STT-tensorflow/tensorflow/python/training/tracking/util_test.py
2019-05-21 14:52:30 -07:00

1615 lines
68 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import weakref
from absl.testing import parameterized
import six
from tensorflow.python.eager import backprop
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras.engine import input_layer
from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.engine import training
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.optimizer_v2 import adam
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import template
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import checkpoint_management
from tensorflow.python.training import saver as saver_lib
from tensorflow.python.training import training_util
from tensorflow.python.training.tracking import base
from tensorflow.python.training.tracking import graph_view
from tensorflow.python.training.tracking import tracking
from tensorflow.python.training.tracking import util as trackable_utils
class NonLayerTrackable(tracking.AutoTrackable):
def __init__(self):
super(NonLayerTrackable, self).__init__()
self.a_variable = trackable_utils.add_variable(
self, name="a_variable", shape=[])
# pylint: disable=not-callable
class MyModel(training.Model):
"""A concrete Model for testing."""
def __init__(self):
super(MyModel, self).__init__()
self._named_dense = core.Dense(1, use_bias=True)
self._second = core.Dense(1, use_bias=False)
# We can still track Trackables which aren't Layers.
self._non_layer = NonLayerTrackable()
def call(self, values):
ret = self._second(self._named_dense(values))
return ret
class InterfaceTests(test.TestCase):
def testLayerDeduplication(self):
model = training.Model()
layer_one = core.Dense(1)
layer_two = core.Dense(1)
model.other_path = [layer_one, layer_two]
model.l2 = layer_two
model.l1 = layer_one
self.assertEqual([layer_one, layer_two], model.layers)
def testSaveWithOnlyKerasSession(self):
with ops.Graph().as_default():
inp = input_layer.Input([1])
dense = core.Dense(1)(inp)
model = training.Model(inp, dense)
model.compile(optimizer="sgd", loss="mse")
model.fit([1.], [2.])
checkpoint = trackable_utils.Checkpoint(model=model)
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
def testAddVariable(self):
obj = NonLayerTrackable()
with self.assertRaisesRegexp(ValueError, "do not specify shape"):
trackable_utils.add_variable(
obj, name="shape_specified_twice", shape=[], initializer=1)
constant_initializer = trackable_utils.add_variable(
obj, name="constant_initializer", initializer=1)
with variable_scope.variable_scope("some_variable_scope"):
ones_initializer = trackable_utils.add_variable(
obj,
name="ones_initializer",
shape=[2],
initializer=init_ops.ones_initializer(dtype=dtypes.float32))
bare_initializer = trackable_utils.add_variable(
obj,
name="bare_initializer",
shape=[2, 2],
dtype=dtypes.float64,
initializer=init_ops.zeros_initializer)
# Even in graph mode, there are no naming conflicts between objects, only
# naming conflicts within an object.
other_duplicate = resource_variable_ops.ResourceVariable(
name="duplicate", initial_value=1.)
duplicate = trackable_utils.add_variable(
obj, name="duplicate", shape=[])
with self.assertRaisesRegexp(ValueError, "'duplicate'.*already declared"):
trackable_utils.add_variable(obj, name="duplicate", shape=[])
self.evaluate(trackable_utils.gather_initializers(obj))
self.assertEqual("constant_initializer:0", constant_initializer.name)
self.assertEqual(1, self.evaluate(constant_initializer))
self.assertEqual("some_variable_scope/ones_initializer:0",
ones_initializer.name)
self.assertAllEqual([1, 1], self.evaluate(ones_initializer))
self.assertAllEqual([[0., 0.],
[0., 0.]], self.evaluate(bare_initializer))
self.assertEqual("a_variable:0", obj.a_variable.name)
self.assertEqual("duplicate:0", other_duplicate.name)
if context.executing_eagerly():
# When executing eagerly, there's no uniquification of variable names. The
# checkpoint name will be the same.
self.assertEqual("duplicate:0", duplicate.name)
else:
# The .name attribute may be globally influenced, but the checkpoint name
# won't be (tested below).
self.assertEqual("duplicate_1:0", duplicate.name)
named_variables, _, _ = (
graph_view.ObjectGraphView(obj).serialize_object_graph())
expected_checkpoint_names = (
"a_variable/.ATTRIBUTES/VARIABLE_VALUE",
"bare_initializer/.ATTRIBUTES/VARIABLE_VALUE",
"constant_initializer/.ATTRIBUTES/VARIABLE_VALUE",
"duplicate/.ATTRIBUTES/VARIABLE_VALUE",
"ones_initializer/.ATTRIBUTES/VARIABLE_VALUE",
)
six.assertCountEqual(
self, expected_checkpoint_names, [v.name for v in named_variables])
def testInitNotCalled(self):
class NoInit(tracking.AutoTrackable):
def __init__(self):
pass
# __init__ for Trackable will be called implicitly.
trackable_utils.add_variable(NoInit(), "var", shape=[])
def testShapeDtype(self):
root = tracking.AutoTrackable()
v1 = trackable_utils.add_variable(
root, name="v1", initializer=3., dtype=dtypes.float64)
self.assertEqual(dtypes.float64, v1.dtype)
v2 = trackable_utils.add_variable(
root,
name="v2",
shape=[3],
initializer=init_ops.ones_initializer,
dtype=dtypes.float64)
self.assertEqual(dtypes.float64, v2.dtype)
self.assertAllEqual([1., 1., 1.], self.evaluate(v2))
def testObjectMetadata(self):
with context.eager_mode():
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
dense = core.Dense(1)
checkpoint = trackable_utils.Checkpoint(dense=dense)
dense(constant_op.constant([[1.]]))
save_path = checkpoint.save(checkpoint_prefix)
objects = trackable_utils.object_metadata(save_path)
all_variable_names = []
for obj in objects.nodes:
for attribute in obj.attributes:
all_variable_names.append(attribute.full_name)
self.assertIn("dense/kernel", all_variable_names)
def testNotTrackable(self):
class CallsFunctionalStuff(
tracking.NotTrackable, tracking.AutoTrackable):
pass
test_dir = self.get_temp_dir()
prefix = os.path.join(test_dir, "ckpt")
checkpoint = trackable_utils.Checkpoint(x=CallsFunctionalStuff())
with self.assertRaises(NotImplementedError):
checkpoint.save(prefix)
class CallsFunctionalStuffOtherMRO(
tracking.AutoTrackable, tracking.NotTrackable):
pass
checkpoint_reversed = trackable_utils.Checkpoint(
x=CallsFunctionalStuffOtherMRO())
with self.assertRaises(NotImplementedError):
checkpoint_reversed.save(prefix)
class _MirroringSaveable(saver_lib.BaseSaverBuilder.SaveableObject):
def __init__(self, primary_variable, mirrored_variable, name):
self._primary_variable = primary_variable
self._mirrored_variable = mirrored_variable
tensor = self._primary_variable.read_value()
spec = saver_lib.BaseSaverBuilder.SaveSpec(
tensor=tensor,
slice_spec="",
name=name)
super(_MirroringSaveable, self).__init__(
tensor, [spec], name)
def restore(self, restored_tensors, restored_shapes):
"""Restore the same value into both variables."""
tensor, = restored_tensors
return control_flow_ops.group(
self._primary_variable.assign(tensor),
self._mirrored_variable.assign(tensor))
class _OwnsMirroredVariables(base.Trackable):
"""A Trackable object which returns a more complex SaveableObject."""
def __init__(self):
self.non_dep_variable = variable_scope.get_variable(
name="non_dep_variable", initializer=6., use_resource=True)
self.mirrored = variable_scope.get_variable(
name="mirrored", initializer=15., use_resource=True)
def _gather_saveables_for_checkpoint(self):
def _saveable_factory(name=self.non_dep_variable.name):
return _MirroringSaveable(
primary_variable=self.non_dep_variable,
mirrored_variable=self.mirrored,
name=name)
return {base.VARIABLE_VALUE_KEY: _saveable_factory}
# The Saver sorts by name before parsing, so we need a name property.
@property
def name(self):
return self.non_dep_variable.name
class CheckpointingTests(parameterized.TestCase, test.TestCase):
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
def testNamingWithOptimizer(self):
input_value = constant_op.constant([[3.]])
model = MyModel()
# A nuisance Model using the same optimizer. Its slot variables should not
# go in the checkpoint, since it is never depended on.
other_model = MyModel()
optimizer = adam.Adam(0.001)
step = training_util.get_or_create_global_step()
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model, step=step)
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = control_flow_ops.group(
optimizer.apply_gradients(zip(gradients, variables)),
step.assign_add(1))
with backprop.GradientTape() as tape:
loss = other_model(input_value)
variables = other_model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
named_variables, serialized_graph, _ = graph_view.ObjectGraphView(
root_trackable).serialize_object_graph()
expected_slot_keys = (
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m",
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v",
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m",
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v",
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m",
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v",
)
expected_checkpoint_names = (
# Created in the root node, so no prefix.
"step",
"model/_second/kernel",
"model/_named_dense/kernel",
"model/_named_dense/bias",
# non-Layer dependency of the model
"model/_non_layer/a_variable",
"optimizer/learning_rate",
"optimizer/beta_1",
"optimizer/beta_2",
"optimizer/iter",
"optimizer/decay",
) + expected_slot_keys
suffix = "/.ATTRIBUTES/VARIABLE_VALUE"
expected_checkpoint_names = [
name + suffix for name in expected_checkpoint_names]
named_variables = {v.name: v for v in named_variables}
six.assertCountEqual(self, expected_checkpoint_names,
named_variables.keys())
# Check that we've mapped to the right variable objects (not exhaustive)
self.assertEqual(
"global_step",
named_variables["step" + suffix].full_name)
self.assertEqual(
"my_model/dense_1/kernel",
named_variables["model/_second/kernel" + suffix].full_name)
self.assertEqual(
"my_model/dense/kernel",
named_variables["model/_named_dense/kernel" + suffix].full_name)
self.assertEqual("Adam/beta_1",
named_variables["optimizer/beta_1" + suffix].full_name)
self.assertEqual("Adam/beta_2",
named_variables["optimizer/beta_2" + suffix].full_name)
# Spot check the generated protocol buffers.
self.assertEqual("optimizer",
serialized_graph.nodes[0].children[1].local_name)
optimizer_node = serialized_graph.nodes[serialized_graph.nodes[0].children[
1].node_id]
children = [node.local_name for node in optimizer_node.children]
six.assertCountEqual(
self,
# hyper variable dependencies
["beta_1", "beta_2", "iter", "decay", "learning_rate"],
children)
serialized_slot_keys = []
for slot in optimizer_node.slot_variables:
for attribute in (
serialized_graph.nodes[slot.slot_variable_node_id].attributes):
serialized_slot_keys.append(attribute.checkpoint_key)
six.assertCountEqual(
self,
[key + suffix for key in expected_slot_keys],
serialized_slot_keys)
@test_util.run_in_graph_and_eager_modes
def testMoreComplexSaveableReturned(self):
v = _OwnsMirroredVariables()
checkpoint = trackable_utils.Checkpoint(v=v)
test_dir = self.get_temp_dir()
prefix = os.path.join(test_dir, "ckpt")
self.evaluate(v.non_dep_variable.assign(42.))
save_path = checkpoint.save(prefix)
self.evaluate(v.non_dep_variable.assign(43.))
self.evaluate(v.mirrored.assign(44.))
checkpoint.restore(save_path).assert_consumed().initialize_or_restore()
self.assertEqual(42., self.evaluate(v.non_dep_variable))
self.assertEqual(42., self.evaluate(v.mirrored))
self.evaluate(v.non_dep_variable.assign(44.))
save_path = checkpoint.save(prefix)
self.evaluate(v.non_dep_variable.assign(45.))
checkpoint.restore(save_path).assert_consumed().initialize_or_restore()
self.assertEqual(44., self.evaluate(v.non_dep_variable))
self.assertEqual(44., self.evaluate(v.mirrored))
@test_util.run_in_graph_and_eager_modes
def testMoreComplexSaveableReturnedWithGlobalName(self):
# The same object can also be saved using the name-based saver.
v = _OwnsMirroredVariables()
saver = saver_lib.Saver(var_list=[v])
test_dir = self.get_temp_dir()
prefix = os.path.join(test_dir, "ckpt")
with self.cached_session() as sess:
self.evaluate(v.non_dep_variable.assign(42.))
save_path = saver.save(sess, prefix)
self.evaluate(v.non_dep_variable.assign(43.))
self.evaluate(v.mirrored.assign(44.))
saver.restore(sess, save_path)
self.assertEqual(42., self.evaluate(v.non_dep_variable))
self.assertEqual(42., self.evaluate(v.mirrored))
@test_util.run_in_graph_and_eager_modes
def testSaveRestore(self):
model = MyModel()
optimizer = adam.Adam(0.001)
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
self.assertFalse(root_trackable.save_counter.trainable)
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
prefix = os.path.join(self.get_temp_dir(), "ckpt")
self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.]))
m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m")
self.evaluate(state_ops.assign(m_bias_slot, [1.5]))
save_path = root_trackable.save(file_prefix=prefix)
self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.]))
self.evaluate(state_ops.assign(root_trackable.save_counter, 3))
optimizer_variables = self.evaluate(
sorted(optimizer.variables(), key=lambda v: v.name))
self.evaluate(state_ops.assign(m_bias_slot, [-2.]))
# Immediate restoration
status = root_trackable.restore(save_path=save_path).assert_consumed()
status.run_restore_ops()
self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1]))
self.assertAllEqual(1, self.evaluate(root_trackable.save_counter))
self.assertAllEqual([1.5], self.evaluate(m_bias_slot))
if not context.executing_eagerly():
return # Restore-on-create is only supported when executing eagerly
on_create_model = MyModel()
on_create_optimizer = adam.Adam(0.001)
on_create_root = trackable_utils.Checkpoint(
optimizer=on_create_optimizer, model=on_create_model)
# Deferred restoration
status = on_create_root.restore(save_path=save_path)
status.assert_nontrivial_match()
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
on_create_model(constant_op.constant([[3.]])) # create variables
self.assertAllEqual(1, self.evaluate(on_create_root.save_counter))
self.assertAllEqual([42.],
self.evaluate(
on_create_model._named_dense.variables[1]))
on_create_m_bias_slot = on_create_optimizer.get_slot(
on_create_model._named_dense.variables[1], "m")
status.assert_existing_objects_matched()
if not context.executing_eagerly():
with self.assertRaises(AssertionError):
status.assert_consumed()
# Optimizer slot variables are created when the original variable is
# restored.
self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot))
dummy_var = resource_variable_ops.ResourceVariable([1.])
on_create_optimizer.minimize(loss=dummy_var.read_value,
var_list=[dummy_var])
status.assert_existing_objects_matched()
status.assert_consumed()
self.assertAllEqual(
optimizer_variables,
# Creation order is different, so .variables() needs to be re-sorted.
self.evaluate(sorted(optimizer.variables(), key=lambda v: v.name)))
# TODO(allenl): Debug garbage created by this test in python3.
def testDeferredRestorationUsageEager(self):
"""An idiomatic eager execution example."""
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
root.restore(checkpoint_management.latest_checkpoint(
checkpoint_directory))
for _ in range(num_training_steps):
# TODO(allenl): Use a Dataset and serialize/checkpoint it.
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
root.optimizer.iterations.numpy())
def testUsageGraph(self):
"""Expected usage when graph building."""
with context.graph_mode():
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with ops.Graph().as_default():
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.CheckpointV1(
optimizer=optimizer, model=model)
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
with self.session(graph=ops.get_default_graph()) as session:
status = root.restore(save_path=checkpoint_path)
status.initialize_or_restore(session=session)
if checkpoint_path is None:
self.assertEqual(0, training_continuation)
with self.assertRaises(AssertionError):
status.assert_consumed()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
else:
status.assert_consumed()
status.assert_existing_objects_matched()
for _ in range(num_training_steps):
session.run(train_op)
root.save(file_prefix=checkpoint_prefix, session=session)
self.assertEqual((training_continuation + 1) * num_training_steps,
session.run(root.optimizer.iterations))
self.assertEqual(training_continuation + 1,
session.run(root.save_counter))
@test_util.run_in_graph_and_eager_modes
def testAgnosticUsage(self):
"""Graph/eager agnostic usage."""
# Does create garbage when executing eagerly due to ops.Graph() creation.
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
def _train_fn(model, input_value):
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
for training_continuation in range(3):
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
manager = checkpoint_management.CheckpointManager(
root, checkpoint_directory, max_to_keep=1)
status = root.restore(save_path=manager.latest_checkpoint)
input_value = constant_op.constant([[3.]])
train_fn = functools.partial(_train_fn, model, input_value)
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
manager.save()
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(root.optimizer.iterations))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
@test_util.run_in_graph_and_eager_modes
def testFreezing(self):
with test_util.use_gpu():
# Save an object-based checkpoint using a frozen saver
directory = self.get_temp_dir()
prefix = os.path.join(directory, "ckpt")
v = resource_variable_ops.ResourceVariable(0, dtype=dtypes.int64)
checkpoint = trackable_utils.Checkpoint(v=v)
self.evaluate(v.assign(3))
# Create the save counter so assert_consumed doesn't complain about it not
# existing in the checkpoint on restore.
self.evaluate(checkpoint.save_counter.assign(12))
saver = trackable_utils.frozen_saver(checkpoint)
with ops.device("cpu:0"):
prefix_tensor = constant_op.constant(prefix)
self.evaluate(saver.save(prefix_tensor))
self.evaluate(v.assign(10))
# Use the frozen saver to restore the same object graph
self.evaluate(saver.restore(prefix_tensor))
self.assertEqual(3, self.evaluate(v))
# Restore using another frozen saver on an identical object graph
del v, checkpoint, saver
v = resource_variable_ops.ResourceVariable(0, dtype=dtypes.int64)
checkpoint = trackable_utils.Checkpoint(v=v)
saver = trackable_utils.frozen_saver(checkpoint)
self.evaluate(saver.restore(prefix_tensor))
self.assertEqual(3, self.evaluate(v))
# Restore as an object-based checkpoint
del v, checkpoint, saver
checkpoint = trackable_utils.Checkpoint()
status = checkpoint.restore(prefix)
v = resource_variable_ops.ResourceVariable(0, dtype=dtypes.int64)
if context.executing_eagerly():
self.assertEqual(12, self.evaluate(checkpoint.save_counter))
self.assertEqual(0, self.evaluate(v))
checkpoint.v = v
status.assert_consumed().run_restore_ops()
self.assertEqual(3, self.evaluate(v))
self.assertEqual(12, self.evaluate(checkpoint.save_counter))
@test_util.run_in_graph_and_eager_modes
def testCustomNumbering(self):
directory = self.get_temp_dir()
prefix = os.path.join(directory, "ckpt")
step = resource_variable_ops.ResourceVariable(0, dtype=dtypes.int64)
checkpoint = trackable_utils.Checkpoint(step=step)
self.evaluate(step.initializer)
for i in range(5):
path = checkpoint.write("%s-%d" % (prefix, self.evaluate(step)))
expected_suffix = "-%d" % (2 * i,)
if not path.endswith(expected_suffix):
self.fail("%s should have suffix %s" % (path, expected_suffix))
self.evaluate(step.assign_add(2))
def testPartialRestoreWarningObject(self):
with context.eager_mode():
optimizer = adam.Adam(0.0)
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
v2=variables_lib.Variable(3.),
optimizer=optimizer)
# Create a slot variable to save
optimizer.minimize(original_root.v1.read_value, [original_root.v1])
prefix = os.path.join(self.get_temp_dir(), "ckpt")
save_path = original_root.save(prefix)
partial_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(0.))
weak_partial_root = weakref.ref(partial_root)
weak_v1 = weakref.ref(partial_root.v1)
partial_root.restore(save_path)
self.assertEqual(2., partial_root.v1.numpy())
with test.mock.patch.object(logging, "warning") as mock_log:
del partial_root
self.assertIsNone(weak_partial_root())
self.assertIsNone(weak_v1())
messages = str(mock_log.call_args_list)
self.assertIn("(root).v2'", messages)
self.assertIn("(root).optimizer's state 'm' for (root).v1", messages)
self.assertNotIn("(root).v1'", messages)
self.assertIn("expect_partial()", messages)
def testPartialRestoreWarningAttribute(self):
with context.eager_mode():
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
v2=variables_lib.Variable(3.))
prefix = os.path.join(self.get_temp_dir(), "ckpt")
save_path = original_root.save(prefix)
partial_root = trackable_utils.Checkpoint(v1=base.Trackable(),
v2=variables_lib.Variable(0.))
weak_partial_root = weakref.ref(partial_root)
with test.mock.patch.object(logging, "warning") as mock_log:
# Note: Unlike in testPartialRestoreWarningObject, the warning actually
# prints immediately here, since all of the objects have been created
# and there's no deferred restoration sitting around.
partial_root.restore(save_path)
self.assertEqual(3., partial_root.v2.numpy())
del partial_root
self.assertIsNone(weak_partial_root())
messages = str(mock_log.call_args_list)
self.assertIn("(root).v1", messages)
self.assertNotIn("(root).v2", messages)
self.assertIn("expect_partial()", messages)
def testAttributeException(self):
with context.eager_mode():
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
v2=variables_lib.Variable(3.))
prefix = os.path.join(self.get_temp_dir(), "ckpt")
save_path = original_root.save(prefix)
partial_root = trackable_utils.Checkpoint(v1=base.Trackable(),
v2=variables_lib.Variable(0.))
status = partial_root.restore(save_path)
with self.assertRaisesRegexp(
AssertionError,
r"Unused attributes(.|\n)*\(root\).v1"):
status.assert_consumed()
def testSilencePartialWarning(self):
with context.eager_mode():
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
v2=variables_lib.Variable(3.))
prefix = os.path.join(self.get_temp_dir(), "ckpt")
save_path = original_root.save(prefix)
partial_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(0.))
weak_partial_root = weakref.ref(partial_root)
weak_v1 = weakref.ref(partial_root.v1)
partial_root.restore(save_path).expect_partial()
self.assertEqual(2., partial_root.v1.numpy())
with test.mock.patch.object(logging, "warning") as mock_log:
del partial_root
self.assertIsNone(weak_partial_root())
self.assertIsNone(weak_v1())
self.assertEmpty(mock_log.call_args_list)
# pylint: disable=cell-var-from-loop
@test_util.run_in_graph_and_eager_modes
@test_util.run_v1_only("b/120545219")
def testWithDefun(self):
num_training_steps = 2
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with test_util.device(use_gpu=True):
model = MyModel()
# Don't actually train so we can test variable values
optimizer = adam.Adam(0.)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
def train_fn():
@def_function.function
def _call_model(x):
return model(x)
with backprop.GradientTape() as tape:
loss = _call_model(constant_op.constant([[3.]]))
gradients = tape.gradient(loss, model.variables)
return optimizer.apply_gradients(zip(gradients, model.variables))
if not context.executing_eagerly():
train_fn = functools.partial(
self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
if training_continuation > 0:
status.assert_consumed()
self.assertAllClose([[42.]], self.evaluate(model.variables[0]))
else:
self.evaluate(model.variables[0].assign([[42.]]))
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(optimizer.iterations))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
# pylint: enable=cell-var-from-loop
def _get_checkpoint_name(self, name):
root = tracking.AutoTrackable()
trackable_utils.add_variable(
root, name=name, shape=[1, 2], dtype=dtypes.float64)
(named_variable,), _, _ = graph_view.ObjectGraphView(
root).serialize_object_graph()
with ops.name_scope("root/" + named_variable.name):
pass # Make sure we can use this as an op name if we prefix it.
return named_variable.name
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
def testVariableNameEscaping(self):
suffix = "/.ATTRIBUTES/VARIABLE_VALUE"
self.assertEqual(r"a.Sb.Sc" + suffix, self._get_checkpoint_name(r"a/b/c"))
self.assertEqual(r"b" + suffix, self._get_checkpoint_name(r"b"))
self.assertEqual(r"c.S" + suffix, self._get_checkpoint_name(r"c/"))
self.assertEqual(r"d.S..S" + suffix, self._get_checkpoint_name(r"d/.S"))
self.assertEqual(r"d.S..ATTRIBUTES.Sf" + suffix,
self._get_checkpoint_name(r"d/.ATTRIBUTES/f"))
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
def testNumberedPath(self):
root = tracking.AutoTrackable()
leaf = tracking.AutoTrackable()
root.leaf = leaf
trackable_utils.add_variable(leaf, name="v", shape=[])
(named_variable,), _, _ = graph_view.ObjectGraphView(
root).serialize_object_graph()
self.assertEqual(r"leaf/v/.ATTRIBUTES/VARIABLE_VALUE", named_variable.name)
@test_util.run_in_graph_and_eager_modes
def testLocalNameValidation(self):
root = tracking.AutoTrackable()
leaf = tracking.AutoTrackable()
# Dots are escaped, which avoids conflicts with reserved names.
root._track_trackable(leaf, name=".ATTRIBUTES")
trackable_utils.add_variable(trackable=leaf, name="a", shape=[])
(named_variable,), _, _ = graph_view.ObjectGraphView(
root).serialize_object_graph()
self.assertEqual("..ATTRIBUTES/a/.ATTRIBUTES/VARIABLE_VALUE",
named_variable.name)
def testAnonymousVarsInInit(self):
class Model(training.Model):
def __init__(self):
super(Model, self).__init__()
self.w = resource_variable_ops.ResourceVariable(0.0)
self.b = resource_variable_ops.ResourceVariable(0.0)
self.vars = [self.w, self.b]
def call(self, x):
return x * self.w + self.b
with context.eager_mode():
model = Model()
optimizer = adam.Adam(learning_rate=0.05)
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
checkpoint = trackable_utils.Checkpoint(
model=model, optimizer=optimizer)
for _ in range(2):
checkpoint.save(checkpoint_prefix)
with backprop.GradientTape() as tape:
loss = (constant_op.constant(1.)
- model(constant_op.constant(1.))) ** 2
grad = tape.gradient(loss, model.vars)
optimizer.apply_gradients(
[(g, v) for g, v in zip(grad, model.vars)])
@test_util.run_in_graph_and_eager_modes
def testLateDependencyTracking(self):
class Dependency(tracking.AutoTrackable):
def build(self):
self.var = trackable_utils.add_variable(
self, "var", initializer=0.)
class LateDependencies(trackable_utils.Checkpoint):
def add_dep(self):
self.dep = Dependency()
self.dep.build()
original = LateDependencies()
original.add_dep()
self.evaluate(state_ops.assign(original.dep.var, 123.))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = original.save(checkpoint_prefix)
load_into = LateDependencies()
status = load_into.restore(save_path)
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
load_into.add_dep()
status.assert_consumed()
status.assert_existing_objects_matched().run_restore_ops()
self.assertEqual(123., self.evaluate(load_into.dep.var))
@test_util.run_in_graph_and_eager_modes
def testDepAfterVar(self):
class Dependency(tracking.AutoTrackable):
def build(self):
self.var = trackable_utils.add_variable(
self, "var", initializer=0.)
class DepAfterVar(trackable_utils.Checkpoint):
def add_dep(self):
dep = Dependency()
dep.build()
self.dep = dep
dep_after_var = DepAfterVar()
dep_after_var.add_dep()
self.evaluate(state_ops.assign(dep_after_var.dep.var, -14.))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = dep_after_var.save(checkpoint_prefix)
loaded_dep_after_var = DepAfterVar()
status = loaded_dep_after_var.restore(save_path)
loaded_dep_after_var.add_dep()
status.assert_consumed()
status.run_restore_ops()
self.assertEqual(-14., self.evaluate(loaded_dep_after_var.dep.var))
@test_util.run_in_graph_and_eager_modes
def testDeferredSlotRestoration(self):
checkpoint_directory = self.get_temp_dir()
root = trackable_utils.Checkpoint()
root.var = trackable_utils.add_variable(
root, name="var", initializer=0.)
optimizer = adam.Adam(0.1)
variables = [root.var]
gradients = [1.]
train_op = optimizer.apply_gradients(zip(gradients, variables))
# Note that `optimizer` has not been added as a dependency of
# `root`. Create a one-off grouping so that slot variables for `root.var`
# get initialized too.
self.evaluate(trackable_utils.gather_initializers(
trackable_utils.Checkpoint(root=root, optimizer=optimizer)))
self.evaluate(train_op)
self.evaluate(state_ops.assign(root.var, 12.))
no_slots_path = root.save(os.path.join(checkpoint_directory, "no_slots"))
root.optimizer = optimizer
self.evaluate(state_ops.assign(root.var, 13.))
self.evaluate(state_ops.assign(
optimizer.get_slot(slot_name="m", var=root.var),
14.))
slots_path = root.save(os.path.join(checkpoint_directory, "with_slots"))
new_root = trackable_utils.Checkpoint()
# Load the slot-containing checkpoint (deferred), then immediately overwrite
# the non-slot variable (also deferred).
slot_status = new_root.restore(slots_path)
no_slot_status = new_root.restore(no_slots_path)
with self.assertRaises(AssertionError):
no_slot_status.assert_consumed()
new_root.var = trackable_utils.add_variable(
new_root, name="var", shape=[])
no_slot_status.assert_consumed()
no_slot_status.run_restore_ops()
self.assertEqual(12., self.evaluate(new_root.var))
new_root.optimizer = adam.Adam(0.1)
slot_status.assert_existing_objects_matched()
if not context.executing_eagerly():
with self.assertRaisesRegexp(AssertionError, "Unresolved object"):
slot_status.assert_consumed()
self.assertEqual(12., self.evaluate(new_root.var))
if context.executing_eagerly():
# Slot variables are only created with restoring initializers when
# executing eagerly.
self.assertEqual(14., self.evaluate(
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
else:
# Slot variables are not created eagerly when graph building.
with self.assertRaises(KeyError):
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)
variables = [new_root.var]
gradients = [1.]
train_op = new_root.optimizer.apply_gradients(zip(gradients, variables))
# The slot variable now exists; restore() didn't create it, but we should
# now have a restore op for it.
slot_status.run_restore_ops()
if not context.executing_eagerly():
# The train op hasn't run when graph building, so the slot variable has
# its restored value. It has run in eager, so the value will be different.
self.assertEqual(14., self.evaluate(
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
self.evaluate(train_op)
slot_status.assert_consumed()
@test_util.run_in_graph_and_eager_modes
def testOverlappingRestores(self):
checkpoint_directory = self.get_temp_dir()
save_root = trackable_utils.Checkpoint()
save_root.dep = tracking.AutoTrackable()
save_root.dep.var = trackable_utils.add_variable(
save_root.dep, name="var", initializer=0.)
self.evaluate(state_ops.assign(save_root.dep.var, 12.))
first_path = save_root.save(os.path.join(checkpoint_directory, "first"))
self.evaluate(state_ops.assign(save_root.dep.var, 13.))
second_path = save_root.save(os.path.join(checkpoint_directory, "second"))
first_root = trackable_utils.Checkpoint()
second_root = trackable_utils.Checkpoint()
first_status = first_root.restore(first_path)
second_status = second_root.restore(second_path)
load_dep = tracking.AutoTrackable()
load_dep.var = trackable_utils.add_variable(
load_dep, name="var", shape=[])
first_root.dep = load_dep
first_status.assert_consumed()
first_status.run_restore_ops()
self.assertEqual(12., self.evaluate(load_dep.var))
second_root.dep = load_dep
second_status.assert_consumed()
second_status.run_restore_ops()
self.assertEqual(13., self.evaluate(load_dep.var))
# Try again with the order of the restore() reversed. The last restore
# determines the final value.
first_root = trackable_utils.Checkpoint()
second_root = trackable_utils.Checkpoint()
second_status = second_root.restore(second_path)
first_status = first_root.restore(first_path)
load_dep = tracking.AutoTrackable()
load_dep.var = trackable_utils.add_variable(
load_dep, name="var", shape=[])
first_root.dep = load_dep
first_status.assert_consumed()
first_status.run_restore_ops()
self.assertEqual(12., self.evaluate(load_dep.var))
second_root.dep = load_dep
second_status.assert_consumed()
second_status.run_restore_ops()
self.assertEqual(12., self.evaluate(load_dep.var))
@test_util.run_in_graph_and_eager_modes
def testAmbiguousLoad(self):
# Not OK to split one checkpoint object into two
checkpoint_directory = self.get_temp_dir()
save_root = trackable_utils.Checkpoint()
save_root.dep_one = tracking.AutoTrackable()
save_root.dep_two = tracking.AutoTrackable()
dep_three = tracking.AutoTrackable()
save_root.dep_one.dep_three = dep_three
save_root.dep_two.dep_three = dep_three
trackable_utils.add_variable(dep_three, name="var", initializer=0.)
self.evaluate(trackable_utils.gather_initializers(save_root))
save_path = save_root.save(os.path.join(checkpoint_directory, "ckpt"))
load_root = trackable_utils.Checkpoint()
status = load_root.restore(save_path)
load_root.dep_one = tracking.AutoTrackable()
load_root.dep_two = tracking.AutoTrackable()
load_root.dep_one.dep_three = tracking.AutoTrackable()
load_root.dep_two.dep_three = tracking.AutoTrackable()
trackable_utils.add_variable(
load_root.dep_one.dep_three, name="var", initializer=0.)
with self.assertRaises(AssertionError):
status.assert_consumed()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
@test_util.run_in_graph_and_eager_modes
def testObjectsCombined(self):
# Currently fine to load two checkpoint objects into one Python object
checkpoint_directory = self.get_temp_dir()
save_root = trackable_utils.Checkpoint()
save_root.dep_one = tracking.AutoTrackable()
save_root.dep_two = tracking.AutoTrackable()
trackable_utils.add_variable(
save_root.dep_one, name="var1", initializer=32., dtype=dtypes.float64)
trackable_utils.add_variable(
save_root.dep_two, name="var2", initializer=64., dtype=dtypes.float64)
self.evaluate(trackable_utils.gather_initializers(save_root))
save_path = save_root.save(os.path.join(checkpoint_directory, "ckpt"))
load_root = trackable_utils.Checkpoint()
load_root.dep_one = tracking.AutoTrackable()
load_root.dep_two = load_root.dep_one
v1 = trackable_utils.add_variable(
load_root.dep_one, name="var1", shape=[], dtype=dtypes.float64)
v2 = trackable_utils.add_variable(
load_root.dep_one, name="var2", shape=[], dtype=dtypes.float64)
status = load_root.restore(
save_path).assert_consumed().assert_existing_objects_matched()
status.run_restore_ops()
self.assertEqual(32., self.evaluate(v1))
self.assertEqual(64., self.evaluate(v2))
@test_util.run_in_graph_and_eager_modes
def testDependencyLoop(self):
# Note: this test creates garbage during eager execution because it
# purposefully creates a reference cycle.
first = trackable_utils.Checkpoint()
second = trackable_utils.Checkpoint()
first.second = second
second.first = first
first.v = trackable_utils.add_variable(
first, "v1", initializer=[3., 1., 4.])
second.v = trackable_utils.add_variable(
second, "v2", initializer=[1., 1., 2., 3.])
self.evaluate(trackable_utils.gather_initializers(first))
checkpoint_directory = self.get_temp_dir()
save_path = first.save(os.path.join(checkpoint_directory, "ckpt"))
# Test deferred loading
first_load = trackable_utils.Checkpoint()
status = first_load.restore(save_path)
second_load = tracking.AutoTrackable()
first_load.second = second_load
second_load.first = first_load
with self.assertRaises(AssertionError):
status.assert_consumed()
first_load.v = trackable_utils.add_variable(
first_load, "v1", shape=[3])
second_load.v = trackable_utils.add_variable(
second_load, "v2", shape=[4])
status.assert_consumed()
status.run_restore_ops()
self.assertAllEqual([3., 1., 4.], self.evaluate(first_load.v))
self.assertAllEqual([1., 1., 2., 3.], self.evaluate(second_load.v))
# Test loading when variables have already been created
self.evaluate(first_load.v.assign([2., 7., 1.]))
self.assertAllEqual([2., 7., 1.], self.evaluate(first_load.v))
self.evaluate(second_load.v.assign([2., 7., 1., 8.]))
self.assertAllEqual([2., 7., 1., 8.], self.evaluate(second_load.v))
status = first_load.restore(save_path).assert_consumed()
status.run_restore_ops()
self.assertAllEqual([3., 1., 4.], self.evaluate(first_load.v))
self.assertAllEqual([1., 1., 2., 3.], self.evaluate(second_load.v))
@test_util.run_in_graph_and_eager_modes
def testRestoreOnAssign(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
first = trackable_utils.Checkpoint()
first.var1 = variables_lib.Variable(0., name="outside_var")
first.var2 = variables_lib.Variable(0., name="blah")
self.evaluate(first.var1.assign(4.))
self.evaluate(first.var2.assign(8.))
save_path = first.save(checkpoint_prefix)
second = trackable_utils.Checkpoint()
second.var2 = variables_lib.Variable(0., name="blah")
status = second.restore(save_path)
recreated_var1 = variables_lib.Variable(0., name="outside_var")
status.run_restore_ops()
self.assertEqual(8., self.evaluate(second.var2))
self.evaluate(recreated_var1.assign(-2.))
self.assertEqual(-2., self.evaluate(recreated_var1))
second.var1 = recreated_var1
status.run_restore_ops()
self.assertEqual(4., self.evaluate(recreated_var1))
def testManySavesGraph(self):
"""Saves after the first should not modify the graph."""
with context.graph_mode():
graph = ops.Graph()
with graph.as_default(), self.session(graph):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = trackable_utils.Checkpoint()
obj.var = variables_lib.Variable(0., name="v")
obj.opt = adam.Adam(0.1)
variables = [obj.var]
gradients = [1.]
obj.opt.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(obj))
obj.save(checkpoint_prefix)
graph.finalize()
obj.save(checkpoint_prefix)
@test_util.run_in_graph_and_eager_modes
def testCheckpointState(self):
# No checkpoints are deleted by default
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = tracking.AutoTrackable()
obj.var = variable_scope.get_variable(name="v", initializer=0.)
self.evaluate(trackable_utils.gather_initializers(obj))
saver = trackable_utils.Checkpoint(obj=obj)
for _ in range(10):
saver.save(checkpoint_prefix)
expected_filenames = ["checkpoint"]
for checkpoint_number in range(1, 11):
expected_filenames.append("ckpt-%d.index" % (checkpoint_number,))
self.assertEmpty(
set(expected_filenames)
- set(os.listdir(checkpoint_directory)))
@test_util.run_in_graph_and_eager_modes
def testCheckpointStateChangingVarList(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = tracking.AutoTrackable()
obj.var = variable_scope.get_variable(name="v", initializer=0.)
self.evaluate(trackable_utils.gather_initializers(obj))
checkpoint = trackable_utils.Checkpoint(obj=obj)
looped_variables = []
for iteration in range(10):
new_variable = resource_variable_ops.ResourceVariable(iteration)
self.evaluate(new_variable.initializer)
setattr(checkpoint, "var_%d" % iteration, new_variable)
checkpoint.save(checkpoint_prefix)
looped_variables.append(new_variable)
expected_filenames = ["checkpoint"]
# We've copied the saver each time, but checkpoint management should still
# be consistent. Nothing gets deleted.
for checkpoint_number in range(1, 11):
expected_filenames.append("ckpt-%d.index" % (checkpoint_number,))
self.assertEmpty(
set(expected_filenames)
- set(os.listdir(checkpoint_directory)))
self.assertEqual(
checkpoint_prefix + "-10",
checkpoint_management.latest_checkpoint(checkpoint_directory))
# The checkpoint list only contains the most recent checkpoint, but they're
# all on disk. This means we won't eventually run into proto size limits.
self.assertEqual(
[checkpoint_prefix + "-10"],
(checkpoint_management.get_checkpoint_state(checkpoint_directory)
.all_model_checkpoint_paths))
for v in looped_variables:
self.evaluate(v.assign(314))
checkpoint.restore(checkpoint_prefix + "-6").run_restore_ops()
self.assertEqual(314, self.evaluate(checkpoint.var_9))
self.assertEqual(314, self.evaluate(checkpoint.var_8))
self.assertEqual(314, self.evaluate(checkpoint.var_6))
self.assertEqual(5, self.evaluate(checkpoint.var_5))
self.assertEqual(1, self.evaluate(checkpoint.var_1))
self.assertEqual(0, self.evaluate(checkpoint.var_0))
checkpoint.restore(checkpoint_prefix + "-10").run_restore_ops()
self.assertEqual(9, self.evaluate(checkpoint.var_9))
self.assertEqual(8, self.evaluate(checkpoint.var_8))
self.assertEqual(1, self.evaluate(checkpoint.var_1))
self.assertEqual(0, self.evaluate(checkpoint.var_0))
def testManyRestoresGraph(self):
"""Restores after the first should not modify the graph."""
with context.graph_mode():
graph = ops.Graph()
with graph.as_default(), self.session(graph):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = trackable_utils.Checkpoint()
obj.var = variables_lib.Variable(0., name="v")
obj.opt = adam.Adam(0.1)
variables = [obj.var]
gradients = [1.]
obj.opt.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(obj))
save_path = obj.save(checkpoint_prefix)
obj.restore(save_path)
graph.finalize()
obj.restore(save_path)
@test_util.run_in_graph_and_eager_modes
def test_sequential(self):
model = sequential.Sequential()
checkpoint = trackable_utils.Checkpoint(model=model)
model.add(core.Dense(4))
second_dense = core.Dense(5)
model.add(second_dense)
model(constant_op.constant([[1.]]))
checkpoint.restore(None).initialize_or_restore()
self.evaluate(second_dense.bias.assign(
constant_op.constant([1., 2., 3., 4., 5.])))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = checkpoint.save(checkpoint_prefix)
self.evaluate(second_dense.bias.assign(
constant_op.constant([5., 6., 7., 8., 9.])))
checkpoint.restore(save_path).assert_consumed().run_restore_ops()
self.assertAllEqual([1., 2., 3., 4., 5.], self.evaluate(second_dense.bias))
deferred_sequential = sequential.Sequential()
deferred_sequential_checkpoint = trackable_utils.Checkpoint(
model=deferred_sequential)
status = deferred_sequential_checkpoint.restore(save_path)
deferred_sequential.add(core.Dense(4))
deferred_sequential(constant_op.constant([[1.]]))
deferred_second_dense = core.Dense(5)
deferred_sequential.add(deferred_second_dense)
deferred_sequential(constant_op.constant([[1.]]))
status.run_restore_ops()
self.assertAllEqual([1., 2., 3., 4., 5.],
self.evaluate(deferred_second_dense.bias))
@test_util.run_in_graph_and_eager_modes
def test_initialize_if_not_restoring(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
optimizer_only_prefix = os.path.join(checkpoint_directory, "opt")
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
model=model) # Do not save the optimizer with the checkpoint.
optimizer_checkpoint = trackable_utils.Checkpoint(
optimizer=optimizer)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
input_value = constant_op.constant([[3.]])
def train_fn():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
# TODO(tanzheny): Add hyper variables to .variables(), and set them with
# set_weights etc.
variables_not_in_the_variables_property = [
obj for obj in optimizer._hyper.values()
if isinstance(obj, variables_lib.Variable)]
self.evaluate([v.initializer for v
in optimizer.variables()
+ variables_not_in_the_variables_property])
train_fn()
model_save_path = root.save(file_prefix=checkpoint_prefix)
self.evaluate(optimizer.beta_1.assign(42.))
optimizer_save_path = optimizer_checkpoint.save(optimizer_only_prefix)
del train_fn
# Restore into a graph with the optimizer
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
status = root.restore(save_path=model_save_path)
input_value = constant_op.constant([[3.]])
def train_fn1():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn1 = functools.partial(self.evaluate, train_fn1())
status.initialize_or_restore()
train_fn1()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
del train_fn1
# Make sure initialization doesn't clobber later restores
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001, beta_1=1.0)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
opt_root = trackable_utils.Checkpoint(
optimizer=optimizer)
status = root.restore(save_path=model_save_path)
init_only_optimizer_status = opt_root.restore(save_path=None)
optimizer_status = opt_root.restore(save_path=optimizer_save_path)
input_value = constant_op.constant([[3.]])
def train_fn2():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn2 = functools.partial(self.evaluate, train_fn2())
optimizer_status.run_restore_ops()
status.initialize_or_restore()
init_only_optimizer_status.initialize_or_restore()
train_fn2()
self.assertEqual(42., self.evaluate(optimizer.beta_1))
@test_util.run_in_graph_and_eager_modes
def test_restore_after_adding_empty_trackable_data_structure(self):
model = NonLayerTrackable()
checkpoint = trackable_utils.Checkpoint(model=model)
checkpoint.restore(None).initialize_or_restore()
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = checkpoint.save(checkpoint_prefix)
del model, checkpoint
model = NonLayerTrackable()
model.dict = {"a": 1}
model.list = {"b": 1}
checkpoint = trackable_utils.Checkpoint(model=model)
load_status = checkpoint.restore(save_path)
load_status.assert_existing_objects_matched().run_restore_ops()
@test_util.run_in_graph_and_eager_modes
def test_write_checkpoint_from_function(self):
checkpoint_prefix = os.path.join(self.get_temp_dir(), "ckpt")
save_checkpoint = trackable_utils.Checkpoint(
v=variables_lib.Variable(1.))
@def_function.function
def _write_checkpoint():
save_path = save_checkpoint.write(checkpoint_prefix)
return save_path
self.evaluate([save_checkpoint.v.initializer])
self.evaluate(_write_checkpoint())
load_checkpoint = trackable_utils.Checkpoint(
v=variables_lib.Variable(0.))
load_checkpoint.restore(checkpoint_prefix).run_restore_ops()
self.assertEqual(1., self.evaluate(load_checkpoint.v))
self.evaluate(save_checkpoint.v.assign(3.))
self.evaluate(_write_checkpoint())
self.evaluate(save_checkpoint.v.assign(0.))
load_checkpoint.restore(checkpoint_prefix).run_restore_ops()
self.assertEqual(3., self.evaluate(load_checkpoint.v))
class _ManualScope(tracking.AutoTrackable):
def __call__(self):
with variable_scope.variable_scope("ManualScope") as vs:
self.variable_scope = vs
with trackable_utils.capture_dependencies(template=self):
return self._build()
def _build(self):
return variable_scope.get_variable(name="in_manual_scope", shape=[])
class TemplateTests(parameterized.TestCase, test.TestCase):
@test_util.run_in_graph_and_eager_modes
def test_trackable_save_restore(self):
def _templated():
v = variable_scope.get_variable(
"v", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
v2 = variable_scope.get_variable(
"v2", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
manual = _ManualScope()
return v, v + 1., v2, manual, manual()
save_template = template.make_template("s1", _templated)
v1_save, _, v2_save, manual_scope, manual_scope_v = save_template()
six.assertCountEqual(
self,
[v1_save, v2_save, manual_scope, manual_scope_v, save_template],
trackable_utils.list_objects(save_template))
manual_dep, = manual_scope._checkpoint_dependencies
self.assertEqual("in_manual_scope", manual_dep.name)
self.assertIs(manual_scope_v, manual_dep.ref)
optimizer = adam.Adam(0.0)
save_root = trackable_utils.Checkpoint(
my_template=save_template, optimizer=optimizer)
optimizer.minimize(v1_save.read_value,
var_list=[v1_save])
self.evaluate([v.initializer for v in save_template.variables])
self.evaluate([v.initializer for v in optimizer.variables()])
self.evaluate(v1_save.assign([12.]))
self.evaluate(v2_save.assign([14.]))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = save_root.save(checkpoint_prefix)
load_template = template.make_template("s2", _templated)
load_optimizer = adam.Adam(0.0)
load_root = trackable_utils.Checkpoint(
my_template=load_template, optimizer=load_optimizer)
status = load_root.restore(save_path)
var, var_plus_one, var2, _, _ = load_template()
load_optimizer.minimize(var.read_value, var_list=[var])
self.assertLen(load_template._checkpoint_dependencies, 3)
self.assertEqual("v", load_template._checkpoint_dependencies[0].name)
self.assertEqual("v2", load_template._checkpoint_dependencies[1].name)
self.assertEqual("ManualScope",
load_template._checkpoint_dependencies[2].name)
status.assert_consumed().run_restore_ops()
self.assertAllEqual([12.], self.evaluate(var))
self.assertAllEqual([13.], self.evaluate(var_plus_one))
self.assertAllEqual([14.], self.evaluate(var2))
@test_util.run_in_graph_and_eager_modes
def test_trackable_save_restore_nested(self):
def _inner_template():
v = variable_scope.get_variable(
"v", shape=[1], initializer=init_ops.zeros_initializer())
return v
def _outer_template():
first_inner = template.make_template("i1", _inner_template)
second_inner = template.make_template("i2", _inner_template)
v1 = first_inner()
v2 = second_inner()
v3 = second_inner()
return (first_inner, second_inner), (v1, v2, v3)
with variable_scope.variable_scope("ignored"):
save_template = template.make_template("s1", _outer_template)
save_root = trackable_utils.Checkpoint(my_template=save_template)
(inner_template_one, inner_template_two), _ = save_template()
self.evaluate(inner_template_one.variables[0].assign([20.]))
self.evaluate(inner_template_two.variables[0].assign([25.]))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = save_root.save(checkpoint_prefix)
load_template = template.make_template("s2", _outer_template)
load_root = trackable_utils.Checkpoint(my_template=load_template)
status = load_root.restore(save_path)
(inner_template_one, inner_template_two), (v1, v2, v3) = load_template()
outer_template_dependencies = load_root.my_template._checkpoint_dependencies
self.assertLen(outer_template_dependencies, 2)
self.assertEqual("i1", outer_template_dependencies[0].name)
self.assertIs(inner_template_one, outer_template_dependencies[0].ref)
self.assertEqual("i2", outer_template_dependencies[1].name)
self.assertIs(inner_template_two, outer_template_dependencies[1].ref)
self.assertLen(inner_template_one._checkpoint_dependencies, 1)
self.assertEqual("v", inner_template_one._checkpoint_dependencies[0].name)
self.assertLen(inner_template_two._checkpoint_dependencies, 1)
self.assertEqual("v", inner_template_two._checkpoint_dependencies[0].name)
status.assert_consumed().run_restore_ops()
self.assertAllEqual([20.], self.evaluate(v1))
self.assertAllEqual([25.], self.evaluate(v2))
self.assertAllEqual([25.], self.evaluate(v3))
class CheckpointCompatibilityTests(test.TestCase):
def _initialized_model(self):
input_value = constant_op.constant([[3.]])
model = MyModel()
optimizer = adam.Adam(0.001)
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
# A regular variable, a slot variable, and a non-slot Optimizer variable
# with known values to check when loading.
self.evaluate(model._named_dense.bias.assign([1.]))
self.evaluate(optimizer.get_slot(
var=model._named_dense.bias, slot_name="m").assign([2.]))
self.evaluate(optimizer.beta_1.assign(3.))
return root_trackable
def _set_sentinels(self, root_trackable):
self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
self.evaluate(
root_trackable.optimizer.get_slot(
var=root_trackable.model._named_dense.bias, slot_name="m")
.assign([102.]))
self.evaluate(root_trackable.optimizer.beta_1.assign(103.))
def _check_sentinels(self, root_trackable):
self.assertAllEqual(
[1.], self.evaluate(root_trackable.model._named_dense.bias))
self.assertAllEqual([2.], self.evaluate(
root_trackable.optimizer.get_slot(
var=root_trackable.model._named_dense.bias, slot_name="m")))
self.assertAllEqual(3.,
self.evaluate(root_trackable.optimizer.beta_1))
def _write_name_based_checkpoint(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph) as session:
root = self._initialized_model()
name_saver = saver_lib.Saver()
return name_saver.save(
sess=session, save_path=checkpoint_prefix,
global_step=root.optimizer.iterations)
@test_util.run_in_graph_and_eager_modes
def testLoadFromNameBasedSaver(self):
"""Save a name-based checkpoint, load it using the object-based API."""
with test_util.device(use_gpu=True):
save_path = self._write_name_based_checkpoint()
root = self._initialized_model()
self._set_sentinels(root)
with self.assertRaises(AssertionError):
self._check_sentinels(root)
object_saver = trackable_utils.TrackableSaver(
graph_view.ObjectGraphView(root))
self._set_sentinels(root)
status = object_saver.restore(save_path)
if context.executing_eagerly():
self._check_sentinels(root)
if context.executing_eagerly():
status.assert_consumed()
status.assert_existing_objects_matched()
status.assert_nontrivial_match()
else:
# When graph building, we haven't read any keys, so we don't know
# whether the restore will be complete.
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_consumed()
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_existing_objects_matched()
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_nontrivial_match()
status.run_restore_ops()
self._check_sentinels(root)
self._set_sentinels(root)
status = object_saver.restore(save_path)
status.initialize_or_restore()
status.assert_nontrivial_match()
self._check_sentinels(root)
# Check that there is no error when keys are missing from the name-based
# checkpoint.
root.not_in_name_checkpoint = resource_variable_ops.ResourceVariable([1.])
status = object_saver.restore(save_path)
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
def testSaveGraphLoadEager(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph):
root = self._initialized_model()
save_path = root.save(file_prefix=checkpoint_prefix)
with context.eager_mode():
root = self._initialized_model()
self._set_sentinels(root)
root.restore(save_path).assert_consumed()
self._check_sentinels(root)
def testSaveEagerLoadGraph(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.eager_mode():
root = self._initialized_model()
save_path = root.save(file_prefix=checkpoint_prefix)
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph):
root = self._initialized_model()
self._set_sentinels(root)
root.restore(save_path).assert_consumed().run_restore_ops()
self._check_sentinels(root)
if __name__ == "__main__":
ops.enable_eager_execution()
test.main()