for Estimator."""
# Connect the first hidden layer to input layer
# (features) with relu activation
first_hidden_layer = tf.contrib.layers.relu(features, 10)
# Connect the second hidden layer to first hidden layer with relu
second_hidden_layer = tf.contrib.layers.relu(first_hidden_layer, 10)
# Connect the output layer to second hidden layer (no activation fn)
output_layer = tf.contrib.layers.linear(second_hidden_layer, 1)
# Reshape output layer to 1-dim Tensor to return predictions
predictions = tf.reshape(output_layer, [-1])
predictions_dict = {"ages": predictions}
# Calculate loss using mean squared error
loss = tf.contrib.losses.mean_squared_error(predictions, targets)
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
learning_rate=params["learning_rate"],
optimizer="SGD")
return predictions_dict, loss, train_op
def main(unused_argv):
# Load datasets
abalone_train, abalone_test, abalone_predict = maybe_download(
FLAGS.train_data, FLAGS.test_data, FLAGS.predict_data)
# Training examples
training_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=abalone_train, target_dtype=np.int, features_dtype=np.float64)
# Test examples
test_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=abalone_test, target_dtype=np.int, features_dtype=np.float64)
# Set of 7 examples for which to predict abalone ages
prediction_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=abalone_predict, target_dtype=np.int, features_dtype=np.float64)
# Set model params
model_params = {"learning_rate": LEARNING_RATE}
# Build 2 layer fully connected DNN with 10, 10 units respectively.
nn = tf.contrib.learn.Estimator(model_fn=model_fn, params=model_params)
# Fit
nn.fit(x=training_set.data, y=training_set.target, steps=5000)
# Score accuracy
ev = nn.evaluate(x=test_set.data, y=test_set.target, steps=1)
loss_score = ev["loss"]
print("Loss: %s" % loss_score)
# Print out predictions
predictions = nn.predict(x=prediction_set.data, as_iterable=True)
for i, p in enumerate(predictions):
print("Prediction %s: %s" % (i + 1, p["ages"]))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--train_data", type=str, default="", help="Path to the training data.")
parser.add_argument(
"--test_data", type=str, default="", help="Path to the test data.")
parser.add_argument(
"--predict_data",
type=str,
default="",
help="Path to the prediction data.")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)