V2 ops always align the diagonals to the left (LEFT_LEFT) in the compact format. V3 ops support 4 alignments: RIGHT_LEFT, LEFT_RIGHT, LEFT_LEFT, and RIGHT_RIGHT. We would like to use RIGHT_LEFT as the default alignment. This contradicts with v2's behavior so we need new a version. V2 has never been exposed to the public APIs. We will skip V2 and go from V1 to V3 directly. V3 features are currently under forward compatibility guards and will be enabled automatically in ~3 weeks from now. This commit contains - V3 API definitions. - Modifications to C++ Matrix{Diag,SetDiag,DiagPart}Op kernels (CPU, GPU, XLA) and shape inference functions to support v3. - Additional tests and gradient implementations in Python for v3. - Pfor and TFLite TOCO converters for v3. - The TFLite MLIR converter for MatrixDiagV3 is intentionally left out because of an MLIR test infrastructure issue and will be added in a separate commit. Notes: - Python changes cannot be in a separate follow-up commit because all kernel tests are in Python. (No C++ tests.) - All three ops have to be in the same commit because their gradients call each other. PiperOrigin-RevId: 280527550 Change-Id: I88e91abab5c4b50419204807ede4fa60657f048a
5307 lines
187 KiB
Python
5307 lines
187 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
# Tests for this file live in python/kernel_tests/array_ops_test.py
|
|
"""Support for manipulating tensors."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import six
|
|
|
|
from tensorflow.python.compat import compat
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import common_shapes
|
|
from tensorflow.python.framework import composite_tensor
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import sparse_tensor
|
|
from tensorflow.python.framework import tensor_shape
|
|
from tensorflow.python.framework import tensor_util
|
|
# 'Constant' gets imported in the module 'array_ops'.
|
|
from tensorflow.python.framework.constant_op import constant
|
|
from tensorflow.python.ops import gen_array_ops
|
|
from tensorflow.python.ops import gen_math_ops
|
|
# go/tf-wildcard-import
|
|
# pylint: disable=wildcard-import
|
|
from tensorflow.python.ops.gen_array_ops import *
|
|
from tensorflow.python.ops.gen_array_ops import reverse_v2 as reverse # pylint: disable=unused-import
|
|
from tensorflow.python.util import deprecation
|
|
from tensorflow.python.util import dispatch
|
|
from tensorflow.python.util import nest
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
# pylint: enable=wildcard-import
|
|
|
|
# Used for slicing to specify a new 1 size dimension
|
|
newaxis = None
|
|
tf_export("newaxis").export_constant(__name__, "newaxis")
|
|
|
|
# We override the 'slice' for the "slice" op, so we keep python's
|
|
# existing 'slice' for later use in this module.
|
|
_BaseSlice = slice
|
|
|
|
# LINT.IfChange
|
|
matrix_diag_v3_forward_compat_date = (2019, 12, 6)
|
|
# LINT.ThenChange(
|
|
# //tensorflow/compiler/tests/matrix_diag_ops_test.py,
|
|
# //tensorflow/python/kernel_tests/diag_op_test.py,
|
|
# //tensorflow/python/ops/parallel_for/array_test.py
|
|
# )
|
|
|
|
@tf_export("reshape", v1=["reshape", "manip.reshape"])
|
|
def reshape(tensor, shape, name=None): # pylint: disable=redefined-outer-name
|
|
r"""Reshapes a tensor.
|
|
|
|
Given `tensor`, this operation returns a new `tf.Tensor` that has the same
|
|
values as `tensor` in the same order, except with a new shape given by
|
|
`shape`.
|
|
|
|
>>> t1 = [[1, 2, 3],
|
|
... [4, 5, 6]]
|
|
>>> print(tf.shape(t1).numpy())
|
|
[2 3]
|
|
>>> t2 = tf.reshape(t1, [6])
|
|
>>> t2
|
|
<tf.Tensor: shape=(6,), dtype=int32,
|
|
numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
|
|
>>> tf.reshape(t2, [3, 2])
|
|
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
|
|
array([[1, 2],
|
|
[3, 4],
|
|
[5, 6]], dtype=int32)>
|
|
|
|
The `tf.reshape` does not change the order of or the total number of elements
|
|
in the tensor, and so it can reuse the underlying data buffer. This makes it
|
|
a fast operation independent of how big of a tensor it is operating on.
|
|
|
|
>>> tf.reshape([1, 2, 3], [2, 2])
|
|
Traceback (most recent call last):
|
|
...
|
|
InvalidArgumentError: Input to reshape is a tensor with 3 values, but the
|
|
requested shape has 4
|
|
|
|
To instead reorder the data to rearrange the dimensions of a tensor, see
|
|
`tf.transpose`.
|
|
|
|
>>> t = [[1, 2, 3],
|
|
... [4, 5, 6]]
|
|
>>> tf.reshape(t, [3, 2]).numpy()
|
|
array([[1, 2],
|
|
[3, 4],
|
|
[5, 6]], dtype=int32)
|
|
>>> tf.transpose(t, perm=[1, 0]).numpy()
|
|
array([[1, 4],
|
|
[2, 5],
|
|
[3, 6]], dtype=int32)
|
|
|
|
If one component of `shape` is the special value -1, the size of that
|
|
dimension is computed so that the total size remains constant. In particular,
|
|
a `shape` of `[-1]` flattens into 1-D. At most one component of `shape` can
|
|
be -1.
|
|
|
|
>>> t = [[1, 2, 3],
|
|
... [4, 5, 6]]
|
|
>>> tf.reshape(t, [-1])
|
|
<tf.Tensor: shape=(6,), dtype=int32,
|
|
numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
|
|
>>> tf.reshape(t, [3, -1])
|
|
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
|
|
array([[1, 2],
|
|
[3, 4],
|
|
[5, 6]], dtype=int32)>
|
|
>>> tf.reshape(t, [-1, 2])
|
|
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
|
|
array([[1, 2],
|
|
[3, 4],
|
|
[5, 6]], dtype=int32)>
|
|
|
|
`tf.reshape(t, [])` reshapes a tensor `t` with one element to a scalar.
|
|
|
|
>>> tf.reshape([7], []).numpy()
|
|
7
|
|
|
|
More examples:
|
|
|
|
>>> t = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
>>> print(tf.shape(t).numpy())
|
|
[9]
|
|
>>> tf.reshape(t, [3, 3])
|
|
<tf.Tensor: shape=(3, 3), dtype=int32, numpy=
|
|
array([[1, 2, 3],
|
|
[4, 5, 6],
|
|
[7, 8, 9]], dtype=int32)>
|
|
|
|
>>> t = [[[1, 1], [2, 2]],
|
|
... [[3, 3], [4, 4]]]
|
|
>>> print(tf.shape(t).numpy())
|
|
[2 2 2]
|
|
>>> tf.reshape(t, [2, 4])
|
|
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
|
|
array([[1, 1, 2, 2],
|
|
[3, 3, 4, 4]], dtype=int32)>
|
|
|
|
>>> t = [[[1, 1, 1],
|
|
... [2, 2, 2]],
|
|
... [[3, 3, 3],
|
|
... [4, 4, 4]],
|
|
... [[5, 5, 5],
|
|
... [6, 6, 6]]]
|
|
>>> print(tf.shape(t).numpy())
|
|
[3 2 3]
|
|
>>> # Pass '[-1]' to flatten 't'.
|
|
>>> tf.reshape(t, [-1])
|
|
<tf.Tensor: shape=(18,), dtype=int32,
|
|
numpy=array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6],
|
|
dtype=int32)>
|
|
>>> # -- Using -1 to infer the shape --
|
|
>>> # Here -1 is inferred to be 9:
|
|
>>> tf.reshape(t, [2, -1])
|
|
<tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
|
array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
|
|
[4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)>
|
|
>>> # -1 is inferred to be 2:
|
|
>>> tf.reshape(t, [-1, 9])
|
|
<tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
|
array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
|
|
[4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)>
|
|
>>> # -1 is inferred to be 3:
|
|
>>> tf.reshape(t, [ 2, -1, 3])
|
|
<tf.Tensor: shape=(2, 3, 3), dtype=int32, numpy=
|
|
array([[[1, 1, 1],
|
|
[2, 2, 2],
|
|
[3, 3, 3]],
|
|
[[4, 4, 4],
|
|
[5, 5, 5],
|
|
[6, 6, 6]]], dtype=int32)>
|
|
|
|
Args:
|
|
tensor: A `Tensor`.
|
|
shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
|
|
Defines the shape of the output tensor.
|
|
name: Optional string. A name for the operation.
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `tensor`.
|
|
"""
|
|
result = gen_array_ops.reshape(tensor, shape, name)
|
|
tensor_util.maybe_set_static_shape(result, shape)
|
|
return result
|
|
|
|
|
|
@tf_export("fill")
|
|
def fill(dims, value, name=None):
|
|
r"""Creates a tensor filled with a scalar value.
|
|
|
|
This operation creates a tensor of shape `dims` and fills it with `value`.
|
|
|
|
For example:
|
|
|
|
```
|
|
# Output tensor has shape [2, 3].
|
|
fill([2, 3], 9) ==> [[9, 9, 9]
|
|
[9, 9, 9]]
|
|
```
|
|
|
|
`tf.fill` differs from `tf.constant` in a few ways:
|
|
|
|
* `tf.fill` only supports scalar contents, whereas `tf.constant` supports
|
|
Tensor values.
|
|
* `tf.fill` creates an Op in the computation graph that constructs the
|
|
actual
|
|
Tensor value at runtime. This is in contrast to `tf.constant` which embeds
|
|
the entire Tensor into the graph with a `Const` node.
|
|
* Because `tf.fill` evaluates at graph runtime, it supports dynamic shapes
|
|
based on other runtime Tensors, unlike `tf.constant`.
|
|
|
|
Args:
|
|
dims: A `Tensor`. Must be one of the following types: `int32`, `int64`. 1-D.
|
|
Represents the shape of the output tensor.
|
|
value: A `Tensor`. 0-D (scalar). Value to fill the returned tensor.
|
|
@compatibility(numpy) Equivalent to np.full @end_compatibility
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `value`.
|
|
"""
|
|
result = gen_array_ops.fill(dims, value, name=name)
|
|
tensor_util.maybe_set_static_shape(result, dims)
|
|
return result
|
|
|
|
|
|
@tf_export("identity")
|
|
@dispatch.add_dispatch_support
|
|
def identity(input, name=None): # pylint: disable=redefined-builtin
|
|
r"""Return a tensor with the same shape and contents as input.
|
|
|
|
For example:
|
|
|
|
```python
|
|
import tensorflow as tf
|
|
val0 = tf.ones((1,), dtype=tf.float32)
|
|
a = tf.atan2(val0, val0)
|
|
a_identity = tf.identity(a)
|
|
print(a.numpy()) #[0.7853982]
|
|
print(a_identity.numpy()) #[0.7853982]
|
|
```
|
|
|
|
Args:
|
|
input: A `Tensor`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `input`.
|
|
"""
|
|
if isinstance(input, composite_tensor.CompositeTensor):
|
|
return nest.map_structure(identity, input, expand_composites=True)
|
|
if context.executing_eagerly() and not hasattr(input, "graph"):
|
|
# Make sure we get an input with handle data attached from resource
|
|
# variables. Variables have correct handle data when graph building.
|
|
input = ops.convert_to_tensor(input)
|
|
ret = gen_array_ops.identity(input, name=name)
|
|
# Propagate handle data for happier shape inference for resource variables.
|
|
if hasattr(input, "_handle_data"):
|
|
ret._handle_data = input._handle_data # pylint: disable=protected-access
|
|
return ret
|
|
|
|
|
|
# pylint: disable=redefined-builtin,protected-access
|
|
@tf_export(v1=["expand_dims"])
|
|
@dispatch.add_dispatch_support
|
|
@deprecation.deprecated_args(None, "Use the `axis` argument instead", "dim")
|
|
def expand_dims(input, axis=None, name=None, dim=None):
|
|
"""Inserts a dimension of 1 into a tensor's shape.
|
|
|
|
Given a tensor `input`, this operation inserts a dimension of 1 at the
|
|
dimension index `axis` of `input`'s shape. The dimension index `axis` starts
|
|
at zero; if you specify a negative number for `axis` it is counted backward
|
|
from the end.
|
|
|
|
This operation is useful if you want to add a batch dimension to a single
|
|
element. For example, if you have a single image of shape `[height, width,
|
|
channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
|
|
which will make the shape `[1, height, width, channels]`.
|
|
|
|
Other examples:
|
|
|
|
```python
|
|
# 't' is a tensor of shape [2]
|
|
tf.shape(tf.expand_dims(t, 0)) # [1, 2]
|
|
tf.shape(tf.expand_dims(t, 1)) # [2, 1]
|
|
tf.shape(tf.expand_dims(t, -1)) # [2, 1]
|
|
|
|
# 't2' is a tensor of shape [2, 3, 5]
|
|
tf.shape(tf.expand_dims(t2, 0)) # [1, 2, 3, 5]
|
|
tf.shape(tf.expand_dims(t2, 2)) # [2, 3, 1, 5]
|
|
tf.shape(tf.expand_dims(t2, 3)) # [2, 3, 5, 1]
|
|
```
|
|
|
|
This operation requires that:
|
|
|
|
`-1-input.dims() <= dim <= input.dims()`
|
|
|
|
This operation is related to `squeeze()`, which removes dimensions of
|
|
size 1.
|
|
|
|
Args:
|
|
input: A `Tensor`.
|
|
axis: 0-D (scalar). Specifies the dimension index at which to expand the
|
|
shape of `input`. Must be in the range `[-rank(input) - 1, rank(input)]`.
|
|
name: The name of the output `Tensor` (optional).
|
|
dim: 0-D (scalar). Equivalent to `axis`, to be deprecated.
|
|
|
|
Returns:
|
|
A `Tensor` with the same data as `input`, but its shape has an additional
|
|
dimension of size 1 added.
|
|
|
|
Raises:
|
|
ValueError: if either both or neither of `dim` and `axis` are specified.
|
|
"""
|
|
axis = deprecation.deprecated_argument_lookup("axis", axis, "dim", dim)
|
|
if axis is None:
|
|
raise ValueError("Must specify an axis argument to tf.expand_dims()")
|
|
return expand_dims_v2(input, axis, name)
|
|
|
|
|
|
@tf_export("expand_dims", v1=[])
|
|
@dispatch.add_dispatch_support
|
|
def expand_dims_v2(input, axis, name=None):
|
|
"""Returns a tensor with an additional dimension inserted at index `axis`.
|
|
|
|
Given a tensor `input`, this operation inserts a dimension of size 1 at the
|
|
dimension index `axis` of `input`'s shape. The dimension index `axis` starts
|
|
at zero; if you specify a negative number for `axis` it is counted backward
|
|
from the end.
|
|
|
|
This operation is useful if you want to add a batch dimension to a single
|
|
element. For example, if you have a single image of shape `[height, width,
|
|
channels]`, you can make it a batch of one image with `expand_dims(image, 0)`,
|
|
which will make the shape `[1, height, width, channels]`.
|
|
|
|
Examples:
|
|
|
|
>>> t = [[1, 2, 3],[4, 5, 6]] # shape [2, 3]
|
|
|
|
>>> tf.expand_dims(t, 0)
|
|
<tf.Tensor: shape=(1, 2, 3), dtype=int32, numpy=
|
|
array([[[1, 2, 3],
|
|
[4, 5, 6]]], dtype=int32)>
|
|
|
|
>>> tf.expand_dims(t, 1)
|
|
<tf.Tensor: shape=(2, 1, 3), dtype=int32, numpy=
|
|
array([[[1, 2, 3]],
|
|
[[4, 5, 6]]], dtype=int32)>
|
|
|
|
>>> tf.expand_dims(t, 2)
|
|
<tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy=
|
|
array([[[1],
|
|
[2],
|
|
[3]],
|
|
[[4],
|
|
[5],
|
|
[6]]], dtype=int32)>
|
|
|
|
>>> tf.expand_dims(t, -1) # Last dimension index. In this case, same as 2.
|
|
<tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy=
|
|
array([[[1],
|
|
[2],
|
|
[3]],
|
|
[[4],
|
|
[5],
|
|
[6]]], dtype=int32)>
|
|
|
|
This operation is related to:
|
|
|
|
* `tf.squeeze`, which removes dimensions of size 1.
|
|
* `tf.reshape`, which provides more flexible reshaping capability
|
|
|
|
Args:
|
|
input: A `Tensor`.
|
|
axis: Integer specifying the dimension index at which to expand the
|
|
shape of `input`. Given an input of D dimensions, `axis` must be in range
|
|
`[-(D+1), D]` (inclusive).
|
|
name: Optional string. The name of the output `Tensor`.
|
|
|
|
Returns:
|
|
A tensor with the same data as `input`, with an additional dimension
|
|
inserted at the index specified by `axis`.
|
|
|
|
Raises:
|
|
ValueError: If `axis` is not specified.
|
|
InvalidArgumentError: If `axis` is out of range `[-(D+1), D]`.
|
|
"""
|
|
return gen_array_ops.expand_dims(input, axis, name)
|
|
|
|
|
|
# pylint: enable=redefined-builtin,protected-access
|
|
|
|
|
|
# Aliases for some automatically-generated names.
|
|
# pylint: disable=protected-access
|
|
@deprecation.deprecated("2016-11-30",
|
|
"This op will be removed after the deprecation date. "
|
|
"Please switch to tf.setdiff1d().")
|
|
def listdiff(x, y, out_idx=None, name=None):
|
|
return gen_array_ops.list_diff(x, y, out_idx, name)
|
|
|
|
|
|
listdiff.__doc__ = gen_array_ops.list_diff.__doc__ + "\n" + listdiff.__doc__
|
|
|
|
# pylint: enable=protected-access
|
|
|
|
|
|
# pylint: disable=undefined-variable
|
|
@deprecation.deprecated("2018-11-30",
|
|
"This op will be removed after the deprecation date. "
|
|
"Please switch to tf.sets.difference().")
|
|
@tf_export(v1=["setdiff1d"])
|
|
def setdiff1d(x, y, index_dtype=dtypes.int32, name=None):
|
|
return gen_array_ops.list_diff(x, y, index_dtype, name)
|
|
|
|
|
|
setdiff1d.__doc__ = gen_array_ops.list_diff.__doc__
|
|
|
|
|
|
@tf_export("broadcast_dynamic_shape")
|
|
def broadcast_dynamic_shape(shape_x, shape_y):
|
|
"""Computes the shape of a broadcast given symbolic shapes.
|
|
|
|
When shape_x and shape_y are Tensors representing shapes (i.e. the result of
|
|
calling tf.shape on another Tensor) this computes a Tensor which is the shape
|
|
of the result of a broadcasting op applied in tensors of shapes shape_x and
|
|
shape_y.
|
|
|
|
For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a
|
|
Tensor whose value is [5, 2, 3].
|
|
|
|
This is useful when validating the result of a broadcasting operation when the
|
|
tensors do not have statically known shapes.
|
|
|
|
Args:
|
|
shape_x: A rank 1 integer `Tensor`, representing the shape of x.
|
|
shape_y: A rank 1 integer `Tensor`, representing the shape of y.
|
|
|
|
Returns:
|
|
A rank 1 integer `Tensor` representing the broadcasted shape.
|
|
"""
|
|
return gen_array_ops.broadcast_args(shape_x, shape_y)
|
|
|
|
|
|
@tf_export("broadcast_static_shape")
|
|
def broadcast_static_shape(shape_x, shape_y):
|
|
"""Computes the shape of a broadcast given known shapes.
|
|
|
|
When shape_x and shape_y are fully known TensorShapes this computes a
|
|
TensorShape which is the shape of the result of a broadcasting op applied in
|
|
tensors of shapes shape_x and shape_y.
|
|
|
|
For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a
|
|
TensorShape whose value is [5, 2, 3].
|
|
|
|
This is useful when validating the result of a broadcasting operation when the
|
|
tensors have statically known shapes.
|
|
|
|
Args:
|
|
shape_x: A `TensorShape`
|
|
shape_y: A `TensorShape`
|
|
|
|
Returns:
|
|
A `TensorShape` representing the broadcasted shape.
|
|
|
|
Raises:
|
|
ValueError: If the two shapes can not be broadcasted.
|
|
"""
|
|
return common_shapes.broadcast_shape(shape_x, shape_y)
|
|
|
|
|
|
@tf_export("shape", v1=[])
|
|
def shape_v2(input, out_type=dtypes.int32, name=None):
|
|
# pylint: disable=redefined-builtin
|
|
"""Returns the shape of a tensor.
|
|
|
|
This operation returns a 1-D integer tensor representing the shape of `input`.
|
|
|
|
For example:
|
|
|
|
>>> t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
|
|
>>> tf.shape(t)
|
|
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([2, 2, 3], dtype=int32)>
|
|
>>> tf.shape(t).numpy()
|
|
array([2, 2, 3], dtype=int32)
|
|
|
|
Note: When using symbolic tensors, such as when using the Keras functional
|
|
API, tf.shape() will return the shape of the symbolic tensor.
|
|
|
|
>>> a = tf.keras.layers.Input((None, 10))
|
|
>>> tf.shape(a)
|
|
<tf.Tensor ... shape=(3,) dtype=int32>
|
|
|
|
In these cases, using `tf.Tensor.shape` will return more informative results.
|
|
|
|
>>> a.shape
|
|
TensorShape([None, None, 10])
|
|
|
|
Args:
|
|
input: A `Tensor` or `SparseTensor`.
|
|
out_type: (Optional) The specified output type of the operation (`int32` or
|
|
`int64`). Defaults to `tf.int32`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` of type `out_type`.
|
|
"""
|
|
return shape(input, name, out_type)
|
|
|
|
|
|
@tf_export(v1=["shape"])
|
|
def shape(input, name=None, out_type=dtypes.int32):
|
|
# pylint: disable=redefined-builtin
|
|
"""Returns the shape of a tensor.
|
|
|
|
This operation returns a 1-D integer tensor representing the shape of `input`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
|
|
tf.shape(t) # [2, 2, 3]
|
|
```
|
|
|
|
Args:
|
|
input: A `Tensor` or `SparseTensor`.
|
|
name: A name for the operation (optional).
|
|
out_type: (Optional) The specified output type of the operation (`int32` or
|
|
`int64`). Defaults to `tf.int32`.
|
|
|
|
Returns:
|
|
A `Tensor` of type `out_type`.
|
|
"""
|
|
return shape_internal(input, name, optimize=True, out_type=out_type)
|
|
|
|
|
|
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
|
|
# pylint: disable=redefined-builtin
|
|
"""Returns the shape of a tensor.
|
|
|
|
Args:
|
|
input: A `Tensor` or `SparseTensor`.
|
|
name: A name for the operation (optional).
|
|
optimize: if true, encode the shape as a constant when possible.
|
|
out_type: (Optional) The specified output type of the operation (`int32` or
|
|
`int64`). Defaults to tf.int32.
|
|
|
|
Returns:
|
|
A `Tensor` of type `out_type`.
|
|
|
|
"""
|
|
with ops.name_scope(name, "Shape", [input]) as name:
|
|
if isinstance(
|
|
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
|
|
return gen_math_ops.cast(input.dense_shape, out_type)
|
|
else:
|
|
if not context.executing_eagerly():
|
|
input = ops.convert_to_tensor(input)
|
|
input_shape = input.get_shape()
|
|
if optimize and input_shape.is_fully_defined():
|
|
return constant(input_shape.as_list(), out_type, name=name)
|
|
return gen_array_ops.shape(input, name=name, out_type=out_type)
|
|
|
|
|
|
@tf_export("shape_n")
|
|
def shape_n(input, out_type=dtypes.int32, name=None):
|
|
# pylint: disable=redefined-builtin
|
|
"""Returns shape of tensors.
|
|
|
|
Args:
|
|
input: A list of at least 1 `Tensor` object with the same type.
|
|
out_type: The specified output type of the operation (`int32` or `int64`).
|
|
Defaults to `tf.int32`(optional).
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A list with the same length as `input` of `Tensor` objects with
|
|
type `out_type`.
|
|
"""
|
|
|
|
return gen_array_ops.shape_n(input, out_type=out_type, name=name)
|
|
|
|
|
|
@tf_export("size", v1=[])
|
|
@dispatch.add_dispatch_support
|
|
def size_v2(input, out_type=dtypes.int32, name=None):
|
|
# pylint: disable=redefined-builtin
|
|
return size(input, name, out_type)
|
|
|
|
|
|
@tf_export(v1=["size"])
|
|
@dispatch.add_dispatch_support
|
|
def size(input, name=None, out_type=dtypes.int32):
|
|
# pylint: disable=redefined-builtin
|
|
"""Returns the size of a tensor.
|
|
|
|
Returns a 0-D `Tensor` representing the number of elements in `input`
|
|
of type `out_type`. Defaults to tf.int32.
|
|
|
|
For example:
|
|
|
|
```python
|
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
|
|
tf.size(t) # 12
|
|
```
|
|
|
|
Args:
|
|
input: A `Tensor` or `SparseTensor`.
|
|
name: A name for the operation (optional).
|
|
out_type: (Optional) The specified non-quantized numeric output type of the
|
|
operation. Defaults to `tf.int32`.
|
|
|
|
Returns:
|
|
A `Tensor` of type `out_type`. Defaults to `tf.int32`.
|
|
|
|
@compatibility(numpy)
|
|
Equivalent to np.size()
|
|
@end_compatibility
|
|
"""
|
|
return size_internal(input, name, optimize=True, out_type=out_type)
|
|
|
|
|
|
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
|
|
# pylint: disable=redefined-builtin,protected-access
|
|
"""Returns the size of a tensor.
|
|
|
|
Args:
|
|
input: A `Tensor` or `SparseTensor`.
|
|
name: A name for the operation (optional).
|
|
optimize: if true, encode the size as a constant when possible.
|
|
out_type: (Optional) The specified non-quantized numeric output type of the
|
|
operation. Defaults to `tf.int32`.
|
|
|
|
Returns:
|
|
A `Tensor` of type `out_type`. Defaults to `tf.int32`.
|
|
"""
|
|
if (context.executing_eagerly() and not hasattr(input, "graph") and
|
|
not isinstance(
|
|
input,
|
|
(sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue))):
|
|
input = ops.convert_to_tensor(input)
|
|
np_out_type = out_type.as_numpy_dtype
|
|
num_elements = np.prod(input._shape_tuple(), dtype=np_out_type) # pylint: disable=protected-access
|
|
return ops.convert_to_tensor(num_elements, dtype=out_type)
|
|
with ops.name_scope(name, "Size", [input]) as name:
|
|
if isinstance(
|
|
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
|
|
return gen_math_ops.prod(
|
|
gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
|
|
else:
|
|
input = ops.convert_to_tensor(input)
|
|
input_shape = input.get_shape()
|
|
if optimize:
|
|
if input_shape.is_fully_defined():
|
|
return constant(input_shape.num_elements(), out_type, name=name)
|
|
if input_shape.dims and any(dim == 0 for dim in input_shape.dims):
|
|
return constant(0, out_type, name=name)
|
|
return gen_array_ops.size(input, name=name, out_type=out_type)
|
|
|
|
|
|
@tf_export("rank")
|
|
@dispatch.add_dispatch_support
|
|
def rank(input, name=None):
|
|
# pylint: disable=redefined-builtin
|
|
"""Returns the rank of a tensor.
|
|
|
|
Returns a 0-D `int32` `Tensor` representing the rank of `input`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
# shape of tensor 't' is [2, 2, 3]
|
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
|
|
tf.rank(t) # 3
|
|
```
|
|
|
|
**Note**: The rank of a tensor is not the same as the rank of a matrix. The
|
|
rank of a tensor is the number of indices required to uniquely select each
|
|
element of the tensor. Rank is also known as "order", "degree", or "ndims."
|
|
|
|
Args:
|
|
input: A `Tensor` or `SparseTensor`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` of type `int32`.
|
|
|
|
@compatibility(numpy)
|
|
Equivalent to np.ndim
|
|
@end_compatibility
|
|
"""
|
|
return rank_internal(input, name, optimize=True)
|
|
|
|
|
|
def rank_internal(input, name=None, optimize=True):
|
|
# pylint: disable=redefined-builtin
|
|
"""Returns the rank of a tensor.
|
|
|
|
Args:
|
|
input: A `Tensor` or `SparseTensor`.
|
|
name: A name for the operation (optional).
|
|
optimize: if true, encode the rank as a constant when possible.
|
|
|
|
Returns:
|
|
A `Tensor` of type `int32`.
|
|
"""
|
|
with ops.name_scope(name, "Rank", [input]) as name:
|
|
if isinstance(
|
|
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
|
|
return gen_array_ops.size(input.dense_shape, name=name)
|
|
else:
|
|
input = ops.convert_to_tensor(input)
|
|
input_shape = input.get_shape()
|
|
if optimize and input_shape.ndims is not None:
|
|
return constant(input_shape.ndims, dtypes.int32, name=name)
|
|
return gen_array_ops.rank(input, name=name)
|
|
|
|
|
|
_SLICE_TYPE_ERROR = (
|
|
"Only integers, slices (`:`), ellipsis (`...`), "
|
|
"tf.newaxis (`None`) and scalar tf.int32/tf.int64 tensors are valid "
|
|
"indices")
|
|
|
|
_SUPPORTED_SLICE_DTYPES = (dtypes.int32, dtypes.int32_ref, dtypes.int64,
|
|
dtypes.int64_ref)
|
|
|
|
|
|
def _check_index(idx):
|
|
"""Check if a given value is a valid index into a tensor."""
|
|
if isinstance(idx, (six.integer_types, tensor_shape.Dimension)):
|
|
return
|
|
|
|
# Optimistic check. Assumptions:
|
|
# * any object with a dtype is supported
|
|
# * any object with a dtype has a sizeable shape attribute.
|
|
dtype = getattr(idx, "dtype", None)
|
|
if (dtype is None or dtypes.as_dtype(dtype) not in _SUPPORTED_SLICE_DTYPES or
|
|
idx.shape and len(idx.shape) == 1):
|
|
# TODO(slebedev): IndexError seems more appropriate here, but it
|
|
# will break `_slice_helper` contract.
|
|
raise TypeError(_SLICE_TYPE_ERROR + ", got {!r}".format(idx))
|
|
|
|
|
|
def _is_undefined_dimension(d):
|
|
return isinstance(d, tensor_shape.Dimension) and d.value is None
|
|
|
|
|
|
def _slice_helper(tensor, slice_spec, var=None):
|
|
"""Overload for Tensor.__getitem__.
|
|
|
|
This operation extracts the specified region from the tensor.
|
|
The notation is similar to NumPy with the restriction that
|
|
currently only support basic indexing. That means that
|
|
using a non-scalar tensor as input is not currently allowed.
|
|
|
|
Some useful examples:
|
|
|
|
```python
|
|
# Strip leading and trailing 2 elements
|
|
foo = tf.constant([1,2,3,4,5,6])
|
|
print(foo[2:-2].eval()) # => [3,4]
|
|
|
|
# Skip every other row and reverse the order of the columns
|
|
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
|
|
print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]]
|
|
|
|
# Use scalar tensors as indices on both dimensions
|
|
print(foo[tf.constant(0), tf.constant(2)].eval()) # => 3
|
|
|
|
# Insert another dimension
|
|
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
|
|
print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
|
|
print(foo[:, tf.newaxis, :].eval()) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]]
|
|
print(foo[:, :, tf.newaxis].eval()) # => [[[1],[2],[3]], [[4],[5],[6]],
|
|
[[7],[8],[9]]]
|
|
|
|
# Ellipses (3 equivalent operations)
|
|
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
|
|
print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
|
|
print(foo[tf.newaxis, ...].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
|
|
print(foo[tf.newaxis].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
|
|
|
|
# Masks
|
|
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
|
|
print(foo[foo > 2].eval()) # => [3, 4, 5, 6, 7, 8, 9]
|
|
```
|
|
|
|
Notes:
|
|
- `tf.newaxis` is `None` as in NumPy.
|
|
- An implicit ellipsis is placed at the end of the `slice_spec`
|
|
- NumPy advanced indexing is currently not supported.
|
|
|
|
Args:
|
|
tensor: An ops.Tensor object.
|
|
slice_spec: The arguments to Tensor.__getitem__.
|
|
var: In the case of variable slice assignment, the Variable object to slice
|
|
(i.e. tensor is the read-only view of this variable).
|
|
|
|
Returns:
|
|
The appropriate slice of "tensor", based on "slice_spec".
|
|
|
|
Raises:
|
|
ValueError: If a slice range is negative size.
|
|
TypeError: If the slice indices aren't int, slice, ellipsis,
|
|
tf.newaxis or scalar int32/int64 tensors.
|
|
"""
|
|
if isinstance(slice_spec, bool) or \
|
|
(isinstance(slice_spec, ops.Tensor) and slice_spec.dtype == dtypes.bool) or \
|
|
(isinstance(slice_spec, np.ndarray) and slice_spec.dtype == bool):
|
|
return boolean_mask(tensor=tensor, mask=slice_spec)
|
|
|
|
if not isinstance(slice_spec, (list, tuple)):
|
|
slice_spec = [slice_spec]
|
|
|
|
begin, end, strides = [], [], []
|
|
index = 0
|
|
|
|
new_axis_mask, shrink_axis_mask = 0, 0
|
|
begin_mask, end_mask = 0, 0
|
|
ellipsis_mask = 0
|
|
for s in slice_spec:
|
|
if isinstance(s, _BaseSlice):
|
|
if s.start is not None and not _is_undefined_dimension(s.start):
|
|
_check_index(s.start)
|
|
begin.append(s.start)
|
|
else:
|
|
begin.append(0)
|
|
begin_mask |= (1 << index)
|
|
if s.stop is not None and not _is_undefined_dimension(s.stop):
|
|
_check_index(s.stop)
|
|
end.append(s.stop)
|
|
else:
|
|
end.append(0)
|
|
end_mask |= (1 << index)
|
|
if s.step is not None and not _is_undefined_dimension(s.step):
|
|
_check_index(s.step)
|
|
strides.append(s.step)
|
|
else:
|
|
strides.append(1)
|
|
elif s is Ellipsis:
|
|
begin.append(0)
|
|
end.append(0)
|
|
strides.append(1)
|
|
ellipsis_mask |= (1 << index)
|
|
elif s is newaxis:
|
|
begin.append(0)
|
|
end.append(0)
|
|
strides.append(1)
|
|
new_axis_mask |= (1 << index)
|
|
else:
|
|
_check_index(s)
|
|
begin.append(s)
|
|
end.append(s + 1)
|
|
strides.append(1)
|
|
shrink_axis_mask |= (1 << index)
|
|
index += 1
|
|
|
|
# stack possibly involves no tensors, so we must use op_scope correct graph.
|
|
with ops.name_scope(
|
|
None,
|
|
"strided_slice", [tensor] + begin + end + strides,
|
|
skip_on_eager=False) as name:
|
|
if begin:
|
|
packed_begin, packed_end, packed_strides = (stack(begin), stack(end),
|
|
stack(strides))
|
|
if (packed_begin.dtype == dtypes.int64 or
|
|
packed_end.dtype == dtypes.int64 or
|
|
packed_strides.dtype == dtypes.int64):
|
|
if packed_begin.dtype != dtypes.int64:
|
|
packed_begin = gen_math_ops.cast(packed_begin, dtypes.int64)
|
|
if packed_end.dtype != dtypes.int64:
|
|
packed_end = gen_math_ops.cast(packed_end, dtypes.int64)
|
|
if packed_strides.dtype != dtypes.int64:
|
|
packed_strides = gen_math_ops.cast(packed_strides, dtypes.int64)
|
|
else:
|
|
var_empty = constant([], dtype=dtypes.int32)
|
|
packed_begin = packed_end = packed_strides = var_empty
|
|
return strided_slice(
|
|
tensor,
|
|
packed_begin,
|
|
packed_end,
|
|
packed_strides,
|
|
begin_mask=begin_mask,
|
|
end_mask=end_mask,
|
|
shrink_axis_mask=shrink_axis_mask,
|
|
new_axis_mask=new_axis_mask,
|
|
ellipsis_mask=ellipsis_mask,
|
|
var=var,
|
|
name=name)
|
|
|
|
|
|
# pylint: disable=undefined-variable,protected-access,redefined-outer-name
|
|
@tf_export("slice")
|
|
def slice(input_, begin, size, name=None):
|
|
# pylint: disable=redefined-builtin
|
|
"""Extracts a slice from a tensor.
|
|
|
|
This operation extracts a slice of size `size` from a tensor `input_` starting
|
|
at the location specified by `begin`. The slice `size` is represented as a
|
|
tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
|
|
of `input_` that you want to slice. The starting location (`begin`) for the
|
|
slice is represented as an offset in each dimension of `input_`. In other
|
|
words, `begin[i]` is the offset into the i'th dimension of `input_` that you
|
|
want to slice from.
|
|
|
|
Note that `tf.Tensor.__getitem__` is typically a more pythonic way to
|
|
perform slices, as it allows you to write `foo[3:7, :-2]` instead of
|
|
`tf.slice(foo, [3, 0], [4, foo.get_shape()[1]-2])`.
|
|
|
|
`begin` is zero-based; `size` is one-based. If `size[i]` is -1,
|
|
all remaining elements in dimension i are included in the
|
|
slice. In other words, this is equivalent to setting:
|
|
|
|
`size[i] = input_.dim_size(i) - begin[i]`
|
|
|
|
This operation requires that:
|
|
|
|
`0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]`
|
|
|
|
For example:
|
|
|
|
```python
|
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]],
|
|
[[3, 3, 3], [4, 4, 4]],
|
|
[[5, 5, 5], [6, 6, 6]]])
|
|
tf.slice(t, [1, 0, 0], [1, 1, 3]) # [[[3, 3, 3]]]
|
|
tf.slice(t, [1, 0, 0], [1, 2, 3]) # [[[3, 3, 3],
|
|
# [4, 4, 4]]]
|
|
tf.slice(t, [1, 0, 0], [2, 1, 3]) # [[[3, 3, 3]],
|
|
# [[5, 5, 5]]]
|
|
```
|
|
|
|
Args:
|
|
input_: A `Tensor`.
|
|
begin: An `int32` or `int64` `Tensor`.
|
|
size: An `int32` or `int64` `Tensor`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` the same type as `input_`.
|
|
"""
|
|
return gen_array_ops._slice(input_, begin, size, name=name)
|
|
|
|
|
|
# pylint: disable=invalid-name
|
|
@tf_export("strided_slice")
|
|
def strided_slice(input_,
|
|
begin,
|
|
end,
|
|
strides=None,
|
|
begin_mask=0,
|
|
end_mask=0,
|
|
ellipsis_mask=0,
|
|
new_axis_mask=0,
|
|
shrink_axis_mask=0,
|
|
var=None,
|
|
name=None):
|
|
"""Extracts a strided slice of a tensor (generalized python array indexing).
|
|
|
|
**Instead of calling this op directly most users will want to use the
|
|
NumPy-style slicing syntax (e.g. `tensor[..., 3:4:-1, tf.newaxis, 3]`), which
|
|
is supported via `tf.Tensor.__getitem__` and `tf.Variable.__getitem__`.**
|
|
The interface of this op is a low-level encoding of the slicing syntax.
|
|
|
|
Roughly speaking, this op extracts a slice of size `(end-begin)/stride`
|
|
from the given `input_` tensor. Starting at the location specified by `begin`
|
|
the slice continues by adding `stride` to the index until all dimensions are
|
|
not less than `end`.
|
|
Note that a stride can be negative, which causes a reverse slice.
|
|
|
|
Given a Python slice `input[spec0, spec1, ..., specn]`,
|
|
this function will be called as follows.
|
|
|
|
`begin`, `end`, and `strides` will be vectors of length n.
|
|
n in general is not equal to the rank of the `input_` tensor.
|
|
|
|
In each mask field (`begin_mask`, `end_mask`, `ellipsis_mask`,
|
|
`new_axis_mask`, `shrink_axis_mask`) the ith bit will correspond to
|
|
the ith spec.
|
|
|
|
If the ith bit of `begin_mask` is set, `begin[i]` is ignored and
|
|
the fullest possible range in that dimension is used instead.
|
|
`end_mask` works analogously, except with the end range.
|
|
|
|
`foo[5:,:,:3]` on a 7x8x9 tensor is equivalent to `foo[5:7,0:8,0:3]`.
|
|
`foo[::-1]` reverses a tensor with shape 8.
|
|
|
|
If the ith bit of `ellipsis_mask` is set, as many unspecified dimensions
|
|
as needed will be inserted between other dimensions. Only one
|
|
non-zero bit is allowed in `ellipsis_mask`.
|
|
|
|
For example `foo[3:5,...,4:5]` on a shape 10x3x3x10 tensor is
|
|
equivalent to `foo[3:5,:,:,4:5]` and
|
|
`foo[3:5,...]` is equivalent to `foo[3:5,:,:,:]`.
|
|
|
|
If the ith bit of `new_axis_mask` is set, then `begin`,
|
|
`end`, and `stride` are ignored and a new length 1 dimension is
|
|
added at this point in the output tensor.
|
|
|
|
For example,
|
|
`foo[:4, tf.newaxis, :2]` would produce a shape `(4, 1, 2)` tensor.
|
|
|
|
If the ith bit of `shrink_axis_mask` is set, it implies that the ith
|
|
specification shrinks the dimensionality by 1, taking on the value at index
|
|
`begin[i]`. `end[i]` and `strides[i]` are ignored in this case. For example in
|
|
Python one might do `foo[:, 3, :]` which would result in `shrink_axis_mask`
|
|
equal to 2.
|
|
|
|
|
|
NOTE: `begin` and `end` are zero-indexed.
|
|
`strides` entries must be non-zero.
|
|
|
|
|
|
```python
|
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]],
|
|
[[3, 3, 3], [4, 4, 4]],
|
|
[[5, 5, 5], [6, 6, 6]]])
|
|
tf.strided_slice(t, [1, 0, 0], [2, 1, 3], [1, 1, 1]) # [[[3, 3, 3]]]
|
|
tf.strided_slice(t, [1, 0, 0], [2, 2, 3], [1, 1, 1]) # [[[3, 3, 3],
|
|
# [4, 4, 4]]]
|
|
tf.strided_slice(t, [1, -1, 0], [2, -3, 3], [1, -1, 1]) # [[[4, 4, 4],
|
|
# [3, 3, 3]]]
|
|
```
|
|
|
|
Args:
|
|
input_: A `Tensor`.
|
|
begin: An `int32` or `int64` `Tensor`.
|
|
end: An `int32` or `int64` `Tensor`.
|
|
strides: An `int32` or `int64` `Tensor`.
|
|
begin_mask: An `int32` mask.
|
|
end_mask: An `int32` mask.
|
|
ellipsis_mask: An `int32` mask.
|
|
new_axis_mask: An `int32` mask.
|
|
shrink_axis_mask: An `int32` mask.
|
|
var: The variable corresponding to `input_` or None
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` the same type as `input`.
|
|
"""
|
|
|
|
if strides is None:
|
|
strides = ones_like(begin)
|
|
|
|
op = gen_array_ops.strided_slice(
|
|
input=input_,
|
|
begin=begin,
|
|
end=end,
|
|
strides=strides,
|
|
name=name,
|
|
begin_mask=begin_mask,
|
|
end_mask=end_mask,
|
|
ellipsis_mask=ellipsis_mask,
|
|
new_axis_mask=new_axis_mask,
|
|
shrink_axis_mask=shrink_axis_mask)
|
|
|
|
parent_name = name
|
|
|
|
if not (var is None and isinstance(op, ops.EagerTensor)):
|
|
|
|
def assign(val, name=None):
|
|
"""Closure that holds all the arguments to create an assignment."""
|
|
|
|
if var is None:
|
|
raise ValueError("Sliced assignment is only supported for variables")
|
|
else:
|
|
if name is None:
|
|
name = parent_name + "_assign"
|
|
|
|
return var._strided_slice_assign(
|
|
begin=begin,
|
|
end=end,
|
|
strides=strides,
|
|
value=val,
|
|
name=name,
|
|
begin_mask=begin_mask,
|
|
end_mask=end_mask,
|
|
ellipsis_mask=ellipsis_mask,
|
|
new_axis_mask=new_axis_mask,
|
|
shrink_axis_mask=shrink_axis_mask)
|
|
|
|
op.assign = assign
|
|
return op
|
|
|
|
|
|
def _SliceHelperVar(var, slice_spec):
|
|
"""Creates a slice helper object given a variable.
|
|
|
|
This allows creating a sub-tensor from part of the current contents
|
|
of a variable. See `tf.Tensor.__getitem__` for detailed examples
|
|
of slicing.
|
|
|
|
This function in addition also allows assignment to a sliced range.
|
|
This is similar to `__setitem__` functionality in Python. However,
|
|
the syntax is different so that the user can capture the assignment
|
|
operation for grouping or passing to `sess.run()`.
|
|
For example,
|
|
|
|
```python
|
|
import tensorflow as tf
|
|
A = tf.Variable([[1,2,3], [4,5,6], [7,8,9]], dtype=tf.float32)
|
|
with tf.compat.v1.Session() as sess:
|
|
sess.run(tf.compat.v1.global_variables_initializer())
|
|
print(sess.run(A[:2, :2])) # => [[1,2], [4,5]]
|
|
|
|
op = A[:2,:2].assign(22. * tf.ones((2, 2)))
|
|
print(sess.run(op)) # => [[22, 22, 3], [22, 22, 6], [7,8,9]]
|
|
```
|
|
|
|
Note that assignments currently do not support NumPy broadcasting
|
|
semantics.
|
|
|
|
Args:
|
|
var: An `ops.Variable` object.
|
|
slice_spec: The arguments to `Tensor.__getitem__`.
|
|
|
|
Returns:
|
|
The appropriate slice of "tensor", based on "slice_spec".
|
|
As an operator. The operator also has a `assign()` method
|
|
that can be used to generate an assignment operator.
|
|
|
|
Raises:
|
|
ValueError: If a slice range is negative size.
|
|
TypeError: TypeError: If the slice indices aren't int, slice,
|
|
ellipsis, tf.newaxis or int32/int64 tensors.
|
|
|
|
"""
|
|
|
|
return _slice_helper(var.value(), slice_spec, var)
|
|
|
|
|
|
ops.Tensor._override_operator("__getitem__", _slice_helper)
|
|
|
|
|
|
@tf_export("parallel_stack")
|
|
def parallel_stack(values, name="parallel_stack"):
|
|
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor in parallel.
|
|
|
|
Requires that the shape of inputs be known at graph construction time.
|
|
|
|
Packs the list of tensors in `values` into a tensor with rank one higher than
|
|
each tensor in `values`, by packing them along the first dimension.
|
|
Given a list of length `N` of tensors of shape `(A, B, C)`; the `output`
|
|
tensor will have the shape `(N, A, B, C)`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
x = tf.constant([1, 4])
|
|
y = tf.constant([2, 5])
|
|
z = tf.constant([3, 6])
|
|
tf.parallel_stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]]
|
|
```
|
|
|
|
The difference between `stack` and `parallel_stack` is that `stack` requires
|
|
all the inputs be computed before the operation will begin but doesn't require
|
|
that the input shapes be known during graph construction.
|
|
|
|
`parallel_stack` will copy pieces of the input into the output as they become
|
|
available, in some situations this can provide a performance benefit.
|
|
|
|
Unlike `stack`, `parallel_stack` does NOT support backpropagation.
|
|
|
|
This is the opposite of unstack. The numpy equivalent is
|
|
|
|
tf.parallel_stack([x, y, z]) = np.asarray([x, y, z])
|
|
|
|
Args:
|
|
values: A list of `Tensor` objects with the same shape and type.
|
|
name: A name for this operation (optional).
|
|
|
|
Returns:
|
|
output: A stacked `Tensor` with the same type as `values`.
|
|
"""
|
|
with ops.name_scope(name):
|
|
value_t = ops.convert_to_tensor(values[0])
|
|
value_shape = ops.convert_to_tensor(value_t).get_shape()
|
|
|
|
output_shape = tensor_shape.TensorShape([len(values)])
|
|
output_shape = output_shape.concatenate(value_shape)
|
|
# expand_dims converts concat to stack.
|
|
return gen_array_ops.parallel_concat(
|
|
[expand_dims(value, 0) for value in values], shape=output_shape)
|
|
|
|
|
|
@tf_export("stack")
|
|
@dispatch.add_dispatch_support
|
|
def stack(values, axis=0, name="stack"):
|
|
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
|
|
|
|
Packs the list of tensors in `values` into a tensor with rank one higher than
|
|
each tensor in `values`, by packing them along the `axis` dimension.
|
|
Given a list of length `N` of tensors of shape `(A, B, C)`;
|
|
|
|
if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
|
|
if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`.
|
|
Etc.
|
|
|
|
For example:
|
|
|
|
>>> x = tf.constant([1, 4])
|
|
>>> y = tf.constant([2, 5])
|
|
>>> z = tf.constant([3, 6])
|
|
>>> tf.stack([x, y, z])
|
|
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
|
|
array([[1, 4],
|
|
[2, 5],
|
|
[3, 6]], dtype=int32)>
|
|
|
|
>> tf.stack([x, y, z], axis=1)
|
|
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
|
|
array([[1, 2, 3],
|
|
[4, 5, 6]], dtype=int32)>
|
|
|
|
This is the opposite of unstack. The numpy equivalent is `np.stack`
|
|
|
|
>>> np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z]))
|
|
True
|
|
|
|
Args:
|
|
values: A list of `Tensor` objects with the same shape and type.
|
|
axis: An `int`. The axis to stack along. Defaults to the first dimension.
|
|
Negative values wrap around, so the valid range is `[-(R+1), R+1)`.
|
|
name: A name for this operation (optional).
|
|
|
|
Returns:
|
|
output: A stacked `Tensor` with the same type as `values`.
|
|
|
|
Raises:
|
|
ValueError: If `axis` is out of the range [-(R+1), R+1).
|
|
"""
|
|
if axis == 0:
|
|
try:
|
|
# If the input is a constant list, it can be converted to a constant op
|
|
return ops.convert_to_tensor(values, name=name)
|
|
except (TypeError, ValueError):
|
|
pass # Input list contains non-constant tensors
|
|
|
|
value_shape = ops.convert_to_tensor(values[0], name=name)._shape_tuple() # pylint: disable=protected-access
|
|
if value_shape is not None:
|
|
expanded_num_dims = len(value_shape) + 1
|
|
if axis < -expanded_num_dims or axis >= expanded_num_dims:
|
|
raise ValueError("axis = %d not in [%d, %d)" %
|
|
(axis, -expanded_num_dims, expanded_num_dims))
|
|
|
|
return gen_array_ops.pack(values, axis=axis, name=name)
|
|
|
|
|
|
# pylint: disable=invalid-name
|
|
def _autopacking_helper(list_or_tuple, dtype, name):
|
|
"""Converts the given list or tuple to a tensor by packing.
|
|
|
|
Args:
|
|
list_or_tuple: A (possibly nested) list or tuple containing a tensor.
|
|
dtype: The element type of the returned tensor.
|
|
name: A name for the returned tensor.
|
|
|
|
Returns:
|
|
A `tf.Tensor` with value equivalent to `list_or_tuple`.
|
|
"""
|
|
if context.executing_eagerly():
|
|
# NOTE: Fast path when all the items are tensors, this doesn't do any type
|
|
# checking.
|
|
if all(ops.is_dense_tensor_like(elem) for elem in list_or_tuple):
|
|
return gen_array_ops.pack(list_or_tuple, name=name)
|
|
must_pack = False
|
|
converted_elems = []
|
|
with ops.name_scope(name) as scope:
|
|
for i, elem in enumerate(list_or_tuple):
|
|
if ops.is_dense_tensor_like(elem):
|
|
if dtype is not None and elem.dtype.base_dtype != dtype:
|
|
raise TypeError("Cannot convert a list containing a tensor of dtype "
|
|
"%s to %s (Tensor is: %r)" %
|
|
(elem.dtype, dtype, elem))
|
|
converted_elems.append(elem)
|
|
must_pack = True
|
|
elif isinstance(elem, (list, tuple)):
|
|
converted_elem = _autopacking_helper(elem, dtype, str(i))
|
|
if ops.is_dense_tensor_like(converted_elem):
|
|
must_pack = True
|
|
converted_elems.append(converted_elem)
|
|
else:
|
|
converted_elems.append(elem)
|
|
if must_pack:
|
|
elems_as_tensors = []
|
|
for i, elem in enumerate(converted_elems):
|
|
if ops.is_dense_tensor_like(elem):
|
|
elems_as_tensors.append(elem)
|
|
else:
|
|
# NOTE(mrry): This is inefficient, but it enables us to
|
|
# handle the case where the list arguments are other
|
|
# convertible-to-tensor types, such as numpy arrays.
|
|
elems_as_tensors.append(
|
|
constant_op.constant(elem, dtype=dtype, name=str(i)))
|
|
return gen_array_ops.pack(elems_as_tensors, name=scope)
|
|
else:
|
|
return converted_elems
|
|
|
|
|
|
def _get_dtype_from_nested_lists(list_or_tuple):
|
|
"""Returns the dtype of any tensor-like object in `list_or_tuple`, if found.
|
|
|
|
Args:
|
|
list_or_tuple: A list or tuple representing an object that can be converted
|
|
to a `tf.Tensor`.
|
|
|
|
Returns:
|
|
The dtype of any tensor-like object in `list_or_tuple`, or `None` if no
|
|
such object exists.
|
|
"""
|
|
for elem in list_or_tuple:
|
|
if ops.is_dense_tensor_like(elem):
|
|
return elem.dtype.base_dtype
|
|
elif isinstance(elem, (list, tuple)):
|
|
maybe_dtype = _get_dtype_from_nested_lists(elem)
|
|
if maybe_dtype is not None:
|
|
return maybe_dtype
|
|
return None
|
|
|
|
|
|
def _cast_nested_seqs_to_dtype(dtype):
|
|
|
|
def _maybe_cast(elem):
|
|
if ops.is_dense_tensor_like(elem):
|
|
if dtype != elem.dtype.base_dtype:
|
|
elem = gen_math_ops.cast(elem, dtype)
|
|
return elem
|
|
|
|
return _maybe_cast
|
|
|
|
|
|
_NON_AUTOPACKABLE_TYPES = set(np.core.numerictypes.ScalarType)
|
|
_NON_AUTOPACKABLE_TYPES.add(np.ndarray)
|
|
|
|
|
|
def _should_not_autopack(v):
|
|
# The condition we really want is
|
|
# ops.is_dense_tensor_like(...)
|
|
# but it is >5x slower due to abc.ABCMeta.__instancecheck__.
|
|
# pylint: disable=unidiomatic-typecheck
|
|
# TODO(slebedev): add nest.all?
|
|
return all(type(elem) in _NON_AUTOPACKABLE_TYPES for elem in nest.flatten(v))
|
|
# pylint: enable=unidiomatic-typecheck
|
|
|
|
|
|
def _autopacking_conversion_function(v, dtype=None, name=None, as_ref=False):
|
|
"""Tensor conversion function that automatically packs arguments."""
|
|
if as_ref or _should_not_autopack(v):
|
|
return NotImplemented
|
|
inferred_dtype = _get_dtype_from_nested_lists(v)
|
|
if inferred_dtype is None:
|
|
# We did not find any tensor-like objects in the nested lists, so defer to
|
|
# other conversion functions.
|
|
return NotImplemented
|
|
if dtype is None:
|
|
dtype = inferred_dtype
|
|
elif dtype != inferred_dtype:
|
|
v = nest.map_structure(_cast_nested_seqs_to_dtype(dtype), v)
|
|
return _autopacking_helper(v, dtype, name or "packed")
|
|
|
|
|
|
# pylint: enable=invalid-name
|
|
|
|
# NOTE: Register this conversion function to run *before* one that
|
|
# assumes every element is a value.
|
|
ops.register_tensor_conversion_function((list, tuple),
|
|
_autopacking_conversion_function, 99)
|
|
|
|
|
|
@tf_export("unstack")
|
|
def unstack(value, num=None, axis=0, name="unstack"):
|
|
"""Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors.
|
|
|
|
Unpacks `num` tensors from `value` by chipping it along the `axis` dimension.
|
|
If `num` is not specified (the default), it is inferred from `value`'s shape.
|
|
If `value.shape[axis]` is not known, `ValueError` is raised.
|
|
|
|
For example, given a tensor of shape `(A, B, C, D)`;
|
|
|
|
If `axis == 0` then the i'th tensor in `output` is the slice
|
|
`value[i, :, :, :]` and each tensor in `output` will have shape `(B, C, D)`.
|
|
(Note that the dimension unpacked along is gone, unlike `split`).
|
|
|
|
If `axis == 1` then the i'th tensor in `output` is the slice
|
|
`value[:, i, :, :]` and each tensor in `output` will have shape `(A, C, D)`.
|
|
Etc.
|
|
|
|
This is the opposite of stack.
|
|
|
|
Args:
|
|
value: A rank `R > 0` `Tensor` to be unstacked.
|
|
num: An `int`. The length of the dimension `axis`. Automatically inferred if
|
|
`None` (the default).
|
|
axis: An `int`. The axis to unstack along. Defaults to the first dimension.
|
|
Negative values wrap around, so the valid range is `[-R, R)`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
The list of `Tensor` objects unstacked from `value`.
|
|
|
|
Raises:
|
|
ValueError: If `num` is unspecified and cannot be inferred.
|
|
ValueError: If `axis` is out of the range [-R, R).
|
|
"""
|
|
if num is None:
|
|
value = ops.convert_to_tensor(value)
|
|
value_shape = value.get_shape()
|
|
if value_shape.ndims is not None:
|
|
if axis < -value_shape.ndims or axis >= value_shape.ndims:
|
|
raise ValueError("axis = %d not in [%d, %d)" %
|
|
(axis, -value_shape.ndims, value_shape.ndims))
|
|
num = value_shape.dims[axis].value
|
|
if num is None:
|
|
raise ValueError("Cannot infer num from shape %s" % value_shape)
|
|
return gen_array_ops.unpack(value, num=num, axis=axis, name=name)
|
|
|
|
|
|
@tf_export("concat")
|
|
@dispatch.add_dispatch_support
|
|
def concat(values, axis, name="concat"):
|
|
"""Concatenates tensors along one dimension.
|
|
|
|
Concatenates the list of tensors `values` along dimension `axis`. If
|
|
`values[i].shape = [D0, D1, ... Daxis(i), ...Dn]`, the concatenated
|
|
result has shape
|
|
|
|
[D0, D1, ... Raxis, ...Dn]
|
|
|
|
where
|
|
|
|
Raxis = sum(Daxis(i))
|
|
|
|
That is, the data from the input tensors is joined along the `axis`
|
|
dimension.
|
|
|
|
The number of dimensions of the input tensors must match, and all dimensions
|
|
except `axis` must be equal.
|
|
|
|
For example:
|
|
|
|
>>> t1 = [[1, 2, 3], [4, 5, 6]]
|
|
>>> t2 = [[7, 8, 9], [10, 11, 12]]
|
|
>>> concat([t1, t2], 0)
|
|
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
|
|
array([[ 1, 2, 3],
|
|
[ 4, 5, 6],
|
|
[ 7, 8, 9],
|
|
[10, 11, 12]], dtype=int32)>
|
|
|
|
>>> concat([t1, t2], 1)
|
|
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
|
|
array([[ 1, 2, 3, 7, 8, 9],
|
|
[ 4, 5, 6, 10, 11, 12]], dtype=int32)>
|
|
|
|
As in Python, the `axis` could also be negative numbers. Negative `axis`
|
|
are interpreted as counting from the end of the rank, i.e.,
|
|
`axis + rank(values)`-th dimension.
|
|
|
|
For example:
|
|
|
|
>>> t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]]
|
|
>>> t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
|
|
>>> tf.concat([t1, t2], -1)
|
|
<tf.Tensor: shape=(2, 2, 4), dtype=int32, numpy=
|
|
array([[[ 1, 2, 7, 4],
|
|
[ 2, 3, 8, 4]],
|
|
[[ 4, 4, 2, 10],
|
|
[ 5, 3, 15, 11]]], dtype=int32)>
|
|
|
|
Note: If you are concatenating along a new axis consider using stack.
|
|
E.g.
|
|
|
|
```python
|
|
tf.concat([tf.expand_dims(t, axis) for t in tensors], axis)
|
|
```
|
|
|
|
can be rewritten as
|
|
|
|
```python
|
|
tf.stack(tensors, axis=axis)
|
|
```
|
|
|
|
Args:
|
|
values: A list of `Tensor` objects or a single `Tensor`.
|
|
axis: 0-D `int32` `Tensor`. Dimension along which to concatenate. Must be
|
|
in the range `[-rank(values), rank(values))`. As in Python, indexing for
|
|
axis is 0-based. Positive axis in the rage of `[0, rank(values))` refers
|
|
to `axis`-th dimension. And negative axis refers to `axis +
|
|
rank(values)`-th dimension.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` resulting from concatenation of the input tensors.
|
|
"""
|
|
if not isinstance(values, (list, tuple)):
|
|
values = [values]
|
|
# TODO(mrry): Change to return values?
|
|
if len(values) == 1: # Degenerate case of one tensor.
|
|
# Make a throwaway call to convert_to_tensor to make sure
|
|
# that axis is of the correct type, and make sure that
|
|
# the returned tensor is a scalar.
|
|
# TODO(keveman): Implement a standalone type and shape checker.
|
|
with ops.name_scope(name) as scope:
|
|
ops.convert_to_tensor(
|
|
axis, name="concat_dim",
|
|
dtype=dtypes.int32).get_shape().assert_has_rank(0)
|
|
return identity(values[0], name=name)
|
|
return gen_array_ops.concat_v2(values=values, axis=axis, name=name)
|
|
|
|
|
|
@tf_export(v1=["boolean_mask"])
|
|
def boolean_mask(tensor, mask, name="boolean_mask", axis=None):
|
|
"""Apply boolean mask to tensor.
|
|
|
|
Numpy equivalent is `tensor[mask]`.
|
|
|
|
```python
|
|
# 1-D example
|
|
tensor = [0, 1, 2, 3]
|
|
mask = np.array([True, False, True, False])
|
|
boolean_mask(tensor, mask) # [0, 2]
|
|
```
|
|
|
|
In general, `0 < dim(mask) = K <= dim(tensor)`, and `mask`'s shape must match
|
|
the first K dimensions of `tensor`'s shape. We then have:
|
|
`boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]`
|
|
where `(i1,...,iK)` is the ith `True` entry of `mask` (row-major order).
|
|
The `axis` could be used with `mask` to indicate the axis to mask from.
|
|
In that case, `axis + dim(mask) <= dim(tensor)` and `mask`'s shape must match
|
|
the first `axis + dim(mask)` dimensions of `tensor`'s shape.
|
|
|
|
See also: `tf.ragged.boolean_mask`, which can be applied to both dense and
|
|
ragged tensors, and can be used if you need to preserve the masked dimensions
|
|
of `tensor` (rather than flattening them, as `tf.boolean_mask` does).
|
|
|
|
Args:
|
|
tensor: N-D tensor.
|
|
mask: K-D boolean tensor, K <= N and K must be known statically.
|
|
name: A name for this operation (optional).
|
|
axis: A 0-D int Tensor representing the axis in `tensor` to mask from. By
|
|
default, axis is 0 which will mask from the first dimension. Otherwise K +
|
|
axis <= N.
|
|
|
|
Returns:
|
|
(N-K+1)-dimensional tensor populated by entries in `tensor` corresponding
|
|
to `True` values in `mask`.
|
|
|
|
Raises:
|
|
ValueError: If shapes do not conform.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
# 2-D example
|
|
tensor = [[1, 2], [3, 4], [5, 6]]
|
|
mask = np.array([True, False, True])
|
|
boolean_mask(tensor, mask) # [[1, 2], [5, 6]]
|
|
```
|
|
"""
|
|
|
|
def _apply_mask_1d(reshaped_tensor, mask, axis=None):
|
|
"""Mask tensor along dimension 0 with a 1-D mask."""
|
|
indices = squeeze(where_v2(mask), axis=[1])
|
|
return gather(reshaped_tensor, indices, axis=axis)
|
|
|
|
with ops.name_scope(name, values=[tensor, mask]):
|
|
tensor = ops.convert_to_tensor(tensor, name="tensor")
|
|
mask = ops.convert_to_tensor(mask, name="mask")
|
|
|
|
shape_mask = mask.get_shape()
|
|
ndims_mask = shape_mask.ndims
|
|
shape_tensor = tensor.get_shape()
|
|
if ndims_mask == 0:
|
|
raise ValueError("mask cannot be scalar.")
|
|
if ndims_mask is None:
|
|
raise ValueError(
|
|
"Number of mask dimensions must be specified, even if some dimensions"
|
|
" are None. E.g. shape=[None] is ok, but shape=None is not.")
|
|
axis = 0 if axis is None else axis
|
|
shape_tensor[axis:axis + ndims_mask].assert_is_compatible_with(shape_mask)
|
|
|
|
leading_size = gen_math_ops.prod(shape(tensor)[axis:axis + ndims_mask], [0])
|
|
tensor = reshape(
|
|
tensor,
|
|
concat([
|
|
shape(tensor)[:axis], [leading_size],
|
|
shape(tensor)[axis + ndims_mask:]
|
|
], 0))
|
|
first_dim = shape_tensor[axis:axis + ndims_mask].num_elements()
|
|
tensor.set_shape(
|
|
tensor_shape.as_shape(shape_tensor[:axis]).concatenate(
|
|
[first_dim]).concatenate(shape_tensor[axis + ndims_mask:]))
|
|
|
|
mask = reshape(mask, [-1])
|
|
return _apply_mask_1d(tensor, mask, axis)
|
|
|
|
|
|
@tf_export("boolean_mask", v1=[])
|
|
@dispatch.add_dispatch_support
|
|
def boolean_mask_v2(tensor, mask, axis=None, name="boolean_mask"):
|
|
"""Apply boolean mask to tensor.
|
|
|
|
Numpy equivalent is `tensor[mask]`.
|
|
|
|
```python
|
|
# 1-D example
|
|
tensor = [0, 1, 2, 3]
|
|
mask = np.array([True, False, True, False])
|
|
boolean_mask(tensor, mask) # [0, 2]
|
|
```
|
|
|
|
In general, `0 < dim(mask) = K <= dim(tensor)`, and `mask`'s shape must match
|
|
the first K dimensions of `tensor`'s shape. We then have:
|
|
`boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]`
|
|
where `(i1,...,iK)` is the ith `True` entry of `mask` (row-major order).
|
|
The `axis` could be used with `mask` to indicate the axis to mask from.
|
|
In that case, `axis + dim(mask) <= dim(tensor)` and `mask`'s shape must match
|
|
the first `axis + dim(mask)` dimensions of `tensor`'s shape.
|
|
|
|
See also: `tf.ragged.boolean_mask`, which can be applied to both dense and
|
|
ragged tensors, and can be used if you need to preserve the masked dimensions
|
|
of `tensor` (rather than flattening them, as `tf.boolean_mask` does).
|
|
|
|
Args:
|
|
tensor: N-D tensor.
|
|
mask: K-D boolean tensor, K <= N and K must be known statically.
|
|
axis: A 0-D int Tensor representing the axis in `tensor` to mask from. By
|
|
default, axis is 0 which will mask from the first dimension. Otherwise K +
|
|
axis <= N.
|
|
name: A name for this operation (optional).
|
|
|
|
Returns:
|
|
(N-K+1)-dimensional tensor populated by entries in `tensor` corresponding
|
|
to `True` values in `mask`.
|
|
|
|
Raises:
|
|
ValueError: If shapes do not conform.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
# 2-D example
|
|
tensor = [[1, 2], [3, 4], [5, 6]]
|
|
mask = np.array([True, False, True])
|
|
boolean_mask(tensor, mask) # [[1, 2], [5, 6]]
|
|
```
|
|
"""
|
|
return boolean_mask(tensor, mask, name, axis)
|
|
|
|
|
|
@tf_export("sparse.mask", v1=["sparse.mask", "sparse_mask"])
|
|
@deprecation.deprecated_endpoints("sparse_mask")
|
|
def sparse_mask(a, mask_indices, name=None):
|
|
"""Masks elements of `IndexedSlices`.
|
|
|
|
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
|
|
contains a subset of the slices of `a`. Only the slices at indices not
|
|
specified in `mask_indices` are returned.
|
|
|
|
This is useful when you need to extract a subset of slices in an
|
|
`IndexedSlices` object.
|
|
|
|
For example:
|
|
|
|
```python
|
|
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
|
|
# with shape [1000, 10]
|
|
a.indices # [12, 26, 37, 45]
|
|
tf.shape(a.values) # [4, 10]
|
|
|
|
# `b` will be the subset of `a` slices at its second and third indices, so
|
|
# we want to mask its first and last indices (which are at absolute
|
|
# indices 12, 45)
|
|
b = tf.sparse.mask(a, [12, 45])
|
|
|
|
b.indices # [26, 37]
|
|
tf.shape(b.values) # [2, 10]
|
|
```
|
|
|
|
Args:
|
|
a: An `IndexedSlices` instance.
|
|
mask_indices: Indices of elements to mask.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
The masked `IndexedSlices` instance.
|
|
"""
|
|
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
|
|
indices = a.indices
|
|
out_indices, to_gather = gen_array_ops.list_diff(indices, mask_indices)
|
|
out_values = gather(a.values, to_gather, name=name)
|
|
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
|
|
|
|
|
|
@tf_export("unique")
|
|
def unique(x, out_idx=dtypes.int32, name=None):
|
|
# TODO(yongtang): switch to v2 once API deprecation
|
|
# period (3 weeks) pass.
|
|
# TODO(yongtang): The documentation should also
|
|
# be updated when switch to v2.
|
|
return gen_array_ops.unique(x, out_idx, name)
|
|
|
|
|
|
unique.__doc__ = gen_array_ops.unique.__doc__
|
|
|
|
|
|
@tf_export("unique_with_counts")
|
|
def unique_with_counts(x, out_idx=dtypes.int32, name=None):
|
|
# TODO(yongtang): switch to v2 once API deprecation
|
|
# period (3 weeks) pass.
|
|
# TODO(yongtang): The documentation should also
|
|
# be updated when switch to v2.
|
|
return gen_array_ops.unique_with_counts(x, out_idx, name)
|
|
|
|
|
|
unique_with_counts.__doc__ = gen_array_ops.unique_with_counts.__doc__
|
|
|
|
|
|
@tf_export("split")
|
|
def split(value, num_or_size_splits, axis=0, num=None, name="split"):
|
|
"""Splits a tensor into sub tensors.
|
|
|
|
If `num_or_size_splits` is an integer, then `value` is split along dimension
|
|
`axis` into `num_split` smaller tensors. This requires that `num_split` evenly
|
|
divides `value.shape[axis]`.
|
|
|
|
If `num_or_size_splits` is a 1-D Tensor (or list), we call it `size_splits`
|
|
and `value` is split into `len(size_splits)` elements. The shape of the `i`-th
|
|
element has the same size as the `value` except along dimension `axis` where
|
|
the size is `size_splits[i]`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
# 'value' is a tensor with shape [5, 30]
|
|
# Split 'value' into 3 tensors with sizes [4, 15, 11] along dimension 1
|
|
split0, split1, split2 = tf.split(value, [4, 15, 11], 1)
|
|
tf.shape(split0) # [5, 4]
|
|
tf.shape(split1) # [5, 15]
|
|
tf.shape(split2) # [5, 11]
|
|
# Split 'value' into 3 tensors along dimension 1
|
|
split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1)
|
|
tf.shape(split0) # [5, 10]
|
|
```
|
|
|
|
Args:
|
|
value: The `Tensor` to split.
|
|
num_or_size_splits: Either an integer indicating the number of splits along
|
|
`axis` or a 1-D integer `Tensor` or Python list containing the sizes of
|
|
each output tensor along `axis`. If a scalar, then it must evenly divide
|
|
`value.shape[axis]`; otherwise the sum of sizes along the split axis
|
|
must match that of the `value`.
|
|
axis: An integer or scalar `int32` `Tensor`. The dimension along which to
|
|
split. Must be in the range `[-rank(value), rank(value))`. Defaults to 0.
|
|
num: Optional, used to specify the number of outputs when it cannot be
|
|
inferred from the shape of `size_splits`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
if `num_or_size_splits` is a scalar returns `num_or_size_splits` `Tensor`
|
|
objects; if `num_or_size_splits` is a 1-D Tensor returns
|
|
`num_or_size_splits.get_shape[0]` `Tensor` objects resulting from splitting
|
|
`value`.
|
|
|
|
Raises:
|
|
ValueError: If `num` is unspecified and cannot be inferred.
|
|
"""
|
|
size_splits = ops.convert_to_tensor(num_or_size_splits)
|
|
if isinstance(num_or_size_splits,
|
|
six.integer_types + (tensor_shape.Dimension,)):
|
|
return gen_array_ops.split(
|
|
axis=axis, num_split=num_or_size_splits, value=value, name=name)
|
|
|
|
if size_splits._rank() == 0:
|
|
raise ValueError(
|
|
"Rank-0 tensors are not supported as the num_or_size_splits argument "
|
|
"to split. Argument provided: %s" % (num_or_size_splits,))
|
|
|
|
if num is None:
|
|
size_splits_shape = size_splits._shape_tuple()
|
|
if size_splits_shape:
|
|
num = size_splits_shape[0]
|
|
if num is None:
|
|
raise ValueError("Cannot infer num from shape %s" % num_or_size_splits)
|
|
|
|
return gen_array_ops.split_v(
|
|
value=value, size_splits=size_splits, axis=axis, num_split=num, name=name)
|
|
|
|
|
|
@tf_export("transpose", v1=[])
|
|
def transpose_v2(a, perm=None, conjugate=False, name="transpose"):
|
|
"""Transposes `a`.
|
|
|
|
Permutes the dimensions according to `perm`.
|
|
|
|
The returned tensor's dimension i will correspond to the input dimension
|
|
`perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is
|
|
the rank of the input tensor. Hence by default, this operation performs a
|
|
regular matrix transpose on 2-D input Tensors. If conjugate is True and
|
|
`a.dtype` is either `complex64` or `complex128` then the values of `a`
|
|
are conjugated and transposed.
|
|
|
|
@compatibility(numpy)
|
|
In `numpy` transposes are memory-efficient constant time operations as they
|
|
simply return a new view of the same data with adjusted `strides`.
|
|
|
|
TensorFlow does not support strides, so `transpose` returns a new tensor with
|
|
the items permuted.
|
|
@end_compatibility
|
|
|
|
For example:
|
|
|
|
```python
|
|
x = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
tf.transpose(x) # [[1, 4]
|
|
# [2, 5]
|
|
# [3, 6]]
|
|
|
|
# Equivalently
|
|
tf.transpose(x, perm=[1, 0]) # [[1, 4]
|
|
# [2, 5]
|
|
# [3, 6]]
|
|
|
|
# If x is complex, setting conjugate=True gives the conjugate transpose
|
|
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
|
|
[4 + 4j, 5 + 5j, 6 + 6j]])
|
|
tf.transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j],
|
|
# [2 - 2j, 5 - 5j],
|
|
# [3 - 3j, 6 - 6j]]
|
|
|
|
# 'perm' is more useful for n-dimensional tensors, for n > 2
|
|
x = tf.constant([[[ 1, 2, 3],
|
|
[ 4, 5, 6]],
|
|
[[ 7, 8, 9],
|
|
[10, 11, 12]]])
|
|
|
|
# Take the transpose of the matrices in dimension-0
|
|
# (this common operation has a shorthand `linalg.matrix_transpose`)
|
|
tf.transpose(x, perm=[0, 2, 1]) # [[[1, 4],
|
|
# [2, 5],
|
|
# [3, 6]],
|
|
# [[7, 10],
|
|
# [8, 11],
|
|
# [9, 12]]]
|
|
```
|
|
|
|
Args:
|
|
a: A `Tensor`.
|
|
perm: A permutation of the dimensions of `a`.
|
|
conjugate: Optional bool. Setting it to `True` is mathematically equivalent
|
|
to tf.math.conj(tf.transpose(input)).
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A transposed `Tensor`.
|
|
"""
|
|
return transpose(a=a, perm=perm, name=name, conjugate=conjugate)
|
|
|
|
|
|
@tf_export(v1=["transpose"])
|
|
def transpose(a, perm=None, name="transpose", conjugate=False):
|
|
"""Transposes `a`.
|
|
|
|
Permutes the dimensions according to `perm`.
|
|
|
|
The returned tensor's dimension i will correspond to the input dimension
|
|
`perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is
|
|
the rank of the input tensor. Hence by default, this operation performs a
|
|
regular matrix transpose on 2-D input Tensors. If conjugate is True and
|
|
`a.dtype` is either `complex64` or `complex128` then the values of `a`
|
|
are conjugated and transposed.
|
|
|
|
@compatibility(numpy)
|
|
In `numpy` transposes are memory-efficient constant time operations as they
|
|
simply return a new view of the same data with adjusted `strides`.
|
|
|
|
TensorFlow does not support strides, so `transpose` returns a new tensor with
|
|
the items permuted.
|
|
@end_compatibility
|
|
|
|
For example:
|
|
|
|
```python
|
|
x = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
tf.transpose(x) # [[1, 4]
|
|
# [2, 5]
|
|
# [3, 6]]
|
|
|
|
# Equivalently
|
|
tf.transpose(x, perm=[1, 0]) # [[1, 4]
|
|
# [2, 5]
|
|
# [3, 6]]
|
|
|
|
# If x is complex, setting conjugate=True gives the conjugate transpose
|
|
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
|
|
[4 + 4j, 5 + 5j, 6 + 6j]])
|
|
tf.transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j],
|
|
# [2 - 2j, 5 - 5j],
|
|
# [3 - 3j, 6 - 6j]]
|
|
|
|
# 'perm' is more useful for n-dimensional tensors, for n > 2
|
|
x = tf.constant([[[ 1, 2, 3],
|
|
[ 4, 5, 6]],
|
|
[[ 7, 8, 9],
|
|
[10, 11, 12]]])
|
|
|
|
# Take the transpose of the matrices in dimension-0
|
|
# (this common operation has a shorthand `linalg.matrix_transpose`)
|
|
tf.transpose(x, perm=[0, 2, 1]) # [[[1, 4],
|
|
# [2, 5],
|
|
# [3, 6]],
|
|
# [[7, 10],
|
|
# [8, 11],
|
|
# [9, 12]]]
|
|
```
|
|
|
|
Args:
|
|
a: A `Tensor`.
|
|
perm: A permutation of the dimensions of `a`.
|
|
name: A name for the operation (optional).
|
|
conjugate: Optional bool. Setting it to `True` is mathematically equivalent
|
|
to tf.math.conj(tf.transpose(input)).
|
|
|
|
Returns:
|
|
A transposed `Tensor`.
|
|
"""
|
|
with ops.name_scope(name, "transpose", [a]) as name:
|
|
if not tensor_util.is_tensor(a):
|
|
a = ops.convert_to_tensor(a, name="a")
|
|
|
|
if conjugate and a.dtype.is_complex:
|
|
transpose_fn = gen_array_ops.conjugate_transpose
|
|
else:
|
|
transpose_fn = gen_array_ops.transpose
|
|
|
|
if perm is not None:
|
|
return transpose_fn(a, perm, name=name)
|
|
|
|
rank = a.shape.rank
|
|
if rank is None:
|
|
perm = gen_math_ops._range(gen_array_ops.rank(a) - 1, -1, -1)
|
|
else:
|
|
perm = np.arange(rank - 1, -1, -1, dtype=np.int32)
|
|
return transpose_fn(a, perm, name=name)
|
|
|
|
|
|
# pylint: disable=invalid-name
|
|
@tf_export(
|
|
"linalg.matrix_transpose",
|
|
v1=["linalg.transpose", "linalg.matrix_transpose", "matrix_transpose"])
|
|
@deprecation.deprecated_endpoints("matrix_transpose", "linalg.transpose")
|
|
def matrix_transpose(a, name="matrix_transpose", conjugate=False):
|
|
"""Transposes last two dimensions of tensor `a`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
x = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
tf.linalg.matrix_transpose(x) # [[1, 4],
|
|
# [2, 5],
|
|
# [3, 6]]
|
|
|
|
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
|
|
[4 + 4j, 5 + 5j, 6 + 6j]])
|
|
tf.linalg.matrix_transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j],
|
|
# [2 - 2j, 5 - 5j],
|
|
# [3 - 3j, 6 - 6j]]
|
|
|
|
# Matrix with two batch dimensions.
|
|
# x.shape is [1, 2, 3, 4]
|
|
# tf.linalg.matrix_transpose(x) is shape [1, 2, 4, 3]
|
|
```
|
|
|
|
Note that `tf.matmul` provides kwargs allowing for transpose of arguments.
|
|
This is done with minimal cost, and is preferable to using this function. E.g.
|
|
|
|
```python
|
|
# Good! Transpose is taken at minimal additional cost.
|
|
tf.matmul(matrix, b, transpose_b=True)
|
|
|
|
# Inefficient!
|
|
tf.matmul(matrix, tf.linalg.matrix_transpose(b))
|
|
```
|
|
|
|
@compatibility(numpy)
|
|
In `numpy` transposes are memory-efficient constant time operations as they
|
|
simply return a new view of the same data with adjusted `strides`.
|
|
|
|
TensorFlow does not support strides, `linalg.matrix_transpose` returns a new
|
|
tensor with the items permuted.
|
|
@end_compatibility
|
|
|
|
Args:
|
|
a: A `Tensor` with `rank >= 2`.
|
|
name: A name for the operation (optional).
|
|
conjugate: Optional bool. Setting it to `True` is mathematically equivalent
|
|
to tf.math.conj(tf.linalg.matrix_transpose(input)).
|
|
|
|
Returns:
|
|
A transposed batch matrix `Tensor`.
|
|
|
|
Raises:
|
|
ValueError: If `a` is determined statically to have `rank < 2`.
|
|
"""
|
|
with ops.name_scope(name, values=[a]):
|
|
a = ops.convert_to_tensor(a, name="a")
|
|
|
|
# If we know the number of dimensions (statically), we can do two things:
|
|
# 1. Check that `a` is a (batch) matrix.
|
|
# 2. Use a python list for perm. This preserves static shape information
|
|
# and avoids extra computations.
|
|
a_shape = a.get_shape()
|
|
ndims = a_shape.ndims
|
|
if ndims is not None:
|
|
if ndims < 2:
|
|
raise ValueError(
|
|
"Argument 'a' should be a (batch) matrix, with rank >= 2. Found: "
|
|
"%s" % a_shape)
|
|
perm = list(range(ndims - 2)) + [ndims - 1] + [ndims - 2]
|
|
else:
|
|
a_rank = rank(a)
|
|
perm = concat(
|
|
(gen_math_ops._range(0, a_rank - 2, 1), [a_rank - 1, a_rank - 2]), 0)
|
|
|
|
return transpose(a, perm=perm, conjugate=conjugate)
|
|
|
|
|
|
@tf_export("linalg.diag", v1=["linalg.diag", "matrix_diag"])
|
|
@deprecation.deprecated_endpoints("matrix_diag")
|
|
def matrix_diag(diagonal,
|
|
name="diag",
|
|
k=0,
|
|
num_rows=-1,
|
|
num_cols=-1,
|
|
padding_value=0,
|
|
align="RIGHT_LEFT"):
|
|
"""Returns a batched diagonal tensor with given batched diagonal values.
|
|
|
|
Returns a tensor with the contents in `diagonal` as `k[0]`-th to `k[1]`-th
|
|
diagonals of a matrix, with everything else padded with `padding`. `num_rows`
|
|
and `num_cols` specify the dimension of the innermost matrix of the output. If
|
|
both are not specified, the op assumes the innermost matrix is square and
|
|
infers its size from `k` and the innermost dimension of `diagonal`. If only
|
|
one of them is specified, the op assumes the unspecified value is the smallest
|
|
possible based on other criteria.
|
|
|
|
Let `diagonal` have `r` dimensions `[I, J, ..., L, M, N]`. The output tensor
|
|
has rank `r+1` with shape `[I, J, ..., L, M, num_rows, num_cols]` when only
|
|
one diagonal is given (`k` is an integer or `k[0] == k[1]`). Otherwise, it has
|
|
rank `r` with shape `[I, J, ..., L, num_rows, num_cols]`.
|
|
|
|
The second innermost dimension of `diagonal` has double meaning. When `k` is
|
|
scalar or `k[0] == k[1]`, `M` is part of the batch size [I, J, ..., M], and
|
|
the output tensor is:
|
|
|
|
```
|
|
output[i, j, ..., l, m, n]
|
|
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
|
|
padding_value ; otherwise
|
|
```
|
|
|
|
Otherwise, `M` is treated as the number of diagonals for the matrix in the
|
|
same batch (`M = k[1]-k[0]+1`), and the output tensor is:
|
|
|
|
```
|
|
output[i, j, ..., l, m, n]
|
|
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
|
|
padding_value ; otherwise
|
|
```
|
|
where `d = n - m`, `diag_index = k[1] - d`, and
|
|
`index_in_diag = n - max(d, 0) + offset`.
|
|
|
|
`offset` is zero except when the alignment of the diagonal is to the right.
|
|
```
|
|
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}
|
|
and `d >= 0`) or
|
|
(`align` in {LEFT_RIGHT, RIGHT_RIGHT}
|
|
and `d <= 0`)
|
|
0 ; otherwise
|
|
```
|
|
where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`.
|
|
|
|
For example:
|
|
|
|
```
|
|
# The main diagonal.
|
|
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
|
|
[5, 6, 7, 8]])
|
|
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
|
|
[0, 2, 0, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 0, 4]],
|
|
[[5, 0, 0, 0],
|
|
[0, 6, 0, 0],
|
|
[0, 0, 7, 0],
|
|
[0, 0, 0, 8]]]
|
|
|
|
# A superdiagonal (per batch).
|
|
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
|
|
[4, 5, 6]])
|
|
tf.matrix_diag(diagonal, k = 1)
|
|
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
|
|
[0, 0, 2, 0],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 0, 0]],
|
|
[[0, 4, 0, 0],
|
|
[0, 0, 5, 0],
|
|
[0, 0, 0, 6],
|
|
[0, 0, 0, 0]]]
|
|
|
|
# A tridiagonal band (per batch).
|
|
diagonals = np.array([[[8, 9, 0], # Input shape: (2, 2, 3)
|
|
[1, 2, 3],
|
|
[0, 4, 5]],
|
|
[[2, 3, 0],
|
|
[6, 7, 9],
|
|
[0, 9, 1]]])
|
|
tf.matrix_diag(diagonals, k = (-1, 1))
|
|
==> [[[1, 8, 0], # Output shape: (2, 3, 3)
|
|
[4, 2, 9],
|
|
[0, 5, 3]],
|
|
[[6, 2, 0],
|
|
[9, 7, 3],
|
|
[0, 1, 9]]]
|
|
|
|
# RIGHT_LEFT alignment.
|
|
diagonals = np.array([[[0, 8, 9], # Input shape: (2, 2, 3)
|
|
[1, 2, 3],
|
|
[4, 5, 0]],
|
|
[[0, 2, 3],
|
|
[6, 7, 9],
|
|
[9, 1, 0]]])
|
|
tf.matrix_diag(diagonals, k = (-1, 1), align="RIGHT_LEFT")
|
|
==> [[[1, 8, 0], # Output shape: (2, 3, 3)
|
|
[4, 2, 9],
|
|
[0, 5, 3]],
|
|
[[6, 2, 0],
|
|
[9, 7, 3],
|
|
[0, 1, 9]]]
|
|
|
|
# Rectangular matrix.
|
|
diagonal = np.array([1, 2]) # Input shape: (2)
|
|
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
|
|
==> [[0, 0, 0, 0], # Output shape: (3, 4)
|
|
[1, 0, 0, 0],
|
|
[0, 2, 0, 0]]
|
|
|
|
# Rectangular matrix with inferred num_cols and padding_value = 9.
|
|
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
|
|
==> [[9, 9], # Output shape: (3, 2)
|
|
[1, 9],
|
|
[9, 2]]
|
|
```
|
|
|
|
Args:
|
|
diagonal: A `Tensor` with `rank k >= 1`.
|
|
name: A name for the operation (optional).
|
|
k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the
|
|
main diagonal, and negative value means subdiagonals. `k` can be a single
|
|
integer (for a single diagonal) or a pair of integers specifying the low
|
|
and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.
|
|
num_rows: The number of rows of the output matrix. If it is not provided,
|
|
the op assumes the output matrix is a square matrix and infers the matrix
|
|
size from `d_lower`, `d_upper`, and the innermost dimension of `diagonal`.
|
|
num_cols: The number of columns of the output matrix. If it is not provided,
|
|
the op assumes the output matrix is a square matrix and infers the matrix
|
|
size from `d_lower`, `d_upper`, and the innermost dimension of `diagonal`.
|
|
padding_value: The value to fill the area outside the specified diagonal
|
|
band with. Default is 0.
|
|
align: Some diagonals are shorter than `max_diag_len` and need to be padded.
|
|
`align` is a string specifying how superdiagonals and subdiagonals should
|
|
be aligned, respectively. There are four possible alignments: "RIGHT_LEFT"
|
|
(default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT"
|
|
aligns superdiagonals to the right (left-pads the row) and subdiagonals to
|
|
the left (right-pads the row). It is the packing format LAPACK uses.
|
|
cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment.
|
|
|
|
Returns:
|
|
A Tensor. Has the same type as `diagonal`.
|
|
"""
|
|
if compat.forward_compatible(*matrix_diag_v3_forward_compat_date):
|
|
# Special case to sidestep the tf.constant conversion error:
|
|
# TypeError: Expected bool, got 0 of type 'int' instead.
|
|
if hasattr(diagonal, "dtype") and diagonal.dtype == "bool":
|
|
padding_value = bool(padding_value)
|
|
|
|
return gen_array_ops.matrix_diag_v3(
|
|
diagonal=diagonal,
|
|
k=k,
|
|
num_rows=num_rows,
|
|
num_cols=num_cols,
|
|
padding_value=padding_value,
|
|
align=align,
|
|
name=name)
|
|
|
|
# Call v1 to maintain forward compatibility.
|
|
# (We skip v2 because its alignment conflicts with v3's default alignment.)
|
|
return gen_array_ops.matrix_diag(diagonal=diagonal, name=name)
|
|
|
|
|
|
@tf_export("linalg.diag_part", v1=["linalg.diag_part", "matrix_diag_part"])
|
|
@deprecation.deprecated_endpoints("matrix_diag_part")
|
|
@dispatch.add_dispatch_support
|
|
def matrix_diag_part(
|
|
input, # pylint:disable=redefined-builtin
|
|
name="diag_part",
|
|
k=0,
|
|
padding_value=0,
|
|
align="RIGHT_LEFT"):
|
|
"""Returns the batched diagonal part of a batched tensor.
|
|
|
|
Returns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched
|
|
`input`.
|
|
|
|
Assume `input` has `r` dimensions `[I, J, ..., L, M, N]`.
|
|
Let `max_diag_len` be the maximum length among all diagonals to be extracted,
|
|
`max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))`
|
|
Let `num_diags` be the number of diagonals to extract,
|
|
`num_diags = k[1] - k[0] + 1`.
|
|
|
|
If `num_diags == 1`, the output tensor is of rank `r - 1` with shape
|
|
`[I, J, ..., L, max_diag_len]` and values:
|
|
|
|
```
|
|
diagonal[i, j, ..., l, n]
|
|
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
|
|
padding_value ; otherwise.
|
|
```
|
|
where `y = max(-k[1], 0)`, `x = max(k[1], 0)`.
|
|
|
|
Otherwise, the output tensor has rank `r` with dimensions
|
|
`[I, J, ..., L, num_diags, max_diag_len]` with values:
|
|
|
|
```
|
|
diagonal[i, j, ..., l, m, n]
|
|
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
|
|
padding_value ; otherwise.
|
|
```
|
|
where `d = k[1] - m`, `y = max(-d, 0) - offset`, and `x = max(d, 0) - offset`.
|
|
|
|
`offset` is zero except when the alignment of the diagonal is to the right.
|
|
```
|
|
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}
|
|
and `d >= 0`) or
|
|
(`align` in {LEFT_RIGHT, RIGHT_RIGHT}
|
|
and `d <= 0`)
|
|
0 ; otherwise
|
|
```
|
|
where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`.
|
|
|
|
The input must be at least a matrix.
|
|
|
|
For example:
|
|
|
|
```
|
|
input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)
|
|
[5, 6, 7, 8],
|
|
[9, 8, 7, 6]],
|
|
[[5, 4, 3, 2],
|
|
[1, 2, 3, 4],
|
|
[5, 6, 7, 8]]])
|
|
|
|
# A main diagonal from each batch.
|
|
tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3)
|
|
[5, 2, 7]]
|
|
|
|
# A superdiagonal from each batch.
|
|
tf.matrix_diag_part(input, k = 1)
|
|
==> [[2, 7, 6], # Output shape: (2, 3)
|
|
[4, 3, 8]]
|
|
|
|
# A band from each batch.
|
|
tf.matrix_diag_part(input, k = (-1, 2))
|
|
==> [[[3, 8, 0], # Output shape: (2, 4, 3)
|
|
[2, 7, 6],
|
|
[1, 6, 7],
|
|
[0, 5, 8]],
|
|
[[3, 4, 0],
|
|
[4, 3, 8],
|
|
[5, 2, 7],
|
|
[0, 1, 6]]]
|
|
|
|
# RIGHT_LEFT alignment.
|
|
tf.matrix_diag_part(input, k = (-1, 2), align="RIGHT_LEFT")
|
|
==> [[[0, 3, 8], # Output shape: (2, 4, 3)
|
|
[2, 7, 6],
|
|
[1, 6, 7],
|
|
[5, 8, 0]],
|
|
[[0, 3, 4],
|
|
[4, 3, 8],
|
|
[5, 2, 7],
|
|
[1, 6, 0]]]
|
|
|
|
# max_diag_len can be shorter than the main diagonal.
|
|
tf.matrix_diag_part(input, k = (-2, -1))
|
|
==> [[[5, 8],
|
|
[0, 9]],
|
|
[[1, 6],
|
|
[0, 5]]]
|
|
|
|
# padding_value = 9
|
|
tf.matrix_diag_part(input, k = (1, 3), padding_value = 9)
|
|
==> [[[4, 9, 9], # Output shape: (2, 3, 3)
|
|
[3, 8, 9],
|
|
[2, 7, 6]],
|
|
[[2, 9, 9],
|
|
[3, 4, 9],
|
|
[4, 3, 8]]]
|
|
|
|
```
|
|
|
|
Args:
|
|
input: A `Tensor` with `rank k >= 2`.
|
|
name: A name for the operation (optional).
|
|
k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the
|
|
main diagonal, and negative value means subdiagonals. `k` can be a single
|
|
integer (for a single diagonal) or a pair of integers specifying the low
|
|
and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.
|
|
padding_value: The value to fill the area outside the specified diagonal
|
|
band with. Default is 0.
|
|
align: Some diagonals are shorter than `max_diag_len` and need to be padded.
|
|
`align` is a string specifying how superdiagonals and subdiagonals should
|
|
be aligned, respectively. There are four possible alignments: "RIGHT_LEFT"
|
|
(default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT"
|
|
aligns superdiagonals to the right (left-pads the row) and subdiagonals to
|
|
the left (right-pads the row). It is the packing format LAPACK uses.
|
|
cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment.
|
|
|
|
Returns:
|
|
A Tensor containing diagonals of `input`. Has the same type as `input`.
|
|
"""
|
|
if compat.forward_compatible(*matrix_diag_v3_forward_compat_date):
|
|
# Special case to sidestep the tf.constant conversion error:
|
|
# TypeError: Expected bool, got 0 of type 'int' instead.
|
|
if hasattr(input, "dtype") and input.dtype == "bool":
|
|
padding_value = bool(padding_value)
|
|
|
|
return gen_array_ops.matrix_diag_part_v3(
|
|
input=input, k=k, padding_value=padding_value, align=align, name=name)
|
|
|
|
# Call v1 to maintain forward compatibility.
|
|
# (We skip v2 because its alignment conflicts with v3's default alignment.)
|
|
return gen_array_ops.matrix_diag_part(input=input, name=name)
|
|
|
|
|
|
@tf_export("linalg.set_diag", v1=["linalg.set_diag", "matrix_set_diag"])
|
|
@deprecation.deprecated_endpoints("matrix_set_diag")
|
|
def matrix_set_diag(
|
|
input, # pylint:disable=redefined-builtin
|
|
diagonal,
|
|
name="set_diag",
|
|
k=0,
|
|
align="RIGHT_LEFT"):
|
|
"""Returns a batched matrix tensor with new batched diagonal values.
|
|
|
|
Given `input` and `diagonal`, this operation returns a tensor with the
|
|
same shape and values as `input`, except for the specified diagonals of the
|
|
innermost matrices. These will be overwritten by the values in `diagonal`.
|
|
|
|
`input` has `r+1` dimensions `[I, J, ..., L, M, N]`. When `k` is scalar or
|
|
`k[0] == k[1]`, `diagonal` has `r` dimensions `[I, J, ..., L, max_diag_len]`.
|
|
Otherwise, it has `r+1` dimensions `[I, J, ..., L, num_diags, max_diag_len]`.
|
|
`num_diags` is the number of diagonals, `num_diags = k[1] - k[0] + 1`.
|
|
`max_diag_len` is the longest diagonal in the range `[k[0], k[1]]`,
|
|
`max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))`
|
|
|
|
The output is a tensor of rank `k+1` with dimensions `[I, J, ..., L, M, N]`.
|
|
If `k` is scalar or `k[0] == k[1]`:
|
|
|
|
```
|
|
output[i, j, ..., l, m, n]
|
|
= diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
|
|
input[i, j, ..., l, m, n] ; otherwise
|
|
```
|
|
|
|
Otherwise,
|
|
|
|
```
|
|
output[i, j, ..., l, m, n]
|
|
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
|
|
input[i, j, ..., l, m, n] ; otherwise
|
|
```
|
|
where `d = n - m`, `diag_index = k[1] - d`, and
|
|
`index_in_diag = n - max(d, 0) + offset`.
|
|
|
|
`offset` is zero except when the alignment of the diagonal is to the right.
|
|
```
|
|
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}
|
|
and `d >= 0`) or
|
|
(`align` in {LEFT_RIGHT, RIGHT_RIGHT}
|
|
and `d <= 0`)
|
|
0 ; otherwise
|
|
```
|
|
where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`.
|
|
|
|
For example:
|
|
|
|
```
|
|
# The main diagonal.
|
|
input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)
|
|
[7, 7, 7, 7],
|
|
[7, 7, 7, 7]],
|
|
[[7, 7, 7, 7],
|
|
[7, 7, 7, 7],
|
|
[7, 7, 7, 7]]])
|
|
diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)
|
|
[4, 5, 6]])
|
|
tf.matrix_set_diag(input, diagonal)
|
|
==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
|
|
[7, 2, 7, 7],
|
|
[7, 7, 3, 7]],
|
|
[[4, 7, 7, 7],
|
|
[7, 5, 7, 7],
|
|
[7, 7, 6, 7]]]
|
|
|
|
# A superdiagonal (per batch).
|
|
tf.matrix_set_diag(input, diagonal, k = 1)
|
|
==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4)
|
|
[7, 7, 2, 7],
|
|
[7, 7, 7, 3]],
|
|
[[7, 4, 7, 7],
|
|
[7, 7, 5, 7],
|
|
[7, 7, 7, 6]]]
|
|
|
|
# A band of diagonals.
|
|
diagonals = np.array([[[9, 1, 0], # Diagonal shape: (2, 4, 3)
|
|
[6, 5, 8],
|
|
[1, 2, 3],
|
|
[0, 4, 5]],
|
|
[[1, 2, 0],
|
|
[5, 6, 4],
|
|
[6, 1, 2],
|
|
[0, 3, 4]]])
|
|
tf.matrix_set_diag(input, diagonals, k = (-1, 2))
|
|
==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4)
|
|
[4, 2, 5, 1],
|
|
[7, 5, 3, 8]],
|
|
[[6, 5, 1, 7],
|
|
[3, 1, 6, 2],
|
|
[7, 4, 2, 4]]]
|
|
|
|
# RIGHT_LEFT alignment.
|
|
diagonals = np.array([[[0, 9, 1], # Diagonal shape: (2, 4, 3)
|
|
[6, 5, 8],
|
|
[1, 2, 3],
|
|
[4, 5, 0]],
|
|
[[0, 1, 2],
|
|
[5, 6, 4],
|
|
[6, 1, 2],
|
|
[3, 4, 0]]])
|
|
tf.matrix_set_diag(input, diagonals, k = (-1, 2), align="RIGHT_LEFT")
|
|
==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4)
|
|
[4, 2, 5, 1],
|
|
[7, 5, 3, 8]],
|
|
[[6, 5, 1, 7],
|
|
[3, 1, 6, 2],
|
|
[7, 4, 2, 4]]]
|
|
|
|
```
|
|
|
|
Args:
|
|
input: A `Tensor` with rank `k + 1`, where `k >= 1`.
|
|
diagonal: A `Tensor` with rank `k`, when `d_lower == d_upper`, or `k + 1`,
|
|
otherwise. `k >= 1`.
|
|
name: A name for the operation (optional).
|
|
k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the
|
|
main diagonal, and negative value means subdiagonals. `k` can be a single
|
|
integer (for a single diagonal) or a pair of integers specifying the low
|
|
and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.
|
|
align: Some diagonals are shorter than `max_diag_len` and need to be padded.
|
|
`align` is a string specifying how superdiagonals and subdiagonals should
|
|
be aligned, respectively. There are four possible alignments: "RIGHT_LEFT"
|
|
(default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT"
|
|
aligns superdiagonals to the right (left-pads the row) and subdiagonals to
|
|
the left (right-pads the row). It is the packing format LAPACK uses.
|
|
cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment.
|
|
"""
|
|
if compat.forward_compatible(*matrix_diag_v3_forward_compat_date):
|
|
return gen_array_ops.matrix_set_diag_v3(
|
|
input=input, diagonal=diagonal, k=k, align=align, name=name)
|
|
|
|
# Call v1 to maintain forward compatibility.
|
|
# (We skip v2 because its alignment conflicts with v3's default alignment.)
|
|
return gen_array_ops.matrix_set_diag(
|
|
input=input, diagonal=diagonal, name=name)
|
|
|
|
|
|
# pylint: enable=invalid-name
|
|
|
|
|
|
def _constant_if_small(value, shape, dtype, name):
|
|
try:
|
|
if np.prod(shape) < 1000:
|
|
return constant(value, shape=shape, dtype=dtype, name=name)
|
|
except TypeError:
|
|
# Happens when shape is a Tensor, list with Tensor elements, etc.
|
|
pass
|
|
return None
|
|
|
|
|
|
@tf_export("zeros")
|
|
def zeros(shape, dtype=dtypes.float32, name=None):
|
|
"""Creates a tensor with all elements set to zero.
|
|
|
|
This operation returns a tensor of type `dtype` with shape `shape` and
|
|
all elements set to zero.
|
|
|
|
>>> tf.zeros([3, 4], tf.int32)
|
|
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
|
|
array([[0, 0, 0, 0],
|
|
[0, 0, 0, 0],
|
|
[0, 0, 0, 0]], dtype=int32)>
|
|
|
|
Args:
|
|
shape: A `list` of integers, a `tuple` of integers, or
|
|
a 1-D `Tensor` of type `int32`.
|
|
dtype: The DType of an element in the resulting `Tensor`.
|
|
name: Optional string. A name for the operation.
|
|
|
|
Returns:
|
|
A `Tensor` with all elements set to zero.
|
|
"""
|
|
dtype = dtypes.as_dtype(dtype).base_dtype
|
|
with ops.name_scope(name, "zeros", [shape]) as name:
|
|
if dtype == dtypes.bool:
|
|
zero = False
|
|
elif dtype == dtypes.string:
|
|
zero = ""
|
|
else:
|
|
zero = 0
|
|
|
|
if not isinstance(shape, ops.Tensor):
|
|
try:
|
|
# Create a constant if it won't be very big. Otherwise create a fill op
|
|
# to prevent serialized GraphDefs from becoming too large.
|
|
output = _constant_if_small(zero, shape, dtype, name)
|
|
if output is not None:
|
|
return output
|
|
|
|
# Go through tensor shapes to get int64-if-needed semantics
|
|
shape = constant_op._tensor_shape_tensor_conversion_function(
|
|
tensor_shape.TensorShape(shape))
|
|
except (TypeError, ValueError):
|
|
# Happens when shape is a list with tensor elements
|
|
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32)
|
|
if not shape._shape_tuple():
|
|
shape = reshape(shape, [-1]) # Ensure it's a vector
|
|
output = fill(shape, constant(zero, dtype=dtype), name=name)
|
|
assert output.dtype.base_dtype == dtype
|
|
return output
|
|
|
|
|
|
@tf_export(v1=["zeros_like"])
|
|
@dispatch.add_dispatch_support
|
|
def zeros_like(tensor, dtype=None, name=None, optimize=True):
|
|
"""Creates a tensor with all elements set to zero.
|
|
|
|
Given a single tensor (`tensor`), this operation returns a tensor of the
|
|
same type and shape as `tensor` with all elements set to zero. Optionally,
|
|
you can use `dtype` to specify a new type for the returned tensor.
|
|
|
|
For example:
|
|
|
|
```python
|
|
tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
tf.zeros_like(tensor) # [[0, 0, 0], [0, 0, 0]]
|
|
```
|
|
|
|
Args:
|
|
tensor: A `Tensor`.
|
|
dtype: A type for the returned `Tensor`. Must be `float16`, `float32`,
|
|
`float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`,
|
|
`complex64`, `complex128`, `bool` or `string`.
|
|
name: A name for the operation (optional).
|
|
optimize: if true, attempt to statically determine the shape of 'tensor' and
|
|
encode it as a constant.
|
|
|
|
Returns:
|
|
A `Tensor` with all elements set to zero.
|
|
"""
|
|
return zeros_like_impl(tensor, dtype, name, optimize)
|
|
|
|
|
|
@tf_export("zeros_like", v1=[])
|
|
@dispatch.add_dispatch_support
|
|
def zeros_like_v2(
|
|
input, # pylint: disable=redefined-builtin
|
|
dtype=None,
|
|
name=None):
|
|
"""Creates a tensor with all elements set to zero.
|
|
|
|
Given a single tensor (`tensor`), this operation returns a tensor of the
|
|
same type and shape as `tensor` with all elements set to zero. Optionally,
|
|
you can use `dtype` to specify a new type for the returned tensor.
|
|
|
|
For example:
|
|
|
|
```python
|
|
tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
tf.zeros_like(tensor) # [[0, 0, 0], [0, 0, 0]] with dtype=int32
|
|
|
|
If dtype of input `tensor` is `float32`, then the output is also of `float32`
|
|
tensor = tf.constant([[1.0, 2.0, 3.0], [4, 5, 6]])
|
|
tf.zeros_like(tensor) # [[0., 0., 0.], [0., 0., 0.]] with dtype=floa32
|
|
|
|
If you want to specify desired dtype of output `tensor`, then specify it in
|
|
the op tensor = tf.constant([[1.0, 2.0, 3.0], [4, 5, 6]])
|
|
tf.zeros_like(tensor,dtype=tf.int32) # [[0, 0, 0], [0, 0, 0]] with
|
|
dtype=int32
|
|
```
|
|
|
|
Args:
|
|
input: A `Tensor`.
|
|
dtype: A type for the returned `Tensor`. Must be `float16`, `float32`,
|
|
`float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`,
|
|
`complex64`, `complex128`, `bool` or `string`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` with all elements set to zero.
|
|
"""
|
|
return zeros_like_impl(input, dtype, name, optimize=True)
|
|
|
|
|
|
def zeros_like_impl(tensor, dtype, name, optimize=True):
|
|
"""Internal implementation for the v1/v2 zeros_like API calls."""
|
|
with ops.name_scope(name, "zeros_like", [tensor]) as name:
|
|
if not tensor_util.is_tensor(tensor):
|
|
tensor = ops.convert_to_tensor(tensor, name="tensor")
|
|
tensor_shape = tensor.shape
|
|
tensor_dtype = tensor.dtype
|
|
|
|
if context.executing_eagerly():
|
|
if dtype is not None and dtype != tensor_dtype:
|
|
return zeros(
|
|
shape_internal(tensor, optimize=optimize), dtype=dtype, name=name)
|
|
return gen_array_ops.zeros_like(tensor, name=name)
|
|
|
|
# For now, variant types must be created via zeros_like; as we need to
|
|
# pass the input variant object to the proper zeros callback.
|
|
|
|
if (optimize and tensor_shape.is_fully_defined() and
|
|
tensor_dtype != dtypes.variant):
|
|
# We can produce a zeros tensor independent of the value of 'tensor',
|
|
# since the shape is known statically.
|
|
return zeros(tensor_shape, dtype=dtype or tensor_dtype, name=name)
|
|
|
|
if dtype is not None and dtype != tensor_dtype and dtype != dtypes.variant:
|
|
return zeros(
|
|
shape_internal(tensor, optimize=optimize), dtype=dtype, name=name)
|
|
else:
|
|
return gen_array_ops.zeros_like(tensor, name=name)
|
|
|
|
|
|
@tf_export(v1=["ones_like"])
|
|
@dispatch.add_dispatch_support
|
|
def ones_like(tensor, dtype=None, name=None, optimize=True):
|
|
"""Creates a tensor with all elements set to 1.
|
|
|
|
Given a single tensor (`tensor`), this operation returns a tensor of the same
|
|
type and shape as `tensor` with all elements set to 1. Optionally, you can
|
|
specify a new type (`dtype`) for the returned tensor.
|
|
|
|
For example:
|
|
|
|
```python
|
|
tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
tf.ones_like(tensor) # [[1, 1, 1], [1, 1, 1]]
|
|
```
|
|
|
|
Args:
|
|
tensor: A `Tensor`.
|
|
dtype: A type for the returned `Tensor`. Must be `float32`, `float64`,
|
|
`int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`,
|
|
`complex128` or `bool`.
|
|
name: A name for the operation (optional).
|
|
optimize: if true, attempt to statically determine the shape of 'tensor' and
|
|
encode it as a constant.
|
|
|
|
Returns:
|
|
A `Tensor` with all elements set to 1.
|
|
"""
|
|
return ones_like_impl(tensor, dtype, name, optimize)
|
|
|
|
|
|
@tf_export("ones_like", v1=[])
|
|
@dispatch.add_dispatch_support
|
|
def ones_like_v2(
|
|
input, # pylint: disable=redefined-builtin
|
|
dtype=None,
|
|
name=None):
|
|
"""Creates a tensor with all elements set to one.
|
|
|
|
Given a single tensor (`tensor`), this operation returns a tensor of the
|
|
same type and shape as `tensor` with all elements set to 1. Optionally,
|
|
you can use `dtype` to specify a new type for the returned tensor.
|
|
|
|
For example:
|
|
|
|
```python
|
|
tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
tf.ones_like(tensor) # [[1, 1, 1], [1, 1, 1]]
|
|
```
|
|
|
|
Args:
|
|
input: A `Tensor`.
|
|
dtype: A type for the returned `Tensor`. Must be `float16`, `float32`,
|
|
`float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`,
|
|
`complex64`, `complex128`, `bool` or `string`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` with all elements set to one.
|
|
"""
|
|
return ones_like_impl(input, dtype, name, optimize=True)
|
|
|
|
|
|
def ones_like_impl(tensor, dtype, name, optimize=True):
|
|
"""Internal implementation for the v1/v2 ones_like API calls."""
|
|
with ops.name_scope(name, "ones_like", [tensor]) as name:
|
|
tensor = ops.convert_to_tensor(tensor, name="tensor")
|
|
ones_shape = shape_internal(tensor, optimize=optimize)
|
|
if dtype is None:
|
|
dtype = tensor.dtype
|
|
ret = ones(ones_shape, dtype=dtype, name=name)
|
|
if not context.executing_eagerly():
|
|
ret.set_shape(tensor.get_shape())
|
|
return ret
|
|
|
|
|
|
@tf_export("ones")
|
|
def ones(shape, dtype=dtypes.float32, name=None):
|
|
"""Creates a tensor with all elements set to one (1).
|
|
|
|
This operation returns a tensor of type `dtype` with shape `shape` and
|
|
all elements set to one.
|
|
|
|
>>> tf.ones([3, 4], tf.int32)
|
|
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
|
|
array([[1, 1, 1, 1],
|
|
[1, 1, 1, 1],
|
|
[1, 1, 1, 1]], dtype=int32)>
|
|
|
|
Args:
|
|
shape: A `list` of integers, a `tuple` of integers, or
|
|
a 1-D `Tensor` of type `int32`.
|
|
dtype: Optional DType of an element in the resulting `Tensor`. Default is
|
|
`tf.float32`.
|
|
name: Optional string. A name for the operation.
|
|
|
|
Returns:
|
|
A `Tensor` with all elements set to one (1).
|
|
"""
|
|
dtype = dtypes.as_dtype(dtype).base_dtype
|
|
with ops.name_scope(name, "ones", [shape]) as name:
|
|
one = True if dtype == dtypes.bool else 1
|
|
if not isinstance(shape, ops.Tensor):
|
|
try:
|
|
# Create a constant if it won't be very big. Otherwise create a fill op
|
|
# to prevent serialized GraphDefs from becoming too large.
|
|
output = _constant_if_small(one, shape, dtype, name)
|
|
if output is not None:
|
|
return output
|
|
|
|
# Go through tensor shapes to get int64-if-needed semantics
|
|
shape = constant_op._tensor_shape_tensor_conversion_function(
|
|
tensor_shape.TensorShape(shape))
|
|
except (TypeError, ValueError):
|
|
# Happens when shape is a list with tensor elements
|
|
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32)
|
|
if not shape._shape_tuple():
|
|
shape = reshape(shape, [-1]) # Ensure it's a vector
|
|
output = fill(shape, constant(one, dtype=dtype), name=name)
|
|
assert output.dtype.base_dtype == dtype
|
|
return output
|
|
|
|
|
|
@tf_export(v1=["placeholder"])
|
|
def placeholder(dtype, shape=None, name=None):
|
|
"""Inserts a placeholder for a tensor that will be always fed.
|
|
|
|
**Important**: This tensor will produce an error if evaluated. Its value must
|
|
be fed using the `feed_dict` optional argument to `Session.run()`,
|
|
`Tensor.eval()`, or `Operation.run()`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
x = tf.compat.v1.placeholder(tf.float32, shape=(1024, 1024))
|
|
y = tf.matmul(x, x)
|
|
|
|
with tf.compat.v1.Session() as sess:
|
|
print(sess.run(y)) # ERROR: will fail because x was not fed.
|
|
|
|
rand_array = np.random.rand(1024, 1024)
|
|
print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.
|
|
```
|
|
|
|
@compatibility(eager)
|
|
Placeholders are not compatible with eager execution.
|
|
@end_compatibility
|
|
|
|
Args:
|
|
dtype: The type of elements in the tensor to be fed.
|
|
shape: The shape of the tensor to be fed (optional). If the shape is not
|
|
specified, you can feed a tensor of any shape.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` that may be used as a handle for feeding a value, but not
|
|
evaluated directly.
|
|
|
|
Raises:
|
|
RuntimeError: if eager execution is enabled
|
|
"""
|
|
if context.executing_eagerly():
|
|
raise RuntimeError("tf.placeholder() is not compatible with "
|
|
"eager execution.")
|
|
|
|
return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name)
|
|
|
|
|
|
@tf_export(v1=["placeholder_with_default"])
|
|
def placeholder_with_default(input, shape, name=None): # pylint: disable=redefined-builtin
|
|
"""A placeholder op that passes through `input` when its output is not fed.
|
|
|
|
Args:
|
|
input: A `Tensor`. The default value to produce when output is not fed.
|
|
shape: A `tf.TensorShape` or list of `int`s. The (possibly partial) shape of
|
|
the tensor.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `input`.
|
|
"""
|
|
return gen_array_ops.placeholder_with_default(input, shape, name)
|
|
|
|
|
|
# pylint: disable=redefined-outer-name
|
|
def _normalize_sparse_shape(shape, name):
|
|
"""Returns a tuple of (Tensor or None, rank or None)."""
|
|
if shape is None:
|
|
return (None, None)
|
|
rank = shape.get_shape()[0] if isinstance(shape, ops.Tensor) else len(shape)
|
|
if not isinstance(shape, ops.Tensor) and None in shape:
|
|
return (None, rank)
|
|
return (ops.convert_to_tensor(shape, dtype=dtypes.int64, name=name), rank)
|
|
|
|
|
|
@tf_export(v1=["sparse.placeholder", "sparse_placeholder"])
|
|
@deprecation.deprecated_endpoints("sparse_placeholder")
|
|
def sparse_placeholder(dtype, shape=None, name=None):
|
|
"""Inserts a placeholder for a sparse tensor that will be always fed.
|
|
|
|
**Important**: This sparse tensor will produce an error if evaluated.
|
|
Its value must be fed using the `feed_dict` optional argument to
|
|
`Session.run()`, `Tensor.eval()`, or `Operation.run()`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
x = tf.compat.v1.sparse.placeholder(tf.float32)
|
|
y = tf.sparse.reduce_sum(x)
|
|
|
|
with tf.compat.v1.Session() as sess:
|
|
print(sess.run(y)) # ERROR: will fail because x was not fed.
|
|
|
|
indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
|
|
values = np.array([1.0, 2.0], dtype=np.float32)
|
|
shape = np.array([7, 9, 2], dtype=np.int64)
|
|
print(sess.run(y, feed_dict={
|
|
x: tf.compat.v1.SparseTensorValue(indices, values, shape)})) # Will
|
|
succeed.
|
|
print(sess.run(y, feed_dict={
|
|
x: (indices, values, shape)})) # Will succeed.
|
|
|
|
sp = tf.SparseTensor(indices=indices, values=values, dense_shape=shape)
|
|
sp_value = sp.eval(session=sess)
|
|
print(sess.run(y, feed_dict={x: sp_value})) # Will succeed.
|
|
```
|
|
|
|
@compatibility{eager} Placeholders are not compatible with eager execution.
|
|
|
|
Args:
|
|
dtype: The type of `values` elements in the tensor to be fed.
|
|
shape: The shape of the tensor to be fed (optional). If the shape is not
|
|
specified, you can feed a sparse tensor of any shape.
|
|
name: A name for prefixing the operations (optional).
|
|
|
|
Returns:
|
|
A `SparseTensor` that may be used as a handle for feeding a value, but not
|
|
evaluated directly.
|
|
|
|
Raises:
|
|
RuntimeError: if eager execution is enabled
|
|
"""
|
|
if context.executing_eagerly():
|
|
raise RuntimeError("tf.placeholder() is not compatible with "
|
|
"eager execution.")
|
|
|
|
shape_name = (name + "/shape") if name is not None else None
|
|
shape, rank = _normalize_sparse_shape(shape, shape_name)
|
|
if shape is None:
|
|
shape = placeholder(dtypes.int64, shape=[rank], name=shape_name)
|
|
return sparse_tensor.SparseTensor(
|
|
values=placeholder(
|
|
dtype,
|
|
shape=[None],
|
|
name=(name + "/values") if name is not None else None),
|
|
indices=placeholder(
|
|
dtypes.int64,
|
|
shape=[None, rank],
|
|
name=(name + "/indices") if name is not None else None),
|
|
dense_shape=shape)
|
|
|
|
|
|
# pylint: enable=redefined-outer-name
|
|
|
|
|
|
@tf_export("pad", v1=[])
|
|
def pad_v2(tensor, paddings, mode="CONSTANT", constant_values=0, name=None):
|
|
"""Pads a tensor.
|
|
|
|
This operation pads a `tensor` according to the `paddings` you specify.
|
|
`paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of
|
|
`tensor`. For each dimension D of `input`, `paddings[D, 0]` indicates how
|
|
many values to add before the contents of `tensor` in that dimension, and
|
|
`paddings[D, 1]` indicates how many values to add after the contents of
|
|
`tensor` in that dimension. If `mode` is "REFLECT" then both `paddings[D, 0]`
|
|
and `paddings[D, 1]` must be no greater than `tensor.dim_size(D) - 1`. If
|
|
`mode` is "SYMMETRIC" then both `paddings[D, 0]` and `paddings[D, 1]` must be
|
|
no greater than `tensor.dim_size(D)`.
|
|
|
|
The padded size of each dimension D of the output is:
|
|
|
|
`paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]`
|
|
|
|
For example:
|
|
|
|
```python
|
|
t = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
paddings = tf.constant([[1, 1,], [2, 2]])
|
|
# 'constant_values' is 0.
|
|
# rank of 't' is 2.
|
|
tf.pad(t, paddings, "CONSTANT") # [[0, 0, 0, 0, 0, 0, 0],
|
|
# [0, 0, 1, 2, 3, 0, 0],
|
|
# [0, 0, 4, 5, 6, 0, 0],
|
|
# [0, 0, 0, 0, 0, 0, 0]]
|
|
|
|
tf.pad(t, paddings, "REFLECT") # [[6, 5, 4, 5, 6, 5, 4],
|
|
# [3, 2, 1, 2, 3, 2, 1],
|
|
# [6, 5, 4, 5, 6, 5, 4],
|
|
# [3, 2, 1, 2, 3, 2, 1]]
|
|
|
|
tf.pad(t, paddings, "SYMMETRIC") # [[2, 1, 1, 2, 3, 3, 2],
|
|
# [2, 1, 1, 2, 3, 3, 2],
|
|
# [5, 4, 4, 5, 6, 6, 5],
|
|
# [5, 4, 4, 5, 6, 6, 5]]
|
|
```
|
|
|
|
Args:
|
|
tensor: A `Tensor`.
|
|
paddings: A `Tensor` of type `int32`.
|
|
mode: One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive)
|
|
constant_values: In "CONSTANT" mode, the scalar pad value to use. Must be
|
|
same type as `tensor`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `tensor`.
|
|
|
|
Raises:
|
|
ValueError: When mode is not one of "CONSTANT", "REFLECT", or "SYMMETRIC".
|
|
"""
|
|
return pad(tensor, paddings, mode, name, constant_values)
|
|
|
|
|
|
@tf_export(v1=["pad"])
|
|
def pad(tensor, paddings, mode="CONSTANT", name=None, constant_values=0): # pylint: disable=invalid-name
|
|
"""Pads a tensor.
|
|
|
|
This operation pads a `tensor` according to the `paddings` you specify.
|
|
`paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of
|
|
`tensor`. For each dimension D of `input`, `paddings[D, 0]` indicates how
|
|
many values to add before the contents of `tensor` in that dimension, and
|
|
`paddings[D, 1]` indicates how many values to add after the contents of
|
|
`tensor` in that dimension. If `mode` is "REFLECT" then both `paddings[D, 0]`
|
|
and `paddings[D, 1]` must be no greater than `tensor.dim_size(D) - 1`. If
|
|
`mode` is "SYMMETRIC" then both `paddings[D, 0]` and `paddings[D, 1]` must be
|
|
no greater than `tensor.dim_size(D)`.
|
|
|
|
The padded size of each dimension D of the output is:
|
|
|
|
`paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]`
|
|
|
|
For example:
|
|
|
|
```python
|
|
t = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
paddings = tf.constant([[1, 1,], [2, 2]])
|
|
# 'constant_values' is 0.
|
|
# rank of 't' is 2.
|
|
tf.pad(t, paddings, "CONSTANT") # [[0, 0, 0, 0, 0, 0, 0],
|
|
# [0, 0, 1, 2, 3, 0, 0],
|
|
# [0, 0, 4, 5, 6, 0, 0],
|
|
# [0, 0, 0, 0, 0, 0, 0]]
|
|
|
|
tf.pad(t, paddings, "REFLECT") # [[6, 5, 4, 5, 6, 5, 4],
|
|
# [3, 2, 1, 2, 3, 2, 1],
|
|
# [6, 5, 4, 5, 6, 5, 4],
|
|
# [3, 2, 1, 2, 3, 2, 1]]
|
|
|
|
tf.pad(t, paddings, "SYMMETRIC") # [[2, 1, 1, 2, 3, 3, 2],
|
|
# [2, 1, 1, 2, 3, 3, 2],
|
|
# [5, 4, 4, 5, 6, 6, 5],
|
|
# [5, 4, 4, 5, 6, 6, 5]]
|
|
```
|
|
|
|
Args:
|
|
tensor: A `Tensor`.
|
|
paddings: A `Tensor` of type `int32`.
|
|
mode: One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive)
|
|
name: A name for the operation (optional).
|
|
constant_values: In "CONSTANT" mode, the scalar pad value to use. Must be
|
|
same type as `tensor`.
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `tensor`.
|
|
|
|
Raises:
|
|
ValueError: When mode is not one of "CONSTANT", "REFLECT", or "SYMMETRIC".
|
|
"""
|
|
|
|
# Convert lower/mixed case to upper for NumPy compatibility
|
|
# NumPy uses all lower-case modes.
|
|
mode = mode.upper()
|
|
if mode == "CONSTANT":
|
|
# TODO(rjryan): Once the forward compatibility period (3 weeks) have passed
|
|
# remove the "Pad" fallback here.
|
|
if not tensor_util.is_tensor(constant_values) and constant_values == 0:
|
|
result = gen_array_ops.pad(tensor, paddings, name=name)
|
|
else:
|
|
result = gen_array_ops.pad_v2(
|
|
tensor, paddings, constant_values, name=name)
|
|
elif mode == "REFLECT":
|
|
result = gen_array_ops.mirror_pad(
|
|
tensor, paddings, mode="REFLECT", name=name)
|
|
elif mode == "SYMMETRIC":
|
|
result = gen_array_ops.mirror_pad(
|
|
tensor, paddings, mode="SYMMETRIC", name=name)
|
|
else:
|
|
raise ValueError("Unknown padding mode: %s" % mode)
|
|
|
|
# Restore shape information where possible.
|
|
if not context.executing_eagerly():
|
|
paddings_constant = _get_paddings_constant(paddings)
|
|
input_shape = (
|
|
tensor_shape.TensorShape(tensor.shape)
|
|
if isinstance(tensor, ops.Tensor) else result.op.inputs[0].shape)
|
|
if (input_shape.ndims is not None and
|
|
not result.shape.is_fully_defined() and paddings_constant is not None):
|
|
new_shape = []
|
|
for padding, dim in zip(paddings_constant, input_shape.as_list()):
|
|
if padding is None or dim is None or any((x is None for x in padding)):
|
|
new_shape.append(None)
|
|
else:
|
|
new_shape.append(sum(padding) + dim)
|
|
result.set_shape(new_shape)
|
|
|
|
return result
|
|
|
|
|
|
def _get_paddings_constant(paddings):
|
|
"""Helper to get the constant values of the paddings arg to pad().
|
|
|
|
Used under V1 graph mode to facilitate computation of the shape of the output
|
|
tensor of `pad()`.
|
|
|
|
Args:
|
|
paddings: The same paddings arg as passed to pad(). Can be a Tensor, or
|
|
a nested list or tuple of Tensor and/or numbers.
|
|
|
|
Returns:
|
|
A nested list or numbers or `None`, in which `None` indicates unknown
|
|
padding size.
|
|
"""
|
|
if isinstance(paddings, ops.Tensor):
|
|
return tensor_util.constant_value(paddings, partial=True)
|
|
elif isinstance(paddings, (list, tuple)):
|
|
return [_get_paddings_constant(x) for x in paddings]
|
|
else:
|
|
return paddings
|
|
|
|
|
|
@tf_export("meshgrid")
|
|
def meshgrid(*args, **kwargs):
|
|
"""Broadcasts parameters for evaluation on an N-D grid.
|
|
|
|
Given N one-dimensional coordinate arrays `*args`, returns a list `outputs`
|
|
of N-D coordinate arrays for evaluating expressions on an N-D grid.
|
|
|
|
Notes:
|
|
|
|
`meshgrid` supports cartesian ('xy') and matrix ('ij') indexing conventions.
|
|
When the `indexing` argument is set to 'xy' (the default), the broadcasting
|
|
instructions for the first two dimensions are swapped.
|
|
|
|
Examples:
|
|
|
|
Calling `X, Y = meshgrid(x, y)` with the tensors
|
|
|
|
```python
|
|
x = [1, 2, 3]
|
|
y = [4, 5, 6]
|
|
X, Y = tf.meshgrid(x, y)
|
|
# X = [[1, 2, 3],
|
|
# [1, 2, 3],
|
|
# [1, 2, 3]]
|
|
# Y = [[4, 4, 4],
|
|
# [5, 5, 5],
|
|
# [6, 6, 6]]
|
|
```
|
|
|
|
Args:
|
|
*args: `Tensor`s with rank 1.
|
|
**kwargs:
|
|
- indexing: Either 'xy' or 'ij' (optional, default: 'xy').
|
|
- name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
outputs: A list of N `Tensor`s with rank N.
|
|
|
|
Raises:
|
|
TypeError: When no keyword arguments (kwargs) are passed.
|
|
ValueError: When indexing keyword argument is not one of `xy` or `ij`.
|
|
"""
|
|
|
|
indexing = kwargs.pop("indexing", "xy")
|
|
name = kwargs.pop("name", "meshgrid")
|
|
if kwargs:
|
|
key = list(kwargs.keys())[0]
|
|
raise TypeError("'{}' is an invalid keyword argument "
|
|
"for this function".format(key))
|
|
|
|
if indexing not in ("xy", "ij"):
|
|
raise ValueError("indexing parameter must be either 'xy' or 'ij'")
|
|
|
|
with ops.name_scope(name, "meshgrid", args) as name:
|
|
ndim = len(args)
|
|
s0 = (1,) * ndim
|
|
|
|
# Prepare reshape by inserting dimensions with size 1 where needed
|
|
output = []
|
|
for i, x in enumerate(args):
|
|
output.append(reshape(stack(x), (s0[:i] + (-1,) + s0[i + 1::])))
|
|
# Create parameters for broadcasting each tensor to the full size
|
|
shapes = [size(x) for x in args]
|
|
|
|
output_dtype = ops.convert_to_tensor(args[0]).dtype.base_dtype
|
|
|
|
if indexing == "xy" and ndim > 1:
|
|
output[0] = reshape(output[0], (1, -1) + (1,) * (ndim - 2))
|
|
output[1] = reshape(output[1], (-1, 1) + (1,) * (ndim - 2))
|
|
shapes[0], shapes[1] = shapes[1], shapes[0]
|
|
|
|
# TODO(nolivia): improve performance with a broadcast
|
|
mult_fact = ones(shapes, output_dtype)
|
|
return [x * mult_fact for x in output]
|
|
|
|
|
|
NEW_AXIS = -1
|
|
SHRINK_AXIS = -2
|
|
|
|
|
|
# PEP-8 naming
|
|
# pylint: disable=invalid-name,redefined-outer-name
|
|
def _compute_size_of_strided_dim(shrink, spec, size):
|
|
"""Computes the size of a single strided slice dimension."""
|
|
|
|
unknown = None # Document what None means here.
|
|
use_full_range = None # Document other use of None.
|
|
# if this is a shrink axis (i.e. a non-range index)
|
|
# it either will produce an error or return 1
|
|
if shrink:
|
|
return 1
|
|
if size is unknown or size.value is unknown:
|
|
return unknown
|
|
size = size.value
|
|
stride = spec.step
|
|
if stride is not unknown:
|
|
if stride == 0:
|
|
return unknown
|
|
stride = spec.step
|
|
valid_range = [0, size] if stride > 0 else [-1, size - 1]
|
|
|
|
# PEP-8 naming
|
|
# pylint: disable=invalid-name
|
|
def canonical(x, c):
|
|
if x is use_full_range:
|
|
return valid_range[c] if stride > 0 else valid_range[(c + 1) & 1]
|
|
else:
|
|
x_fwd = size + x if x < 0 else x # make negative indices positive
|
|
return max(valid_range[0], min(valid_range[1], x_fwd))
|
|
|
|
begin = canonical(spec.start, 0)
|
|
end = canonical(spec.stop, 1)
|
|
interval_length = end - begin
|
|
if interval_length == 0 or ((interval_length < 0) != (stride < 0)):
|
|
return 0
|
|
else:
|
|
remainder = 1 if interval_length % stride != 0 else 0
|
|
return interval_length // stride + remainder
|
|
else:
|
|
return unknown # unknown because stride is unknown
|
|
|
|
|
|
def _TileGradShape(op):
|
|
"""Shape function for the TileGrad op."""
|
|
multiples_shape = op.inputs[1].get_shape().with_rank(1)
|
|
input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0])
|
|
# NOTE(mrry): Represent `multiples` as a `TensorShape` because (i)
|
|
# it is a vector of non-negative integers, and (ii) doing so allows
|
|
# us to handle partially-known multiples.
|
|
multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank(
|
|
input_shape.ndims)
|
|
if multiples.ndims is None:
|
|
return [tensor_shape.unknown_shape()]
|
|
else:
|
|
output_dims = []
|
|
for dim, multiple in zip(input_shape.dims, multiples.dims):
|
|
output_dims.append(dim // multiple)
|
|
return [tensor_shape.TensorShape(output_dims)]
|
|
|
|
|
|
@tf_export("edit_distance")
|
|
def edit_distance(hypothesis, truth, normalize=True, name="edit_distance"):
|
|
"""Computes the Levenshtein distance between sequences.
|
|
|
|
This operation takes variable-length sequences (`hypothesis` and `truth`),
|
|
each provided as a `SparseTensor`, and computes the Levenshtein distance.
|
|
You can normalize the edit distance by length of `truth` by setting
|
|
`normalize` to true.
|
|
|
|
For example, given the following input:
|
|
|
|
```python
|
|
# 'hypothesis' is a tensor of shape `[2, 1]` with variable-length values:
|
|
# (0,0) = ["a"]
|
|
# (1,0) = ["b"]
|
|
hypothesis = tf.SparseTensor(
|
|
[[0, 0, 0],
|
|
[1, 0, 0]],
|
|
["a", "b"],
|
|
(2, 1, 1))
|
|
|
|
# 'truth' is a tensor of shape `[2, 2]` with variable-length values:
|
|
# (0,0) = []
|
|
# (0,1) = ["a"]
|
|
# (1,0) = ["b", "c"]
|
|
# (1,1) = ["a"]
|
|
truth = tf.SparseTensor(
|
|
[[0, 1, 0],
|
|
[1, 0, 0],
|
|
[1, 0, 1],
|
|
[1, 1, 0]],
|
|
["a", "b", "c", "a"],
|
|
(2, 2, 2))
|
|
|
|
normalize = True
|
|
```
|
|
|
|
This operation would return the following:
|
|
|
|
```python
|
|
# 'output' is a tensor of shape `[2, 2]` with edit distances normalized
|
|
# by 'truth' lengths.
|
|
output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis
|
|
[0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis
|
|
```
|
|
|
|
Args:
|
|
hypothesis: A `SparseTensor` containing hypothesis sequences.
|
|
truth: A `SparseTensor` containing truth sequences.
|
|
normalize: A `bool`. If `True`, normalizes the Levenshtein distance by
|
|
length of `truth.`
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A dense `Tensor` with rank `R - 1`, where R is the rank of the
|
|
`SparseTensor` inputs `hypothesis` and `truth`.
|
|
|
|
Raises:
|
|
TypeError: If either `hypothesis` or `truth` are not a `SparseTensor`.
|
|
"""
|
|
if not isinstance(
|
|
hypothesis,
|
|
(sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
|
|
raise TypeError("Hypothesis must be a SparseTensor.")
|
|
if not isinstance(
|
|
truth, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
|
|
raise TypeError("Truth must be a SparseTensor.")
|
|
|
|
return gen_array_ops.edit_distance(
|
|
hypothesis.indices,
|
|
hypothesis.values,
|
|
hypothesis.dense_shape,
|
|
truth.indices,
|
|
truth.values,
|
|
truth.dense_shape,
|
|
normalize=normalize,
|
|
name=name)
|
|
|
|
|
|
@ops.RegisterGradient("FakeQuantWithMinMaxArgs")
|
|
def _FakeQuantWithMinMaxArgsGradient(op, grad):
|
|
"""Gradient for FakeQuantWithMinMaxArgs op."""
|
|
return fake_quant_with_min_max_args_gradient(
|
|
grad,
|
|
op.inputs[0],
|
|
min=op.get_attr("min"),
|
|
max=op.get_attr("max"),
|
|
num_bits=op.get_attr("num_bits"),
|
|
narrow_range=op.get_attr("narrow_range"))
|
|
|
|
|
|
@ops.RegisterGradient("FakeQuantWithMinMaxVars")
|
|
def _FakeQuantWithMinMaxVarsGradient(op, grad):
|
|
"""Gradient for FakeQuantWithMinMaxVars op."""
|
|
return fake_quant_with_min_max_vars_gradient(
|
|
grad,
|
|
op.inputs[0],
|
|
op.inputs[1],
|
|
op.inputs[2],
|
|
num_bits=op.get_attr("num_bits"),
|
|
narrow_range=op.get_attr("narrow_range"))
|
|
|
|
|
|
@ops.RegisterGradient("FakeQuantWithMinMaxVarsPerChannel")
|
|
def _FakeQuantWithMinMaxVarsPerChannelGradient(op, grad):
|
|
"""Gradient for FakeQuantWithMinMaxVarsPerChannel op."""
|
|
return fake_quant_with_min_max_vars_per_channel_gradient(
|
|
grad,
|
|
op.inputs[0],
|
|
op.inputs[1],
|
|
op.inputs[2],
|
|
num_bits=op.get_attr("num_bits"),
|
|
narrow_range=op.get_attr("narrow_range"))
|
|
|
|
|
|
@tf_export("required_space_to_batch_paddings")
|
|
def required_space_to_batch_paddings(input_shape,
|
|
block_shape,
|
|
base_paddings=None,
|
|
name=None):
|
|
"""Calculate padding required to make block_shape divide input_shape.
|
|
|
|
This function can be used to calculate a suitable paddings argument for use
|
|
with space_to_batch_nd and batch_to_space_nd.
|
|
|
|
Args:
|
|
input_shape: int32 Tensor of shape [N].
|
|
block_shape: int32 Tensor of shape [N].
|
|
base_paddings: Optional int32 Tensor of shape [N, 2]. Specifies the minimum
|
|
amount of padding to use. All elements must be >= 0. If not specified,
|
|
defaults to 0.
|
|
name: string. Optional name prefix.
|
|
|
|
Returns:
|
|
(paddings, crops), where:
|
|
|
|
`paddings` and `crops` are int32 Tensors of rank 2 and shape [N, 2]
|
|
satisfying:
|
|
|
|
paddings[i, 0] = base_paddings[i, 0].
|
|
0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i]
|
|
(input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0
|
|
|
|
crops[i, 0] = 0
|
|
crops[i, 1] = paddings[i, 1] - base_paddings[i, 1]
|
|
|
|
Raises: ValueError if called with incompatible shapes.
|
|
"""
|
|
with ops.name_scope(name, "required_space_to_batch_paddings",
|
|
[input_shape, block_shape]):
|
|
input_shape = ops.convert_to_tensor(
|
|
input_shape, dtype=dtypes.int32, name="input_shape")
|
|
block_shape = ops.convert_to_tensor(
|
|
block_shape, dtype=dtypes.int32, name="block_shape")
|
|
|
|
block_shape.get_shape().assert_is_fully_defined()
|
|
block_shape.get_shape().assert_has_rank(1)
|
|
num_block_dims = block_shape.get_shape().dims[0].value
|
|
if num_block_dims == 0:
|
|
return zeros([0, 2], dtypes.int32), zeros([0, 2], dtypes.int32)
|
|
|
|
input_shape.get_shape().assert_is_compatible_with([num_block_dims])
|
|
|
|
if base_paddings is not None:
|
|
base_paddings = ops.convert_to_tensor(
|
|
base_paddings, dtype=dtypes.int32, name="base_paddings")
|
|
base_paddings.get_shape().assert_is_compatible_with([num_block_dims, 2])
|
|
else:
|
|
base_paddings = zeros([num_block_dims, 2], dtypes.int32)
|
|
|
|
const_block_shape = tensor_util.constant_value(block_shape)
|
|
const_input_shape = tensor_util.constant_value(input_shape)
|
|
const_base_paddings = tensor_util.constant_value(base_paddings)
|
|
if (const_block_shape is not None and const_input_shape is not None and
|
|
const_base_paddings is not None):
|
|
block_shape = const_block_shape
|
|
input_shape = const_input_shape
|
|
base_paddings = const_base_paddings
|
|
|
|
# Use same expression for both constant and non-constant case.
|
|
pad_start = base_paddings[:, 0]
|
|
orig_pad_end = base_paddings[:, 1]
|
|
full_input_shape = input_shape + pad_start + orig_pad_end
|
|
pad_end_extra = (block_shape - full_input_shape % block_shape) % block_shape
|
|
pad_end = orig_pad_end + pad_end_extra
|
|
|
|
result_paddings = stack(
|
|
[[pad_start[i], pad_end[i]] for i in range(num_block_dims)],
|
|
name="paddings")
|
|
result_crops = stack([[0, pad_end_extra[i]] for i in range(num_block_dims)],
|
|
name="crops")
|
|
return result_paddings, result_crops
|
|
|
|
|
|
@tf_export(v1=["nn.space_to_batch", "space_to_batch"])
|
|
@deprecation.deprecated_endpoints("space_to_batch")
|
|
def space_to_batch( # pylint: disable=missing-docstring
|
|
input, # pylint: disable=redefined-builtin
|
|
paddings,
|
|
block_size=None,
|
|
name=None,
|
|
block_shape=None): # pylint: disable=redefined-builtin
|
|
block_size = deprecation.deprecated_argument_lookup("block_shape",
|
|
block_shape, "block_size",
|
|
block_size)
|
|
result = space_to_batch_nd(
|
|
input,
|
|
paddings=paddings,
|
|
block_shape=np.array([block_size, block_size], dtype=np.int64),
|
|
name=name)
|
|
result.set_shape(result.get_shape().with_rank(4))
|
|
return result
|
|
|
|
|
|
space_to_batch.__doc__ = gen_array_ops.space_to_batch.__doc__
|
|
|
|
|
|
@tf_export("space_to_batch", "nn.space_to_batch", v1=[])
|
|
def space_to_batch_v2(input, block_shape, paddings, name=None): # pylint: disable=redefined-builtin
|
|
return space_to_batch_nd(input, block_shape, paddings, name)
|
|
|
|
|
|
space_to_batch_v2.__doc__ = gen_array_ops.space_to_batch_nd.__doc__
|
|
|
|
|
|
@tf_export(v1=["nn.space_to_depth", "space_to_depth"])
|
|
@deprecation.deprecated_endpoints("space_to_depth")
|
|
def space_to_depth(input, block_size, name=None, data_format="NHWC"): # pylint: disable=redefined-builtin
|
|
return gen_array_ops.space_to_depth(input, block_size, data_format, name=name)
|
|
|
|
|
|
space_to_depth.__doc__ = gen_array_ops.space_to_depth.__doc__
|
|
|
|
|
|
@tf_export("nn.space_to_depth", v1=[])
|
|
def space_to_depth_v2(input, block_size, data_format="NHWC", name=None): # pylint: disable=redefined-builtin
|
|
return gen_array_ops.space_to_depth(input, block_size, data_format, name=name)
|
|
|
|
|
|
space_to_depth_v2.__doc__ = gen_array_ops.space_to_depth.__doc__
|
|
|
|
|
|
@tf_export(v1=["nn.depth_to_space", "depth_to_space"])
|
|
@deprecation.deprecated_endpoints("depth_to_space")
|
|
def depth_to_space(input, block_size, name=None, data_format="NHWC"): # pylint: disable=redefined-builtin
|
|
return gen_array_ops.depth_to_space(input, block_size, data_format, name=name)
|
|
|
|
|
|
depth_to_space.__doc__ = gen_array_ops.depth_to_space.__doc__
|
|
|
|
|
|
@tf_export("nn.depth_to_space", v1=[])
|
|
def depth_to_space_v2(input, block_size, data_format="NHWC", name=None): # pylint: disable=redefined-builtin
|
|
return gen_array_ops.depth_to_space(input, block_size, data_format, name=name)
|
|
|
|
|
|
depth_to_space_v2.__doc__ = gen_array_ops.depth_to_space.__doc__
|
|
|
|
|
|
@tf_export(v1=["batch_to_space"])
|
|
def batch_to_space(input, crops, block_size, name=None, block_shape=None): # pylint: disable=redefined-builtin,missing-docstring
|
|
block_size = deprecation.deprecated_argument_lookup("block_shape",
|
|
block_shape, "block_size",
|
|
block_size)
|
|
result = batch_to_space_nd(
|
|
input,
|
|
crops=crops,
|
|
block_shape=np.array([block_size, block_size], dtype=np.int64),
|
|
name=name)
|
|
result.set_shape(result.get_shape().with_rank(4))
|
|
return result
|
|
|
|
|
|
batch_to_space.__doc__ = gen_array_ops.batch_to_space.__doc__
|
|
|
|
|
|
@tf_export("batch_to_space", v1=[])
|
|
def batch_to_space_v2(input, block_shape, crops, name=None): # pylint: disable=redefined-builtin
|
|
"""BatchToSpace for N-D tensors of type T.
|
|
|
|
This operation reshapes the "batch" dimension 0 into `M + 1` dimensions of
|
|
shape `block_shape + [batch]`, interleaves these blocks back into the grid
|
|
defined by the spatial dimensions `[1, ..., M]`, to obtain a result with the
|
|
same rank as the input. The spatial dimensions of this intermediate result
|
|
are then optionally cropped according to `crops` to produce the output. This
|
|
is the reverse of SpaceToBatch. See below for a precise description.
|
|
|
|
Args:
|
|
input: A `Tensor`. N-D with shape `input_shape = [batch] + spatial_shape +
|
|
remaining_shape`, where spatial_shape has M dimensions.
|
|
block_shape: A `Tensor`. Must be one of the following types: `int32`,
|
|
`int64`. 1-D with shape `[M]`, all values must be >= 1. For backwards
|
|
compatibility with TF 1.0, this parameter may be an int, in which case it
|
|
is converted to `numpy.array([block_shape, block_shape],
|
|
dtype=numpy.int64)`.
|
|
crops: A `Tensor`. Must be one of the following types: `int32`, `int64`. 2-D
|
|
with shape `[M, 2]`, all values must be >= 0. `crops[i] = [crop_start,
|
|
crop_end]` specifies the amount to crop from input dimension `i + 1`,
|
|
which corresponds to spatial dimension `i`. It is required that
|
|
`crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1]`.
|
|
This operation is equivalent to the following steps:
|
|
1. Reshape `input` to `reshaped` of shape: [block_shape[0], ...,
|
|
block_shape[M-1], batch / prod(block_shape), input_shape[1], ...,
|
|
input_shape[N-1]]
|
|
2. Permute dimensions of `reshaped` to produce `permuted` of shape
|
|
[batch / prod(block_shape), input_shape[1], block_shape[0], ...,
|
|
input_shape[M], block_shape[M-1], input_shape[M+1],
|
|
..., input_shape[N-1]]
|
|
3. Reshape `permuted` to produce `reshaped_permuted` of shape
|
|
[batch / prod(block_shape), input_shape[1] * block_shape[0], ...,
|
|
input_shape[M] * block_shape[M-1], input_shape[M+1], ...,
|
|
input_shape[N-1]]
|
|
4. Crop the start and end of dimensions `[1, ..., M]` of
|
|
`reshaped_permuted` according to `crops` to produce the output
|
|
of shape:
|
|
[batch / prod(block_shape), input_shape[1] *
|
|
block_shape[0] - crops[0,0] - crops[0,1], ..., input_shape[M] *
|
|
block_shape[M-1] - crops[M-1,0] - crops[M-1,1], input_shape[M+1],
|
|
..., input_shape[N-1]]
|
|
Some examples: (1) For the following input of shape `[4, 1, 1, 1]`,
|
|
`block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`: ``` [[[[1]]],
|
|
[[[2]]], [[[3]]], [[[4]]]] ```
|
|
The output tensor has shape `[1, 2, 2, 1]` and value: ``` x = [[[[1],
|
|
[2]], [[3], [4]]]] ``` (2) For the following input of shape `[4, 1, 1,
|
|
3]`,
|
|
`block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`: ``` [[[1, 2,
|
|
3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]] ```
|
|
The output tensor has shape `[1, 2, 2, 3]` and value: ``` x = [[[[1, 2,
|
|
3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]] ``` (3) For the following
|
|
input of shape `[4, 2, 2, 1]`,
|
|
`block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`: ``` x =
|
|
[[[[1], [3]], [[9], [11]]], [[[2], [4]], [[10], [12]]], [[[5], [7]],
|
|
[[13], [15]]], [[[6], [8]], [[14], [16]]]] ```
|
|
The output tensor has shape `[1, 4, 4, 1]` and value: ``` x = [[[1], [2],
|
|
[3], [4]], [[5], [6], [7], [8]], [[9], [10], [11], [12]], [[13],
|
|
[14], [15], [16]]] ``` (4) For the following input of shape `[8, 1, 3,
|
|
1]`,
|
|
`block_shape = [2, 2]`, and `crops = [[0, 0], [2, 0]]`: ``` x =
|
|
[[[[0], [1], [3]]], [[[0], [9], [11]]], [[[0], [2], [4]]], [[[0],
|
|
[10], [12]]], [[[0], [5], [7]]], [[[0], [13], [15]]], [[[0], [6],
|
|
[8]]], [[[0], [14], [16]]]] ```
|
|
The output tensor has shape `[2, 2, 4, 1]` and value: ``` x = [[[[1],
|
|
[2], [3], [4]], [[5], [6], [7], [8]]], [[[9], [10], [11], [12]],
|
|
[[13], [14], [15], [16]]]] ```
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `input`.
|
|
"""
|
|
if isinstance(block_shape, int):
|
|
block_shape = np.array([block_shape, block_shape], dtype=np.int64)
|
|
|
|
return batch_to_space_nd(
|
|
input=input, block_shape=block_shape, crops=crops, name=name)
|
|
|
|
|
|
@tf_export("one_hot")
|
|
@dispatch.add_dispatch_support
|
|
def one_hot(indices,
|
|
depth,
|
|
on_value=None,
|
|
off_value=None,
|
|
axis=None,
|
|
dtype=None,
|
|
name=None):
|
|
"""Returns a one-hot tensor.
|
|
|
|
The locations represented by indices in `indices` take value `on_value`,
|
|
while all other locations take value `off_value`.
|
|
|
|
`on_value` and `off_value` must have matching data types. If `dtype` is also
|
|
provided, they must be the same data type as specified by `dtype`.
|
|
|
|
If `on_value` is not provided, it will default to the value `1` with type
|
|
`dtype`
|
|
|
|
If `off_value` is not provided, it will default to the value `0` with type
|
|
`dtype`
|
|
|
|
If the input `indices` is rank `N`, the output will have rank `N+1`. The
|
|
new axis is created at dimension `axis` (default: the new axis is appended
|
|
at the end).
|
|
|
|
If `indices` is a scalar the output shape will be a vector of length `depth`
|
|
|
|
If `indices` is a vector of length `features`, the output shape will be:
|
|
|
|
```
|
|
features x depth if axis == -1
|
|
depth x features if axis == 0
|
|
```
|
|
|
|
If `indices` is a matrix (batch) with shape `[batch, features]`, the output
|
|
shape will be:
|
|
|
|
```
|
|
batch x features x depth if axis == -1
|
|
batch x depth x features if axis == 1
|
|
depth x batch x features if axis == 0
|
|
```
|
|
|
|
If `indices` is a RaggedTensor, the 'axis' argument must be positive and refer
|
|
to a non-ragged axis. The output will be equivalent to applying 'one_hot' on
|
|
the values of the RaggedTensor, and creating a new RaggedTensor from the
|
|
result.
|
|
|
|
If `dtype` is not provided, it will attempt to assume the data type of
|
|
`on_value` or `off_value`, if one or both are passed in. If none of
|
|
`on_value`, `off_value`, or `dtype` are provided, `dtype` will default to the
|
|
value `tf.float32`.
|
|
|
|
Note: If a non-numeric data type output is desired (`tf.string`, `tf.bool`,
|
|
etc.), both `on_value` and `off_value` _must_ be provided to `one_hot`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
indices = [0, 1, 2]
|
|
depth = 3
|
|
tf.one_hot(indices, depth) # output: [3 x 3]
|
|
# [[1., 0., 0.],
|
|
# [0., 1., 0.],
|
|
# [0., 0., 1.]]
|
|
|
|
indices = [0, 2, -1, 1]
|
|
depth = 3
|
|
tf.one_hot(indices, depth,
|
|
on_value=5.0, off_value=0.0,
|
|
axis=-1) # output: [4 x 3]
|
|
# [[5.0, 0.0, 0.0], # one_hot(0)
|
|
# [0.0, 0.0, 5.0], # one_hot(2)
|
|
# [0.0, 0.0, 0.0], # one_hot(-1)
|
|
# [0.0, 5.0, 0.0]] # one_hot(1)
|
|
|
|
indices = [[0, 2], [1, -1]]
|
|
depth = 3
|
|
tf.one_hot(indices, depth,
|
|
on_value=1.0, off_value=0.0,
|
|
axis=-1) # output: [2 x 2 x 3]
|
|
# [[[1.0, 0.0, 0.0], # one_hot(0)
|
|
# [0.0, 0.0, 1.0]], # one_hot(2)
|
|
# [[0.0, 1.0, 0.0], # one_hot(1)
|
|
# [0.0, 0.0, 0.0]]] # one_hot(-1)
|
|
|
|
indices = tf.ragged.constant([[0, 1], [2]])
|
|
depth = 3
|
|
tf.one_hot(indices, depth) # output: [2 x None x 3]
|
|
# [[[1., 0., 0.],
|
|
# [0., 1., 0.]],
|
|
# [[0., 0., 1.]]]
|
|
```
|
|
|
|
Args:
|
|
indices: A `Tensor` of indices.
|
|
depth: A scalar defining the depth of the one hot dimension.
|
|
on_value: A scalar defining the value to fill in output when `indices[j]
|
|
= i`. (default: 1)
|
|
off_value: A scalar defining the value to fill in output when `indices[j]
|
|
!= i`. (default: 0)
|
|
axis: The axis to fill (default: -1, a new inner-most axis).
|
|
dtype: The data type of the output tensor.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
output: The one-hot tensor.
|
|
|
|
Raises:
|
|
TypeError: If dtype of either `on_value` or `off_value` don't match `dtype`
|
|
TypeError: If dtype of `on_value` and `off_value` don't match one another
|
|
"""
|
|
with ops.name_scope(
|
|
name, "one_hot",
|
|
[indices, depth, on_value, off_value, axis, dtype]) as name:
|
|
on_exists = on_value is not None
|
|
off_exists = off_value is not None
|
|
|
|
on_dtype = (
|
|
ops.convert_to_tensor(on_value).dtype.base_dtype if on_exists else None)
|
|
off_dtype = (
|
|
ops.convert_to_tensor(off_value).dtype.base_dtype
|
|
if off_exists else None)
|
|
|
|
if on_exists or off_exists:
|
|
if dtype is not None:
|
|
# Ensure provided on_value and/or off_value match dtype
|
|
if on_exists and on_dtype != dtype:
|
|
raise TypeError("dtype {0} of on_value does not match "
|
|
"dtype parameter {1}".format(on_dtype, dtype))
|
|
if off_exists and off_dtype != dtype:
|
|
raise TypeError("dtype {0} of off_value does not match "
|
|
"dtype parameter {1}".format(off_dtype, dtype))
|
|
else:
|
|
# dtype not provided: automatically assign it
|
|
dtype = on_dtype if on_exists else off_dtype
|
|
elif dtype is None:
|
|
# None of on_value, off_value, or dtype provided. Default dtype to float32
|
|
dtype = dtypes.float32
|
|
|
|
if not on_exists:
|
|
# on_value not provided: assign to value 1 of type dtype
|
|
on_value = ops.convert_to_tensor(1, dtype, name="on_value")
|
|
on_dtype = dtype
|
|
if not off_exists:
|
|
# off_value not provided: assign to value 0 of type dtype
|
|
off_value = ops.convert_to_tensor(0, dtype, name="off_value")
|
|
off_dtype = dtype
|
|
|
|
if on_dtype != off_dtype:
|
|
raise TypeError("dtype {0} of on_value does not match "
|
|
"dtype {1} of off_value".format(on_dtype, off_dtype))
|
|
|
|
return gen_array_ops.one_hot(indices, depth, on_value, off_value, axis,
|
|
name)
|
|
|
|
|
|
def _all_dimensions(x):
|
|
"""Returns a 1D-tensor listing all dimensions in x."""
|
|
# Fast path: avoid creating Rank and Range ops if ndims is known.
|
|
if isinstance(x, ops.Tensor) and x.get_shape().ndims is not None:
|
|
return constant_op.constant(
|
|
np.arange(x.get_shape().ndims), dtype=dtypes.int32)
|
|
if (isinstance(x, sparse_tensor.SparseTensor) and
|
|
x.dense_shape.get_shape().is_fully_defined()):
|
|
r = x.dense_shape.get_shape().dims[0].value # sparse.dense_shape is 1-D.
|
|
return constant_op.constant(np.arange(r), dtype=dtypes.int32)
|
|
|
|
# Otherwise, we rely on `range` and `rank` to do the right thing at runtime.
|
|
return gen_math_ops._range(0, rank(x), 1)
|
|
|
|
|
|
@tf_export("sequence_mask")
|
|
def sequence_mask(lengths, maxlen=None, dtype=dtypes.bool, name=None):
|
|
"""Returns a mask tensor representing the first N positions of each cell.
|
|
|
|
If `lengths` has shape `[d_1, d_2, ..., d_n]` the resulting tensor `mask` has
|
|
dtype `dtype` and shape `[d_1, d_2, ..., d_n, maxlen]`, with
|
|
|
|
```
|
|
mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
|
|
```
|
|
|
|
Examples:
|
|
|
|
```python
|
|
tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False],
|
|
# [True, True, True, False, False],
|
|
# [True, True, False, False, False]]
|
|
|
|
tf.sequence_mask([[1, 3],[2,0]]) # [[[True, False, False],
|
|
# [True, True, True]],
|
|
# [[True, True, False],
|
|
# [False, False, False]]]
|
|
```
|
|
|
|
Args:
|
|
lengths: integer tensor, all its values <= maxlen.
|
|
maxlen: scalar integer tensor, size of last dimension of returned tensor.
|
|
Default is the maximum value in `lengths`.
|
|
dtype: output type of the resulting tensor.
|
|
name: name of the op.
|
|
|
|
Returns:
|
|
A mask tensor of shape `lengths.shape + (maxlen,)`, cast to specified dtype.
|
|
Raises:
|
|
ValueError: if `maxlen` is not a scalar.
|
|
"""
|
|
with ops.name_scope(name, "SequenceMask", [lengths, maxlen]):
|
|
lengths = ops.convert_to_tensor(lengths)
|
|
|
|
if maxlen is None:
|
|
maxlen = gen_math_ops._max(lengths, _all_dimensions(lengths))
|
|
maxlen = gen_math_ops.maximum(constant(0, maxlen.dtype), maxlen)
|
|
else:
|
|
maxlen = ops.convert_to_tensor(maxlen)
|
|
if maxlen.get_shape().ndims is not None and maxlen.get_shape().ndims != 0:
|
|
raise ValueError("maxlen must be scalar for sequence_mask")
|
|
|
|
# The basic idea is to compare a range row vector of size maxlen:
|
|
# [0, 1, 2, 3, 4]
|
|
# to length as a matrix with 1 column: [[1], [3], [2]].
|
|
# Because of broadcasting on both arguments this comparison results
|
|
# in a matrix of size (len(lengths), maxlen)
|
|
row_vector = gen_math_ops._range(
|
|
constant(0, maxlen.dtype), maxlen, constant(1, maxlen.dtype))
|
|
# Since maxlen >= max(lengths), it is safe to use maxlen as a cast
|
|
# authoritative type. Whenever maxlen fits into tf.int32, so do the lengths.
|
|
matrix = gen_math_ops.cast(expand_dims(lengths, -1), maxlen.dtype)
|
|
result = row_vector < matrix
|
|
|
|
if dtype is None or result.dtype.base_dtype == dtype.base_dtype:
|
|
return result
|
|
else:
|
|
return gen_math_ops.cast(result, dtype)
|
|
|
|
|
|
@tf_export(v1=["squeeze"])
|
|
@dispatch.add_dispatch_support
|
|
@deprecation.deprecated_args(None, "Use the `axis` argument instead",
|
|
"squeeze_dims")
|
|
def squeeze(input, axis=None, name=None, squeeze_dims=None):
|
|
# pylint: disable=redefined-builtin
|
|
"""Removes dimensions of size 1 from the shape of a tensor.
|
|
|
|
Given a tensor `input`, this operation returns a tensor of the same type with
|
|
all dimensions of size 1 removed. If you don't want to remove all size 1
|
|
dimensions, you can remove specific size 1 dimensions by specifying
|
|
`axis`.
|
|
|
|
For example:
|
|
|
|
>>> # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
|
|
>>> t = tf.ones([1, 2, 1, 3, 1, 1])
|
|
>>> print(tf.shape(tf.squeeze(t)).numpy())
|
|
[2 3]
|
|
|
|
Or, to remove specific size 1 dimensions:
|
|
|
|
>>> # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
|
|
>>> t = tf.ones([1, 2, 1, 3, 1, 1])
|
|
>>> print(tf.shape(tf.squeeze(t, [2, 4])).numpy())
|
|
[1 2 3 1]
|
|
|
|
Note: if `input` is a `tf.RaggedTensor`, then this operation takes `O(N)`
|
|
time, where `N` is the number of elements in the squeezed dimensions.
|
|
|
|
Args:
|
|
input: A `Tensor`. The `input` to squeeze.
|
|
axis: An optional list of `ints`. Defaults to `[]`. If specified, only
|
|
squeezes the dimensions listed. The dimension index starts at 0. It is an
|
|
error to squeeze a dimension that is not 1. Must be in the range
|
|
`[-rank(input), rank(input))`. Must be specified if `input` is a
|
|
`RaggedTensor`.
|
|
name: A name for the operation (optional).
|
|
squeeze_dims: Deprecated keyword argument that is now axis.
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `input`.
|
|
Contains the same data as `input`, but has one or more dimensions of
|
|
size 1 removed.
|
|
|
|
Raises:
|
|
ValueError: When both `squeeze_dims` and `axis` are specified.
|
|
"""
|
|
axis = deprecation.deprecated_argument_lookup("axis", axis, "squeeze_dims",
|
|
squeeze_dims)
|
|
if np.isscalar(axis):
|
|
axis = [axis]
|
|
return gen_array_ops.squeeze(input, axis, name)
|
|
|
|
|
|
@tf_export("squeeze", v1=[])
|
|
@dispatch.add_dispatch_support
|
|
def squeeze_v2(input, axis=None, name=None):
|
|
"""Removes dimensions of size 1 from the shape of a tensor.
|
|
|
|
Given a tensor `input`, this operation returns a tensor of the same type with
|
|
all dimensions of size 1 removed. If you don't want to remove all size 1
|
|
dimensions, you can remove specific size 1 dimensions by specifying
|
|
`axis`.
|
|
|
|
For example:
|
|
|
|
```python
|
|
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
|
|
tf.shape(tf.squeeze(t)) # [2, 3]
|
|
```
|
|
|
|
Or, to remove specific size 1 dimensions:
|
|
|
|
```python
|
|
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
|
|
tf.shape(tf.squeeze(t, [2, 4])) # [1, 2, 3, 1]
|
|
```
|
|
|
|
Unlike the older op `tf.compat.v1.squeeze`, this op does not accept a
|
|
deprecated `squeeze_dims` argument.
|
|
|
|
Note: if `input` is a `tf.RaggedTensor`, then this operation takes `O(N)`
|
|
time, where `N` is the number of elements in the squeezed dimensions.
|
|
|
|
Args:
|
|
input: A `Tensor`. The `input` to squeeze.
|
|
axis: An optional list of `ints`. Defaults to `[]`. If specified, only
|
|
squeezes the dimensions listed. The dimension index starts at 0. It is an
|
|
error to squeeze a dimension that is not 1. Must be in the range
|
|
`[-rank(input), rank(input))`. Must be specified if `input` is a
|
|
`RaggedTensor`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `input`.
|
|
Contains the same data as `input`, but has one or more dimensions of
|
|
size 1 removed.
|
|
|
|
Raises:
|
|
ValueError: The input cannot be converted to a tensor, or the specified
|
|
axis cannot be squeezed.
|
|
"""
|
|
# pylint: disable=redefined-builtin
|
|
return squeeze(input, axis, name)
|
|
|
|
|
|
@tf_export(v1=["where"])
|
|
@dispatch.add_dispatch_support
|
|
def where(condition, x=None, y=None, name=None):
|
|
"""Return the elements, either from `x` or `y`, depending on the `condition`.
|
|
|
|
If both `x` and `y` are None, then this operation returns the coordinates of
|
|
true elements of `condition`. The coordinates are returned in a 2-D tensor
|
|
where the first dimension (rows) represents the number of true elements, and
|
|
the second dimension (columns) represents the coordinates of the true
|
|
elements. Keep in mind, the shape of the output tensor can vary depending on
|
|
how many true values there are in input. Indices are output in row-major
|
|
order.
|
|
|
|
If both non-None, `x` and `y` must have the same shape.
|
|
The `condition` tensor must be a scalar if `x` and `y` are scalar.
|
|
If `x` and `y` are tensors of higher rank, then `condition` must be either a
|
|
vector with size matching the first dimension of `x`, or must have the same
|
|
shape as `x`.
|
|
|
|
The `condition` tensor acts as a mask that chooses, based on the value at each
|
|
element, whether the corresponding element / row in the output should be taken
|
|
from `x` (if true) or `y` (if false).
|
|
|
|
If `condition` is a vector and `x` and `y` are higher rank matrices, then it
|
|
chooses which row (outer dimension) to copy from `x` and `y`. If `condition`
|
|
has the same shape as `x` and `y`, then it chooses which element to copy from
|
|
`x` and `y`.
|
|
|
|
Args:
|
|
condition: A `Tensor` of type `bool`
|
|
x: A Tensor which may have the same shape as `condition`. If `condition` is
|
|
rank 1, `x` may have higher rank, but its first dimension must match the
|
|
size of `condition`.
|
|
y: A `tensor` with the same shape and type as `x`.
|
|
name: A name of the operation (optional)
|
|
|
|
Returns:
|
|
A `Tensor` with the same type and shape as `x`, `y` if they are non-None.
|
|
Otherwise, a `Tensor` with shape `(num_true, rank(condition))`.
|
|
|
|
Raises:
|
|
ValueError: When exactly one of `x` or `y` is non-None.
|
|
"""
|
|
if x is None and y is None:
|
|
with ops.name_scope(name, "Where", [condition]) as name:
|
|
condition = ops.convert_to_tensor(
|
|
condition, preferred_dtype=dtypes.bool, name="condition")
|
|
return gen_array_ops.where(condition=condition, name=name)
|
|
elif x is not None and y is not None:
|
|
return gen_math_ops.select(condition=condition, x=x, y=y, name=name)
|
|
else:
|
|
raise ValueError("x and y must both be non-None or both be None.")
|
|
|
|
|
|
@tf_export("where", v1=["where_v2"])
|
|
def where_v2(condition, x=None, y=None, name=None):
|
|
"""Return the elements, either from `x` or `y`, depending on the `condition`.
|
|
|
|
If both `x` and `y` are None, then this operation returns the coordinates of
|
|
true elements of `condition`. The coordinates are returned in a 2-D tensor
|
|
where the first dimension (rows) represents the number of true elements, and
|
|
the second dimension (columns) represents the coordinates of the true
|
|
elements. Keep in mind, the shape of the output tensor can vary depending on
|
|
how many true values there are in input. Indices are output in row-major
|
|
order.
|
|
|
|
If both non-None, `condition`, `x` and `y` must be broadcastable to the same
|
|
shape.
|
|
|
|
The `condition` tensor acts as a mask that chooses, based on the value at each
|
|
element, whether the corresponding element / row in the output should be taken
|
|
from `x` (if true) or `y` (if false).
|
|
|
|
Args:
|
|
condition: A `Tensor` of type `bool`
|
|
x: A Tensor which is of the same type as `y`, and may be broadcastable with
|
|
`condition` and `y`.
|
|
y: A Tensor which is of the same type as `x`, and may be broadcastable with
|
|
`condition` and `x`.
|
|
name: A name of the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor` with the same type as `x` and `y`, and shape that
|
|
is broadcast from `condition`, `x`, and `y`, if `x`, `y` are non-None.
|
|
Otherwise, a `Tensor` with shape `(num_true, dim_size(condition))`.
|
|
|
|
Raises:
|
|
ValueError: When exactly one of `x` or `y` is non-None.
|
|
"""
|
|
if x is None and y is None:
|
|
with ops.name_scope(name, "Where", [condition]) as name:
|
|
condition = ops.convert_to_tensor(
|
|
condition, preferred_dtype=dtypes.bool, name="condition")
|
|
return gen_array_ops.where(condition=condition, name=name)
|
|
elif x is not None and y is not None:
|
|
return gen_math_ops.select_v2(condition=condition, t=x, e=y, name=name)
|
|
else:
|
|
raise ValueError("x and y must both be non-None or both be None.")
|
|
|
|
|
|
# pylint: disable=redefined-builtin
|
|
@tf_export(v1=["reverse_sequence"])
|
|
@deprecation.deprecated_args(None,
|
|
"seq_dim is deprecated, use seq_axis instead",
|
|
"seq_dim")
|
|
@deprecation.deprecated_args(None,
|
|
"batch_dim is deprecated, use batch_axis instead",
|
|
"batch_dim")
|
|
def reverse_sequence(input,
|
|
seq_lengths,
|
|
seq_axis=None,
|
|
batch_axis=None,
|
|
name=None,
|
|
seq_dim=None,
|
|
batch_dim=None):
|
|
"""Reverses variable length slices.
|
|
|
|
This op first slices `input` along the dimension `batch_axis`, and for
|
|
each slice `i`, reverses the first `seq_lengths[i]` elements along the
|
|
dimension `seq_axis`.
|
|
|
|
The elements of `seq_lengths` must obey `seq_lengths[i] <=
|
|
input.dims[seq_dim]`, and `seq_lengths` must be a vector of length
|
|
`input.dims[batch_dim]`.
|
|
|
|
The output slice `i` along dimension `batch_axis` is then given by
|
|
input slice `i`, with the first `seq_lengths[i]` slices along
|
|
dimension `seq_axis` reversed.
|
|
|
|
Example usage:
|
|
|
|
>>> seq_lengths = [7, 2, 3, 5]
|
|
>>> input = [[1, 2, 3, 4, 5, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0],
|
|
... [1, 2, 3, 4, 0, 0, 0, 0], [1, 2, 3, 4, 5, 6, 7, 8]]
|
|
>>> output = tf.reverse_sequence(input, seq_lengths, seq_axis=1, batch_axis=0)
|
|
>>> output
|
|
<tf.Tensor: shape=(4, 8), dtype=int32, numpy=
|
|
array([[0, 0, 5, 4, 3, 2, 1, 0],
|
|
[2, 1, 0, 0, 0, 0, 0, 0],
|
|
[3, 2, 1, 4, 0, 0, 0, 0],
|
|
[5, 4, 3, 2, 1, 6, 7, 8]], dtype=int32)>
|
|
|
|
Args:
|
|
`input`: A `Tensor`. The input to reverse.
|
|
`seq_lengths`: A `Tensor`. Must be one of the following types: `int32`,
|
|
`int64`. 1-D with length `input.dims(batch_dim)` and `max(seq_lengths) <=
|
|
input.dims(seq_dim)`
|
|
`seq_axis`: An `int`. The dimension which is partially reversed.
|
|
`batch_axis`: An optional `int`. Defaults to `0`. The dimension along which
|
|
reversal is performed.
|
|
`name`: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A Tensor. Has the same type as input.
|
|
"""
|
|
seq_axis = deprecation.deprecated_argument_lookup("seq_axis", seq_axis,
|
|
"seq_dim", seq_dim)
|
|
batch_axis = deprecation.deprecated_argument_lookup("batch_axis", batch_axis,
|
|
"batch_dim", batch_dim)
|
|
return gen_array_ops.reverse_sequence(
|
|
input=input,
|
|
seq_lengths=seq_lengths,
|
|
seq_dim=seq_axis,
|
|
batch_dim=batch_axis,
|
|
name=name)
|
|
|
|
|
|
@tf_export("reverse_sequence", v1=[])
|
|
def reverse_sequence_v2(input,
|
|
seq_lengths,
|
|
seq_axis=None,
|
|
batch_axis=None,
|
|
name=None):
|
|
return gen_array_ops.reverse_sequence(
|
|
input=input,
|
|
seq_lengths=seq_lengths,
|
|
seq_dim=seq_axis,
|
|
batch_dim=batch_axis,
|
|
name=name)
|
|
|
|
reverse_sequence_v2.__doc__ = reverse_sequence.__doc__
|
|
# pylint: enable=redefined-builtin
|
|
|
|
|
|
@tf_export(v1=["gather"])
|
|
@dispatch.add_dispatch_support
|
|
def gather(params,
|
|
indices,
|
|
validate_indices=None,
|
|
name=None,
|
|
axis=None,
|
|
batch_dims=0): # pylint: disable=g-doc-args
|
|
r"""Gather slices from params axis `axis` according to indices.
|
|
|
|
Gather slices from params axis `axis` according to `indices`. `indices` must
|
|
be an integer tensor of any dimension (usually 0-D or 1-D).
|
|
|
|
For 0-D (scalar) `indices`:
|
|
|
|
$$\begin{align*}
|
|
output[p_0, ..., p_{axis-1}, && &&& p_{axis + 1}, ..., p_{N-1}] = \\
|
|
params[p_0, ..., p_{axis-1}, && indices, &&& p_{axis + 1}, ..., p_{N-1}]
|
|
\end{align*}$$
|
|
|
|
Where *N* = `ndims(params)`.
|
|
|
|
For 1-D (vector) `indices` with `batch_dims=0`:
|
|
|
|
$$\begin{align*}
|
|
output[p_0, ..., p_{axis-1}, && &i, &&p_{axis + 1}, ..., p_{N-1}] =\\
|
|
params[p_0, ..., p_{axis-1}, && indices[&i], &&p_{axis + 1}, ..., p_{N-1}]
|
|
\end{align*}$$
|
|
|
|
In the general case, produces an output tensor where:
|
|
|
|
$$\begin{align*}
|
|
output[p_0, &..., p_{axis-1}, &
|
|
&i_{B}, ..., i_{M-1}, &
|
|
p_{axis + 1}, &..., p_{N-1}] = \\
|
|
params[p_0, &..., p_{axis-1}, &
|
|
indices[p_0, ..., p_{B-1}, &i_{B}, ..., i_{M-1}], &
|
|
p_{axis + 1}, &..., p_{N-1}]
|
|
\end{align*}$$
|
|
|
|
Where *N* = `ndims(params)`, *M* = `ndims(indices)`, and *B* = `batch_dims`.
|
|
Note that `params.shape[:batch_dims]` must be identical to
|
|
`indices.shape[:batch_dims]`.
|
|
|
|
The shape of the output tensor is:
|
|
|
|
> `output.shape = params.shape[:axis] + indices.shape[batch_dims:] +
|
|
> params.shape[axis + 1:]`.
|
|
|
|
Note that on CPU, if an out of bound index is found, an error is returned.
|
|
On GPU, if an out of bound index is found, a 0 is stored in the corresponding
|
|
output value.
|
|
|
|
See also `tf.gather_nd`.
|
|
|
|
<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
|
|
<img style="width:100%" src="https://www.tensorflow.org/images/Gather.png"
|
|
alt>
|
|
</div>
|
|
|
|
Args:
|
|
params: The `Tensor` from which to gather values. Must be at least rank
|
|
`axis + 1`.
|
|
indices: The index `Tensor`. Must be one of the following types: `int32`,
|
|
`int64`. Must be in range `[0, params.shape[axis])`.
|
|
validate_indices: Deprecated, does nothing.
|
|
axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The
|
|
`axis` in `params` to gather `indices` from. Must be greater than or equal
|
|
to `batch_dims`. Defaults to the first non-batch dimension. Supports
|
|
negative indexes.
|
|
batch_dims: An `integer`. The number of batch dimensions. Must be less
|
|
than `rank(indices)`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `params`.
|
|
"""
|
|
del validate_indices
|
|
|
|
if axis is None:
|
|
axis = batch_dims
|
|
if tensor_util.constant_value(axis) != 0:
|
|
return gen_array_ops.gather_v2(
|
|
params, indices, axis, batch_dims=batch_dims, name=name)
|
|
try:
|
|
# TODO(apassos) find a less bad way of detecting resource variables
|
|
# without introducing a circular dependency.
|
|
return params.sparse_read(indices, name=name)
|
|
except AttributeError:
|
|
return gen_array_ops.gather_v2(params, indices, axis, name=name)
|
|
|
|
|
|
@tf_export("gather", v1=[])
|
|
@dispatch.add_dispatch_support
|
|
def gather_v2(params,
|
|
indices,
|
|
validate_indices=None,
|
|
axis=None,
|
|
batch_dims=0,
|
|
name=None):
|
|
return gather(
|
|
params,
|
|
indices,
|
|
validate_indices=validate_indices,
|
|
name=name,
|
|
axis=axis,
|
|
batch_dims=batch_dims)
|
|
|
|
|
|
gather_v2.__doc__ = gather.__doc__
|
|
|
|
|
|
@tf_export(v1=["batch_gather"])
|
|
@dispatch.add_dispatch_support
|
|
@deprecation.deprecated(
|
|
"2017-10-25", "`tf.batch_gather` is deprecated, please use `tf.gather` "
|
|
"with `batch_dims=-1` instead.") # pylint: disable=missing-docstring
|
|
def batch_gather(params, indices, name=None):
|
|
"""Gather slices from params according to indices with leading batch dims."""
|
|
with ops.name_scope(name, "BatchGather", [params, indices]):
|
|
indices = ops.convert_to_tensor(indices, name="indices")
|
|
params = ops.convert_to_tensor(params, name="params")
|
|
if indices.shape.ndims is None:
|
|
raise ValueError(
|
|
"batch_gather does not allow indices with unknown shape.")
|
|
return _batch_gather(params, indices, batch_dims=indices.shape.ndims - 1)
|
|
|
|
|
|
def _batch_gather(params, indices, batch_dims, axis=None):
|
|
r"""Gather slices from params according to indices with leading batch dims.
|
|
|
|
This operation assumes that the leading `batch_dims` dimensions of `indices`
|
|
and `params` are batch dimensions; and performs a `tf.gather` operation within
|
|
each batch. (If `batch_dims` is not specified, then it defaults to
|
|
`rank(indices)-1`.) In the case in which `batch_dims==0`, this operation
|
|
is equivalent to `tf.gather`.
|
|
|
|
Args:
|
|
params: A Tensor. The tensor from which to gather values.
|
|
indices: A Tensor. Must be one of the following types: int32, int64. Index
|
|
tensor. Must be in range `[0, params.shape[batch_dims]]`.
|
|
batch_dims: An integer or none. The number of batch dimensions. Must be
|
|
less than `rank(indices)`. Defaults to `rank(indices) - 1` if None.
|
|
axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The
|
|
`axis` in `params` to gather `indices` from. Must be greater than or equal
|
|
to `batch_dims`. Defaults to the first non-batch dimension. Supports
|
|
negative indexes.
|
|
|
|
Returns:
|
|
A Tensor. Has the same type as `params`.
|
|
|
|
Raises:
|
|
ValueError: if `indices` has an unknown shape.
|
|
"""
|
|
if batch_dims is not None and not isinstance(batch_dims, int):
|
|
raise TypeError("batch_dims must be an int; got %r" % (batch_dims,))
|
|
indices = ops.convert_to_tensor(indices, name="indices")
|
|
params = ops.convert_to_tensor(params, name="params")
|
|
|
|
indices_ndims = indices.shape.ndims
|
|
if indices_ndims is None:
|
|
raise ValueError("tf.gather does not allow indices with unknown "
|
|
"rank when batch_dims is specified.")
|
|
if batch_dims is None:
|
|
batch_dims = indices_ndims - 1
|
|
if batch_dims < 0:
|
|
batch_dims += indices_ndims
|
|
if batch_dims < 0 or batch_dims >= indices_ndims:
|
|
raise ValueError("batch_dims = %d must be less than rank(indices) = %d" %
|
|
(batch_dims, indices_ndims))
|
|
if params.shape.ndims is not None and batch_dims >= params.shape.ndims:
|
|
raise ValueError("batch_dims = %d must be less than rank(params) = %d" %
|
|
(batch_dims, params.shape.ndims))
|
|
|
|
# Handle axis by transposing the axis dimension to be the first non-batch
|
|
# dimension, recursively calling batch_gather with axis=0, and then
|
|
# transposing the result to put the pre-axis dimensions before the indices
|
|
# dimensions.
|
|
if axis is not None and axis != batch_dims:
|
|
# Adjust axis to be positive.
|
|
if not isinstance(axis, int):
|
|
axis = tf.where(axis < 0, axis + array_ops.rank(params), axis)
|
|
elif axis < 0 and params.shape.ndims is None:
|
|
axis = axis + array_ops.rank(params)
|
|
else:
|
|
if (axis < -params.shape.ndims) or (axis >= params.shape.ndims):
|
|
raise ValueError("axis (%d) out of range [%d, %d)" %
|
|
(axis, -params.shape.ndims, params.shape.ndims))
|
|
if axis < 0:
|
|
axis += params.shape.ndims
|
|
if axis < batch_dims:
|
|
raise ValueError("batch_dims = %d must be less than or equal to "
|
|
"axis = %d" % (batch_dims, axis))
|
|
|
|
# Move params[axis] up to params[batch_dims].
|
|
perm = [
|
|
list(range(batch_dims)), [axis],
|
|
gen_math_ops._range(batch_dims, axis, 1),
|
|
gen_math_ops._range(axis + 1, rank(params), 1)
|
|
]
|
|
params = transpose(params, concat(perm, axis=0))
|
|
|
|
result = _batch_gather(params, indices, batch_dims=batch_dims)
|
|
|
|
# Move the result dimensions corresponding to params[batch_dims:axis]
|
|
# to just before the dimensions corresponding to indices[batch_dims:].
|
|
params_start = indices_ndims + axis - batch_dims
|
|
perm = [
|
|
list(range(batch_dims)),
|
|
gen_math_ops._range(indices_ndims, params_start, 1),
|
|
list(range(batch_dims, indices_ndims)),
|
|
gen_math_ops._range(params_start, rank(result), 1)
|
|
]
|
|
return transpose(result, perm=concat(perm, axis=0))
|
|
|
|
indices_shape = shape(indices)
|
|
params_shape = shape(params)
|
|
batch_indices = indices
|
|
indices_dtype = indices.dtype.base_dtype
|
|
accum_dim_value = ones((), dtype=indices_dtype)
|
|
# Use correct type for offset index computation
|
|
casted_params_shape = gen_math_ops.cast(params_shape, indices_dtype)
|
|
for dim in range(batch_dims, 0, -1):
|
|
dim_value = casted_params_shape[dim - 1]
|
|
accum_dim_value *= casted_params_shape[dim]
|
|
start = zeros((), dtype=indices_dtype)
|
|
step = ones((), dtype=indices_dtype)
|
|
dim_indices = gen_math_ops._range(start, dim_value, step)
|
|
dim_indices *= accum_dim_value
|
|
dim_shape = stack(
|
|
[1] * (dim - 1) + [dim_value] + [1] * (indices_ndims - dim), axis=0)
|
|
batch_indices += reshape(dim_indices, dim_shape)
|
|
|
|
flat_indices = reshape(batch_indices, [-1])
|
|
outer_shape = params_shape[batch_dims + 1:]
|
|
flat_inner_shape = gen_math_ops.prod(params_shape[:batch_dims + 1], [0],
|
|
False)
|
|
|
|
flat_params = reshape(params, concat([[flat_inner_shape], outer_shape],
|
|
axis=0))
|
|
flat_result = gather(flat_params, flat_indices)
|
|
result = reshape(flat_result, concat([indices_shape, outer_shape], axis=0))
|
|
final_shape = indices.get_shape()[:batch_dims].merge_with(
|
|
params.get_shape()[:batch_dims])
|
|
final_shape = final_shape.concatenate(indices.get_shape().dims[batch_dims:])
|
|
final_shape = final_shape.concatenate(params.get_shape()[batch_dims + 1:])
|
|
result.set_shape(final_shape)
|
|
return result
|
|
|
|
|
|
@tf_export(v1=["gather_nd", "manip.gather_nd"])
|
|
@dispatch.add_dispatch_support
|
|
@deprecated_endpoints("manip.gather_nd")
|
|
def gather_nd(params, indices, name=None, batch_dims=0):
|
|
r"""Gather slices from `params` into a Tensor with shape specified by `indices`.
|
|
|
|
`indices` is an K-dimensional integer tensor, best thought of as a
|
|
(K-1)-dimensional tensor of indices into `params`, where each element defines
|
|
a slice of `params`:
|
|
|
|
output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]]
|
|
|
|
Whereas in `tf.gather` `indices` defines slices into the first
|
|
dimension of `params`, in `tf.gather_nd`, `indices` defines slices into the
|
|
first `N` dimensions of `params`, where `N = indices.shape[-1]`.
|
|
|
|
The last dimension of `indices` can be at most the rank of
|
|
`params`:
|
|
|
|
indices.shape[-1] <= params.rank
|
|
|
|
The last dimension of `indices` corresponds to elements
|
|
(if `indices.shape[-1] == params.rank`) or slices
|
|
(if `indices.shape[-1] < params.rank`) along dimension `indices.shape[-1]`
|
|
of `params`. The output tensor has shape
|
|
|
|
indices.shape[:-1] + params.shape[indices.shape[-1]:]
|
|
|
|
Additionally both 'params' and 'indices' can have M leading batch
|
|
dimensions that exactly match. In this case 'batch_dims' must be M.
|
|
|
|
Note that on CPU, if an out of bound index is found, an error is returned.
|
|
On GPU, if an out of bound index is found, a 0 is stored in the
|
|
corresponding output value.
|
|
|
|
Some examples below.
|
|
|
|
Simple indexing into a matrix:
|
|
|
|
```python
|
|
indices = [[0, 0], [1, 1]]
|
|
params = [['a', 'b'], ['c', 'd']]
|
|
output = ['a', 'd']
|
|
```
|
|
|
|
Slice indexing into a matrix:
|
|
|
|
```python
|
|
indices = [[1], [0]]
|
|
params = [['a', 'b'], ['c', 'd']]
|
|
output = [['c', 'd'], ['a', 'b']]
|
|
```
|
|
|
|
Indexing into a 3-tensor:
|
|
|
|
```python
|
|
indices = [[1]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = [[['a1', 'b1'], ['c1', 'd1']]]
|
|
|
|
|
|
indices = [[0, 1], [1, 0]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = [['c0', 'd0'], ['a1', 'b1']]
|
|
|
|
|
|
indices = [[0, 0, 1], [1, 0, 1]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = ['b0', 'b1']
|
|
```
|
|
|
|
The examples below are for the case when only indices have leading extra
|
|
dimensions. If both 'params' and 'indices' have leading batch dimensions, use
|
|
the 'batch_dims' parameter to run gather_nd in batch mode.
|
|
|
|
Batched indexing into a matrix:
|
|
|
|
```python
|
|
indices = [[[0, 0]], [[0, 1]]]
|
|
params = [['a', 'b'], ['c', 'd']]
|
|
output = [['a'], ['b']]
|
|
```
|
|
|
|
Batched slice indexing into a matrix:
|
|
|
|
```python
|
|
indices = [[[1]], [[0]]]
|
|
params = [['a', 'b'], ['c', 'd']]
|
|
output = [[['c', 'd']], [['a', 'b']]]
|
|
```
|
|
|
|
Batched indexing into a 3-tensor:
|
|
|
|
```python
|
|
indices = [[[1]], [[0]]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = [[[['a1', 'b1'], ['c1', 'd1']]],
|
|
[[['a0', 'b0'], ['c0', 'd0']]]]
|
|
|
|
indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = [[['c0', 'd0'], ['a1', 'b1']],
|
|
[['a0', 'b0'], ['c1', 'd1']]]
|
|
|
|
|
|
indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = [['b0', 'b1'], ['d0', 'c1']]
|
|
```
|
|
|
|
Examples with batched 'params' and 'indices':
|
|
|
|
```python
|
|
batch_dims = 1
|
|
indices = [[1], [0]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = [['c0', 'd0'], ['a1', 'b1']]
|
|
|
|
batch_dims = 1
|
|
indices = [[[1]], [[0]]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = [[['c0', 'd0']], [['a1', 'b1']]]
|
|
|
|
batch_dims = 1
|
|
indices = [[[1, 0]], [[0, 1]]]
|
|
params = [[['a0', 'b0'], ['c0', 'd0']],
|
|
[['a1', 'b1'], ['c1', 'd1']]]
|
|
output = [['c0'], ['b1']]
|
|
```
|
|
|
|
See also `tf.gather`.
|
|
|
|
Args:
|
|
params: A `Tensor`. The tensor from which to gather values.
|
|
indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
|
|
Index tensor.
|
|
name: A name for the operation (optional).
|
|
batch_dims: An integer or a scalar 'Tensor'. The number of batch dimensions.
|
|
|
|
Returns:
|
|
A `Tensor`. Has the same type as `params`.
|
|
"""
|
|
batch_dims_ = tensor_util.constant_value(batch_dims)
|
|
if batch_dims_ is not None:
|
|
batch_dims = int(batch_dims_)
|
|
if batch_dims == 0:
|
|
try:
|
|
# TODO(apassos) find a less bad way of detecting resource variables
|
|
# without introducing a circular dependency.
|
|
return params.gather_nd(indices, name=name)
|
|
except AttributeError:
|
|
return gen_array_ops.gather_nd(params, indices, name=name)
|
|
else:
|
|
return batch_gather_nd(params, indices, batch_dims=batch_dims, name=name)
|
|
|
|
|
|
@tf_export("gather_nd", v1=[])
|
|
@dispatch.add_dispatch_support
|
|
def gather_nd_v2(params, indices, batch_dims=0, name=None):
|
|
return gather_nd(params, indices, name=name, batch_dims=batch_dims)
|
|
|
|
|
|
gather_nd_v2.__doc__ = gather_nd.__doc__
|
|
|
|
|
|
def batch_gather_nd(params, indices, batch_dims, name=None):
|
|
"""gather_nd implementation with batch support."""
|
|
with ops.name_scope(name, "BatchGatherND", [params, indices]):
|
|
indices = ops.convert_to_tensor(indices, name="indices")
|
|
params = ops.convert_to_tensor(params, name="params")
|
|
|
|
if not isinstance(batch_dims, int):
|
|
raise TypeError("batch_dims must be an int; got %r" % (batch_dims,))
|
|
if batch_dims < 0:
|
|
raise ValueError("tf.gather_nd does not allow negative batch_dims.")
|
|
params_ndims = params.shape.ndims
|
|
indices_ndims = indices.shape.ndims
|
|
if indices_ndims is not None and batch_dims >= indices_ndims:
|
|
raise ValueError("batch_dims = %d must be less than rank(indices) = %d" %
|
|
(batch_dims, indices_ndims))
|
|
if params_ndims is not None and batch_dims >= params_ndims:
|
|
raise ValueError("batch_dims = %d must be less than rank(params) = %d" %
|
|
(batch_dims, params_ndims))
|
|
|
|
expand = batch_dims == 0
|
|
if expand:
|
|
# Normally gather_nd will be called when batch_dims == 0.
|
|
# But if this function is called with batch_dims = 0, e.g. for testing
|
|
# purposes, this adds a dummy batch dimension to make batch_dims = 1.
|
|
params = expand_dims(params, axis=0)
|
|
indices = expand_dims(indices, axis=0)
|
|
batch_dims = 1
|
|
|
|
params_shape = shape(params)
|
|
indices_shape = shape(indices)
|
|
batch_shape = params_shape[:batch_dims]
|
|
batch_size = gen_math_ops.prod(batch_shape, [0])
|
|
index_internal_ndims = rank(indices) - batch_dims - 1
|
|
indices_internal_shape = indices_shape[batch_dims:-1]
|
|
|
|
# Assuming a 'params' with shape [b1, ..., bM, g1, ..., gN] and an 'indices'
|
|
# with shape [b1, ..., bM, i1, ..., iK, C], where C <= N, we need to modify
|
|
# 'indices' s.t. it has shape [i1, ..., iK, D], where D <= M + N and slices
|
|
# to the entire 'params' tensor.
|
|
# Assuming we have a batch of shape [B1, B2], we use meshgrid to create a
|
|
# grid of size B1 x B2.
|
|
batch_dim_list = unstack(batch_shape, axis=0)
|
|
dim_ranges = [
|
|
gen_math_ops.cast(gen_math_ops._range(0, x, 1), indices.dtype)
|
|
for x in batch_dim_list
|
|
]
|
|
mesh_list = meshgrid(*dim_ranges, indexing="ij") if dim_ranges else []
|
|
# Then we flatten and stack the tensors to form a (B1.B2) by 2 matrix.
|
|
flat_list = [reshape(x, shape=(-1,)) for x in mesh_list]
|
|
index_grid = transpose(stack(flat_list, axis=0))
|
|
# We need to concatenate these batch coordinates with the internal indices.
|
|
# concat -> index_grid [B1.B2, 2] with indices [i1, ..., iK, C]
|
|
# So we reshape them both to [(B1.B2), i1, ..., iK, *]
|
|
index_grid_shape = shape(index_grid)
|
|
index_grid = reshape(
|
|
index_grid,
|
|
concat([
|
|
index_grid_shape[:1],
|
|
ones(index_internal_ndims, dtype=dtypes.int32), index_grid_shape[1:]
|
|
],
|
|
axis=0))
|
|
tile_shape = concat(((1,), indices_internal_shape, (1,)), axis=0)
|
|
index_grid = tile(index_grid, multiples=tile_shape)
|
|
# index_grid now has shape [(B1.B2), i1, ..., iK, 2]
|
|
flat_shape = concat(([batch_size], indices_shape[batch_dims:]), axis=0)
|
|
flat_indices = reshape(indices, shape=flat_shape)
|
|
# flat_indices now has shape [(B1.B2), i1, ..., iK, C]
|
|
indices = concat((index_grid, flat_indices), axis=-1)
|
|
# indices has shape [(B1.B2), i1, ..., iK, 2+C]
|
|
out = gen_array_ops.gather_nd(params, indices)
|
|
# out has shape [(B1.B2), i1, ..., iK, N-C]. Now we reshape batch to
|
|
# its original form.
|
|
out_shape = shape(out)
|
|
out = reshape(out, shape=concat((batch_shape, out_shape[1:]), axis=0))
|
|
if expand:
|
|
out = squeeze(out, axis=0)
|
|
return out
|
|
|
|
|
|
# Define quantize_v2 here in order to make name the second-to-last attribute,
|
|
# because round_mode was added later.
|
|
# (And also now because of 'axis' processing).
|
|
@tf_export(v1=["quantize_v2"])
|
|
@deprecation.deprecated(
|
|
"2017-10-25",
|
|
"`tf.quantize_v2` is deprecated, please use `tf.quantization.quantize` "
|
|
"instead.") # pylint: disable=missing-docstring
|
|
def quantize_v2(
|
|
input, # pylint: disable=redefined-builtin
|
|
min_range,
|
|
max_range,
|
|
T,
|
|
mode="MIN_COMBINED",
|
|
name=None,
|
|
round_mode="HALF_AWAY_FROM_ZERO",
|
|
narrow_range=False,
|
|
axis=None,
|
|
ensure_minimum_range=0.01):
|
|
if axis is None:
|
|
axis = -1
|
|
elif axis < 0:
|
|
if input.shape.ndims is None:
|
|
raise ValueError("input should have known rank to use negative axis.")
|
|
axis %= input.shape.ndims
|
|
|
|
if compat.forward_compatible(2019, 11, 13) or ensure_minimum_range != 0.01:
|
|
return gen_array_ops.quantize_v2(
|
|
input,
|
|
min_range,
|
|
max_range,
|
|
T=T,
|
|
mode=mode,
|
|
name=name,
|
|
round_mode=round_mode,
|
|
narrow_range=narrow_range,
|
|
axis=axis,
|
|
ensure_minimum_range=ensure_minimum_range)
|
|
return gen_array_ops.quantize_v2(
|
|
input,
|
|
min_range,
|
|
max_range,
|
|
T=T,
|
|
mode=mode,
|
|
name=name,
|
|
round_mode=round_mode,
|
|
narrow_range=narrow_range,
|
|
axis=axis)
|
|
|
|
|
|
quantize_v2.__doc__ = """Please use `tf.quantization.quantize` instead."""
|
|
|
|
|
|
# We want to expose tf.quantization.quantize instead of
|
|
# tf.quantization.quantize; we can deprecate tf.quantization.quantize in next
|
|
# version of TensorFlow.
|
|
@tf_export("quantization.quantize", v1=["quantization.quantize", "quantize"])
|
|
@deprecation.deprecated_endpoints("quantize")
|
|
def quantize(
|
|
input, # pylint: disable=redefined-builtin
|
|
min_range,
|
|
max_range,
|
|
T,
|
|
mode="MIN_COMBINED",
|
|
round_mode="HALF_AWAY_FROM_ZERO",
|
|
name=None,
|
|
narrow_range=False,
|
|
axis=None,
|
|
ensure_minimum_range=0.01):
|
|
"""Quantize the input tensor."""
|
|
if compat.forward_compatible(2019, 11, 13) or ensure_minimum_range != 0.01:
|
|
return quantize_v2(
|
|
input,
|
|
min_range,
|
|
max_range,
|
|
T,
|
|
mode=mode,
|
|
round_mode=round_mode,
|
|
name=name,
|
|
narrow_range=narrow_range,
|
|
axis=axis,
|
|
ensure_minimum_range=ensure_minimum_range)
|
|
return quantize_v2(
|
|
input,
|
|
min_range,
|
|
max_range,
|
|
T,
|
|
mode=mode,
|
|
round_mode=round_mode,
|
|
name=name,
|
|
narrow_range=narrow_range,
|
|
axis=axis)
|
|
|
|
|
|
@tf_export("quantization.dequantize", v1=["quantization.dequantize",
|
|
"dequantize"])
|
|
@deprecation.deprecated_endpoints("dequantize")
|
|
def dequantize( # pylint: disable=missing-docstring
|
|
input, # pylint: disable=redefined-builtin
|
|
min_range,
|
|
max_range,
|
|
mode="MIN_COMBINED",
|
|
name=None,
|
|
axis=None,
|
|
narrow_range=False):
|
|
if axis is None:
|
|
axis = -1
|
|
elif axis < 0:
|
|
if input.shape.ndims is None:
|
|
raise ValueError("input should have known rank to use negative axis.")
|
|
axis %= input.shape.ndims
|
|
|
|
if compat.forward_compatible(2019, 10, 22) or axis >= 0 or narrow_range:
|
|
return gen_array_ops.dequantize(
|
|
input, min_range, max_range, mode=mode, name=name,
|
|
narrow_range=narrow_range, axis=axis)
|
|
return gen_array_ops.dequantize(
|
|
input, min_range, max_range, mode=mode, name=name)
|
|
|
|
dequantize.__doc__ = gen_array_ops.dequantize.__doc__
|
|
|
|
|
|
@tf_export("quantization.quantize_and_dequantize")
|
|
def quantize_and_dequantize(
|
|
input, # pylint: disable=redefined-builtin
|
|
input_min,
|
|
input_max,
|
|
signed_input=True,
|
|
num_bits=8,
|
|
range_given=False,
|
|
round_mode="HALF_TO_EVEN",
|
|
name=None,
|
|
narrow_range=False,
|
|
axis=None):
|
|
"""Quantizes then dequantizes a tensor.
|
|
|
|
Args:
|
|
input: A `Tensor` to quantize and dequantize.
|
|
input_min: If range_given=True, the minimum input value, that needs to be
|
|
represented in the quantized representation. If axis is specified, this
|
|
should be a vector of minimum values for each slice along axis.
|
|
input_max: If range_given=True, the maximum input value that needs to be
|
|
represented in the quantized representation. If axis is specified, this
|
|
should be a vector of maximum values for each slice along axis.
|
|
signed_input: True if the quantization is signed or unsigned.
|
|
num_bits: The bitwidth of the quantization.
|
|
range_given: If true use `input_min` and `input_max` for the range of the
|
|
input, otherwise determine min and max from the input `Tensor`.
|
|
round_mode: Rounding mode when rounding from float values to quantized ones.
|
|
one of ['HALF_TO_EVEN', 'HALF_UP']
|
|
name: Optional name for the operation.
|
|
narrow_range: If true, then the absolute value of the quantized minimum
|
|
value is the same as the quantized maximum value, instead of 1 greater.
|
|
i.e. for 8 bit quantization, the minimum value is -127 instead of -128.
|
|
axis: Integer. If specified, refers to a dimension of the input tensor, such
|
|
that quantization will be per slice along that dimension.
|
|
|
|
Returns:
|
|
A `Tensor`. Each element is the result of quantizing and dequantizing the
|
|
corresponding element of `input`.
|
|
"""
|
|
if axis is None:
|
|
axis = -1
|
|
elif axis < 0:
|
|
if input.shape.ndims is None:
|
|
raise ValueError("input should have known rank to use negative axis.")
|
|
axis %= input.shape.ndims
|
|
|
|
return gen_array_ops.quantize_and_dequantize_v2(
|
|
input,
|
|
input_min=input_min,
|
|
input_max=input_max,
|
|
signed_input=signed_input,
|
|
num_bits=num_bits,
|
|
range_given=range_given,
|
|
round_mode=round_mode,
|
|
narrow_range=narrow_range,
|
|
axis=axis,
|
|
name=name)
|
|
|
|
|
|
@tf_export("searchsorted")
|
|
def searchsorted(sorted_sequence,
|
|
values,
|
|
side="left",
|
|
out_type=dtypes.int32,
|
|
name=None):
|
|
"""Searches input tensor for values on the innermost dimension.
|
|
|
|
A 2-D example:
|
|
|
|
```
|
|
sorted_sequence = [[0, 3, 9, 9, 10],
|
|
[1, 2, 3, 4, 5]]
|
|
values = [[2, 4, 9],
|
|
[0, 2, 6]]
|
|
|
|
result = searchsorted(sorted_sequence, values, side="left")
|
|
|
|
result == [[1, 2, 2],
|
|
[0, 1, 5]]
|
|
|
|
result = searchsorted(sorted_sequence, values, side="right")
|
|
|
|
result == [[1, 2, 4],
|
|
[0, 2, 5]]
|
|
```
|
|
|
|
Args:
|
|
sorted_sequence: N-D `Tensor` containing a sorted sequence.
|
|
values: N-D `Tensor` containing the search values.
|
|
side: 'left' or 'right'; 'left' corresponds to lower_bound and 'right' to
|
|
upper_bound.
|
|
out_type: The output type (`int32` or `int64`). Default is `tf.int32`.
|
|
name: Optional name for the operation.
|
|
|
|
Returns:
|
|
An N-D `Tensor` the size of values containing the result of applying either
|
|
lower_bound or upper_bound (depending on side) to each value. The result
|
|
is not a global index to the entire `Tensor`, but the index in the last
|
|
dimension.
|
|
|
|
Raises:
|
|
ValueError: If the last dimension of `sorted_sequence >= 2^31-1` elements.
|
|
If the total size of values exceeds `2^31 - 1` elements.
|
|
If the first `N-1` dimensions of the two tensors don't match.
|
|
"""
|
|
sequence_size = shape_internal(sorted_sequence)[-1]
|
|
values_size = shape_internal(values)[-1]
|
|
sorted_sequence_2d = reshape(sorted_sequence, [-1, sequence_size])
|
|
values_2d = reshape(values, [-1, values_size])
|
|
if side == "right":
|
|
output = gen_array_ops.upper_bound(sorted_sequence_2d, values_2d, out_type,
|
|
name)
|
|
elif side == "left":
|
|
output = gen_array_ops.lower_bound(sorted_sequence_2d, values_2d, out_type,
|
|
name)
|
|
else:
|
|
raise ValueError("side must be either 'right' or 'left'. Saw: %s." % side)
|
|
return reshape(output, shape_internal(values))
|
|
|
|
|
|
quantize.__doc__ = gen_array_ops.quantize_v2.__doc__
|
|
|
|
|
|
@tf_export("image.extract_patches")
|
|
def extract_image_patches_v2(images, sizes, strides, rates, padding, name=None):
|
|
r"""Extract `patches` from `images`.
|
|
|
|
This op collects patches from the input image, as if applying a
|
|
convolution. All extracted patches are stacked in the depth (last) dimension
|
|
of the output.
|
|
|
|
Specifically, the op extracts patches of shape `sizes` which are `strides`
|
|
apart in the input image. The output is subsampled using the `rates` argument,
|
|
in the same manner as "atrous" or "dilated" convolutions.
|
|
|
|
The result is a 4D tensor which is indexed by batch, row, and column.
|
|
`output[i, x, y]` contains a flattened patch of size `sizes[1], sizes[2]`
|
|
which is taken from the input starting at
|
|
`images[i, x*strides[1], y*strides[2]]`.
|
|
|
|
Each output patch can be reshaped to `sizes[1], sizes[2], depth`, where
|
|
`depth` is `images.shape[3]`.
|
|
|
|
The output elements are taken from the input at intervals given by the `rate`
|
|
argument, as in dilated convolutions.
|
|
|
|
The `padding` argument has no effect on the size of each patch, it determines
|
|
how many patches are extracted. If `VALID`, only patches which are fully
|
|
contained in the input image are included. If `SAME`, all patches whose
|
|
starting point is inside the input are included, and areas outside the input
|
|
default to zero.
|
|
|
|
Example:
|
|
|
|
```
|
|
n = 10
|
|
# images is a 1 x 10 x 10 x 1 array that contains the numbers 1 through 100
|
|
images = [[[[x * n + y + 1] for y in range(n)] for x in range(n)]]
|
|
|
|
# We generate two outputs as follows:
|
|
# 1. 3x3 patches with stride length 5
|
|
# 2. Same as above, but the rate is increased to 2
|
|
tf.extract_image_patches(images=images,
|
|
ksizes=[1, 3, 3, 1],
|
|
strides=[1, 5, 5, 1],
|
|
rates=[1, 1, 1, 1],
|
|
padding='VALID')
|
|
|
|
# Yields:
|
|
[[[[ 1 2 3 11 12 13 21 22 23]
|
|
[ 6 7 8 16 17 18 26 27 28]]
|
|
[[51 52 53 61 62 63 71 72 73]
|
|
[56 57 58 66 67 68 76 77 78]]]]
|
|
```
|
|
|
|
If we mark the pixels in the input image which are taken for the output with
|
|
`*`, we see the pattern:
|
|
|
|
```
|
|
* * * 4 5 * * * 9 10
|
|
* * * 14 15 * * * 19 20
|
|
* * * 24 25 * * * 29 30
|
|
31 32 33 34 35 36 37 38 39 40
|
|
41 42 43 44 45 46 47 48 49 50
|
|
* * * 54 55 * * * 59 60
|
|
* * * 64 65 * * * 69 70
|
|
* * * 74 75 * * * 79 80
|
|
81 82 83 84 85 86 87 88 89 90
|
|
91 92 93 94 95 96 97 98 99 100
|
|
```
|
|
|
|
```
|
|
tf.extract_image_patches(images=images,
|
|
sizes=[1, 3, 3, 1],
|
|
strides=[1, 5, 5, 1],
|
|
rates=[1, 2, 2, 1],
|
|
padding='VALID')
|
|
|
|
# Yields:
|
|
[[[[ 1 3 5 21 23 25 41 43 45]
|
|
[ 6 8 10 26 28 30 46 48 50]]
|
|
|
|
[[ 51 53 55 71 73 75 91 93 95]
|
|
[ 56 58 60 76 78 80 96 98 100]]]]
|
|
```
|
|
|
|
We can again draw the effect, this time using the symbols `*`, `x`, `+` and
|
|
`o` to distinguish the patches:
|
|
|
|
```
|
|
* 2 * 4 * x 7 x 9 x
|
|
11 12 13 14 15 16 17 18 19 20
|
|
* 22 * 24 * x 27 x 29 x
|
|
31 32 33 34 35 36 37 38 39 40
|
|
* 42 * 44 * x 47 x 49 x
|
|
+ 52 + 54 + o 57 o 59 o
|
|
61 62 63 64 65 66 67 68 69 70
|
|
+ 72 + 74 + o 77 o 79 o
|
|
81 82 83 84 85 86 87 88 89 90
|
|
+ 92 + 94 + o 97 o 99 o
|
|
```
|
|
|
|
Args:
|
|
images: A 4-D Tensor with shape `[batch, in_rows, in_cols, depth]
|
|
sizes: The size of the extracted patches. Must be [1, size_rows, size_cols,
|
|
1].
|
|
strides: A 1-D Tensor of length 4. How far the centers of two consecutive
|
|
patches are in the images. Must be: `[1, stride_rows, stride_cols, 1]`.
|
|
rates: A 1-D Tensor of length 4. Must be: `[1, rate_rows, rate_cols, 1]`.
|
|
This is the input stride, specifying how far two consecutive patch samples
|
|
are in the input. Equivalent to extracting patches with `patch_sizes_eff =
|
|
patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by subsampling
|
|
them spatially by a factor of `rates`. This is equivalent to `rate` in
|
|
dilated (a.k.a. Atrous) convolutions.
|
|
padding: The type of padding algorithm to use.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A 4-D Tensor of the same type as the input.
|
|
"""
|
|
return gen_array_ops.extract_image_patches(images, sizes, strides, rates,
|
|
padding, name)
|
|
|
|
|
|
@tf_export(v1=["image.extract_image_patches", "extract_image_patches"])
|
|
@deprecation.deprecated_args(None, "ksizes is deprecated, use sizes instead",
|
|
"ksizes")
|
|
def extract_image_patches( # pylint: disable=missing-docstring
|
|
images,
|
|
ksizes=None,
|
|
strides=None,
|
|
rates=None,
|
|
padding=None,
|
|
name=None,
|
|
sizes=None):
|
|
ksizes = deprecation.deprecated_argument_lookup("sizes", sizes, "ksizes",
|
|
ksizes)
|
|
return gen_array_ops.extract_image_patches(images, ksizes, strides, rates,
|
|
padding, name)
|
|
|
|
|
|
extract_image_patches.__doc__ = gen_array_ops.extract_image_patches.__doc__
|
|
|
|
|
|
@tf_export("fingerprint")
|
|
def fingerprint(data, method="farmhash64", name=None):
|
|
r"""Generates fingerprint values.
|
|
|
|
Generates fingerprint values of `data`.
|
|
|
|
Fingerprint op considers the first dimension of `data` as the batch dimension,
|
|
and `output[i]` contains the fingerprint value generated from contents in
|
|
`data[i, ...]` for all `i`.
|
|
|
|
Fingerprint op writes fingerprint values as byte arrays. For example, the
|
|
default method `farmhash64` generates a 64-bit fingerprint value at a time.
|
|
This 8-byte value is written out as an `tf.uint8` array of size 8, in
|
|
little-endian order.
|
|
|
|
For example, suppose that `data` has data type `tf.int32` and shape (2, 3, 4),
|
|
and that the fingerprint method is `farmhash64`. In this case, the output
|
|
shape is (2, 8), where 2 is the batch dimension size of `data`, and 8 is the
|
|
size of each fingerprint value in bytes. `output[0, :]` is generated from
|
|
12 integers in `data[0, :, :]` and similarly `output[1, :]` is generated from
|
|
other 12 integers in `data[1, :, :]`.
|
|
|
|
Note that this op fingerprints the raw underlying buffer, and it does not
|
|
fingerprint Tensor's metadata such as data type and/or shape. For example, the
|
|
fingerprint values are invariant under reshapes and bitcasts as long as the
|
|
batch dimension remain the same:
|
|
|
|
```python
|
|
tf.fingerprint(data) == tf.fingerprint(tf.reshape(data, ...))
|
|
tf.fingerprint(data) == tf.fingerprint(tf.bitcast(data, ...))
|
|
```
|
|
|
|
For string data, one should expect `tf.fingerprint(data) !=
|
|
tf.fingerprint(tf.string.reduce_join(data))` in general.
|
|
|
|
Args:
|
|
data: A `Tensor`. Must have rank 1 or higher.
|
|
method: A `Tensor` of type `tf.string`. Fingerprint method used by this op.
|
|
Currently available method is `farmhash64`.
|
|
name: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A two-dimensional `Tensor` of type `tf.uint8`. The first dimension equals to
|
|
`data`'s first dimension, and the second dimension size depends on the
|
|
fingerprint algorithm.
|
|
"""
|
|
return gen_array_ops.fingerprint(data, method, name)
|
|
|
|
|
|
def convert_to_int_tensor(tensor, name, dtype=dtypes.int32):
|
|
"""Converts the given value to an integer Tensor."""
|
|
tensor = ops.convert_to_tensor(tensor, name=name, preferred_dtype=dtype)
|
|
if tensor.dtype.is_integer:
|
|
tensor = gen_math_ops.cast(tensor, dtype)
|
|
else:
|
|
raise TypeError("%s must be an integer tensor; dtype=%s" %
|
|
(name, tensor.dtype))
|
|
return tensor
|
|
|
|
|
|
def get_positive_axis(axis, ndims):
|
|
"""Validate an `axis` parameter, and normalize it to be positive.
|
|
|
|
If `ndims` is known (i.e., not `None`), then check that `axis` is in the
|
|
range `-ndims <= axis < ndims`, and return `axis` (if `axis >= 0`) or
|
|
`axis + ndims` (otherwise).
|
|
If `ndims` is not known, and `axis` is positive, then return it as-is.
|
|
If `ndims` is not known, and `axis` is negative, then report an error.
|
|
|
|
Args:
|
|
axis: An integer constant
|
|
ndims: An integer constant, or `None`
|
|
|
|
Returns:
|
|
The normalized `axis` value.
|
|
|
|
Raises:
|
|
ValueError: If `axis` is out-of-bounds, or if `axis` is negative and
|
|
`ndims is None`.
|
|
"""
|
|
if not isinstance(axis, int):
|
|
raise TypeError("axis must be an int; got %s" % type(axis).__name__)
|
|
if ndims is not None:
|
|
if 0 <= axis < ndims:
|
|
return axis
|
|
elif -ndims <= axis < 0:
|
|
return axis + ndims
|
|
else:
|
|
raise ValueError("axis=%s out of bounds: expected %s<=axis<%s" %
|
|
(axis, -ndims, ndims))
|
|
elif axis < 0:
|
|
raise ValueError("axis may only be negative if ndims is statically known.")
|
|
return axis
|
|
|
|
|
|
# This op is intended to exactly match the semantics of numpy.repeat, with
|
|
# one exception: numpy.repeat has special (and somewhat non-intuitive) behavior
|
|
# when axis is not specified. Rather than implement that special behavior, we
|
|
# simply make `axis` be a required argument.
|
|
#
|
|
# External (OSS) `tf.repeat` feature request:
|
|
# https://github.com/tensorflow/tensorflow/issues/8246
|
|
def repeat_with_axis(data, repeats, axis, name=None):
|
|
"""Repeats elements of `data`.
|
|
|
|
Args:
|
|
data: An `N`-dimensional tensor.
|
|
repeats: A 1-D integer tensor specifying how many times each element in
|
|
`axis` should be repeated. `len(repeats)` must equal `data.shape[axis]`.
|
|
Supports broadcasting from a scalar value.
|
|
axis: `int`. The axis along which to repeat values. Must be less than
|
|
`max(N, 1)`.
|
|
name: A name for the operation.
|
|
|
|
Returns:
|
|
A tensor with `max(N, 1)` dimensions. Has the same shape as `data`,
|
|
except that dimension `axis` has size `sum(repeats)`.
|
|
|
|
Example usage:
|
|
|
|
>>> repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0)
|
|
<tf.Tensor: shape=(5,), dtype=string,
|
|
numpy=array([b'a', b'a', b'a', b'c', b'c'], dtype=object)>
|
|
>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0)
|
|
<tf.Tensor: shape=(5, 2), dtype=int32, numpy=
|
|
array([[1, 2],
|
|
[1, 2],
|
|
[3, 4],
|
|
[3, 4],
|
|
[3, 4]], dtype=int32)>
|
|
>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1)
|
|
<tf.Tensor: shape=(2, 5), dtype=int32, numpy=
|
|
array([[1, 1, 2, 2, 2],
|
|
[3, 3, 4, 4, 4]], dtype=int32)>
|
|
|
|
"""
|
|
if not isinstance(axis, int):
|
|
raise TypeError("axis must be an int; got %s" % type(axis).__name__)
|
|
|
|
with ops.name_scope(name, "Repeat", [data, repeats]):
|
|
data = ops.convert_to_tensor(data, name="data")
|
|
repeats = convert_to_int_tensor(repeats, name="repeats")
|
|
repeats.shape.with_rank_at_most(1)
|
|
|
|
# If `data` is a scalar, then upgrade it to a vector.
|
|
data = _with_nonzero_rank(data)
|
|
data_shape = shape(data)
|
|
|
|
# If `axis` is negative, then convert it to a positive value.
|
|
axis = get_positive_axis(axis, data.shape.ndims)
|
|
|
|
# Check data Tensor shapes.
|
|
if repeats.shape.ndims == 1:
|
|
data.shape.dims[axis].assert_is_compatible_with(repeats.shape[0])
|
|
|
|
# If we know that `repeats` is a scalar, then we can just tile & reshape.
|
|
if repeats.shape.ndims == 0:
|
|
expanded = expand_dims(data, axis + 1)
|
|
tiled = tile_one_dimension(expanded, axis + 1, repeats)
|
|
result_shape = concat([data_shape[:axis], [-1], data_shape[axis + 1:]],
|
|
axis=0)
|
|
return reshape(tiled, result_shape)
|
|
|
|
# Broadcast the `repeats` tensor so rank(repeats) == axis + 1.
|
|
if repeats.shape.ndims != axis + 1:
|
|
repeats_shape = shape(repeats)
|
|
repeats_ndims = rank(repeats)
|
|
broadcast_shape = concat(
|
|
[data_shape[:axis + 1 - repeats_ndims], repeats_shape], axis=0)
|
|
repeats = broadcast_to(repeats, broadcast_shape)
|
|
repeats.set_shape([None] * (axis + 1))
|
|
|
|
# Create a "sequence mask" based on `repeats`, where slices across `axis`
|
|
# contain one `True` value for each repetition. E.g., if
|
|
# `repeats = [3, 1, 2]`, then `mask = [[1, 1, 1], [1, 0, 0], [1, 1, 0]]`.
|
|
max_repeat = gen_math_ops.maximum(
|
|
0, gen_math_ops._max(repeats, _all_dimensions(repeats)))
|
|
mask = sequence_mask(repeats, max_repeat)
|
|
|
|
# Add a new dimension around each value that needs to be repeated, and
|
|
# then tile that new dimension to match the maximum number of repetitions.
|
|
expanded = expand_dims(data, axis + 1)
|
|
tiled = tile_one_dimension(expanded, axis + 1, max_repeat)
|
|
|
|
# Use `boolean_mask` to discard the extra repeated values. This also
|
|
# flattens all dimensions up through `axis`.
|
|
masked = boolean_mask(tiled, mask)
|
|
|
|
# Reshape the output tensor to add the outer dimensions back.
|
|
if axis == 0:
|
|
result = masked
|
|
else:
|
|
result_shape = concat([data_shape[:axis], [-1], data_shape[axis + 1:]],
|
|
axis=0)
|
|
result = reshape(masked, result_shape)
|
|
|
|
# Preserve shape information.
|
|
if data.shape.ndims is not None:
|
|
new_axis_size = 0 if repeats.shape[0] == 0 else None
|
|
result.set_shape(data.shape[:axis].concatenate(
|
|
[new_axis_size]).concatenate(data.shape[axis + 1:]))
|
|
|
|
return result
|
|
|
|
|
|
def tile_one_dimension(data, axis, multiple):
|
|
"""Tiles a single dimension of a tensor."""
|
|
# Assumes axis is a nonnegative int.
|
|
if data.shape.ndims is not None:
|
|
multiples = [1] * data.shape.ndims
|
|
multiples[axis] = multiple
|
|
else:
|
|
ones_value = ones(rank(data), dtypes.int32)
|
|
multiples = concat([ones_value[:axis], [multiple], ones_value[axis + 1:]],
|
|
axis=0)
|
|
return tile(data, multiples)
|
|
|
|
|
|
def _with_nonzero_rank(data):
|
|
"""If `data` is scalar, then add a dimension; otherwise return as-is."""
|
|
if data.shape.ndims is not None:
|
|
if data.shape.ndims == 0:
|
|
return stack([data])
|
|
else:
|
|
return data
|
|
else:
|
|
data_shape = shape(data)
|
|
data_ndims = rank(data)
|
|
return reshape(data, concat([[1], data_shape], axis=0)[-data_ndims:])
|
|
|
|
|
|
@tf_export("repeat")
|
|
def repeat(input, repeats, axis=None, name=None): # pylint: disable=redefined-builtin
|
|
"""Repeat elements of `input`.
|
|
|
|
Args:
|
|
input: An `N`-dimensional Tensor.
|
|
repeats: An 1-D `int` Tensor. The number of repetitions for each element.
|
|
repeats is broadcasted to fit the shape of the given axis. `len(repeats)`
|
|
must equal `input.shape[axis]` if axis is not None.
|
|
axis: An int. The axis along which to repeat values. By default (axis=None),
|
|
use the flattened input array, and return a flat output array.
|
|
name: A name for the operation.
|
|
|
|
Returns:
|
|
A Tensor which has the same shape as `input`, except along the given axis.
|
|
If axis is None then the output array is flattened to match the flattened
|
|
input array.
|
|
|
|
Example usage:
|
|
|
|
>>> repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0)
|
|
<tf.Tensor: shape=(5,), dtype=string,
|
|
numpy=array([b'a', b'a', b'a', b'c', b'c'], dtype=object)>
|
|
|
|
>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0)
|
|
<tf.Tensor: shape=(5, 2), dtype=int32, numpy=
|
|
array([[1, 2],
|
|
[1, 2],
|
|
[3, 4],
|
|
[3, 4],
|
|
[3, 4]], dtype=int32)>
|
|
|
|
>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1)
|
|
<tf.Tensor: shape=(2, 5), dtype=int32, numpy=
|
|
array([[1, 1, 2, 2, 2],
|
|
[3, 3, 4, 4, 4]], dtype=int32)>
|
|
|
|
>>> repeat(3, repeats=4)
|
|
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([3, 3, 3, 3], dtype=int32)>
|
|
|
|
>>> repeat([[1,2], [3,4]], repeats=2)
|
|
<tf.Tensor: shape=(8,), dtype=int32,
|
|
numpy=array([1, 1, 2, 2, 3, 3, 4, 4], dtype=int32)>
|
|
|
|
"""
|
|
if axis is None:
|
|
input = reshape(input, [-1])
|
|
axis = 0
|
|
return repeat_with_axis(input, repeats, axis, name)
|