187 lines
6.7 KiB
C++
187 lines
6.7 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/neon_check.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace resize_bilinear {
|
|
|
|
// This file has three implementation of RESIZE_BILINEAR.
|
|
enum KernelType {
|
|
kReference,
|
|
kGenericOptimized, // Neon-free
|
|
kNeonOptimized,
|
|
};
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kSizeTensor = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
TfLiteStatus ResizeOutputTensor(TfLiteContext* context,
|
|
const TfLiteTensor* input,
|
|
const TfLiteTensor* size,
|
|
TfLiteTensor* output) {
|
|
const int32* size_data = GetTensorData<int32>(size);
|
|
// Sanity check, the up/down sampling size should always be positive.
|
|
TF_LITE_ENSURE(context, size_data[0] > 0);
|
|
TF_LITE_ENSURE(context, size_data[1] > 0);
|
|
TfLiteIntArray* output_size = TfLiteIntArrayCreate(4);
|
|
output_size->data[0] = input->dims->data[0];
|
|
output_size->data[1] = size_data[0];
|
|
output_size->data[2] = size_data[1];
|
|
output_size->data[3] = input->dims->data[3];
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
|
const TfLiteTensor* size;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
// TODO(ahentz): Our current implementations rely on the inputs being 4D.
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1);
|
|
|
|
TF_LITE_ENSURE_EQ(context, size->type, kTfLiteInt32);
|
|
// ResizeBilinear creates a float tensor even when the input is made of
|
|
// integers.
|
|
output->type = input->type;
|
|
|
|
if (!IsConstantTensor(size)) {
|
|
SetTensorToDynamic(output);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
// Ensure params are valid.
|
|
auto* params =
|
|
reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data);
|
|
if (params->half_pixel_centers && params->align_corners) {
|
|
context->ReportError(
|
|
context, "If half_pixel_centers is True, align_corners must be False.");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
return ResizeOutputTensor(context, input, size, output);
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data);
|
|
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
const TfLiteTensor* size;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size));
|
|
|
|
if (IsDynamicTensor(output)) {
|
|
TF_LITE_ENSURE_OK(context,
|
|
ResizeOutputTensor(context, input, size, output));
|
|
}
|
|
|
|
if (output->type == kTfLiteFloat32) {
|
|
#define TF_LITE_RESIZE_BILINEAR(type, opname, datatype) \
|
|
tflite::ResizeBilinearParams op_params; \
|
|
op_params.align_corners = params->align_corners; \
|
|
op_params.half_pixel_centers = params->half_pixel_centers; \
|
|
type::opname(op_params, GetTensorShape(input), \
|
|
GetTensorData<datatype>(input), GetTensorShape(size), \
|
|
GetTensorData<int32>(size), GetTensorShape(output), \
|
|
GetTensorData<datatype>(output))
|
|
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinear, float);
|
|
}
|
|
if (kernel_type == kGenericOptimized || kernel_type == kNeonOptimized) {
|
|
TF_LITE_RESIZE_BILINEAR(optimized_ops, ResizeBilinear, float);
|
|
}
|
|
} else if (output->type == kTfLiteUInt8) {
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinear, uint8_t);
|
|
}
|
|
if (kernel_type == kGenericOptimized || kernel_type == kNeonOptimized) {
|
|
TF_LITE_RESIZE_BILINEAR(optimized_ops, ResizeBilinear, uint8_t);
|
|
}
|
|
} else if (output->type == kTfLiteInt8) {
|
|
TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinearInteger, int8_t);
|
|
} else if (output->type == kTfLiteInt16) {
|
|
TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinearInteger, int16_t);
|
|
#undef TF_LITE_RESIZE_BILINEAR
|
|
} else {
|
|
context->ReportError(context, "Output type is %d, requires float.",
|
|
output->type);
|
|
return kTfLiteError;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace resize_bilinear
|
|
|
|
TfLiteRegistration* Register_RESIZE_BILINEAR_REF() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, resize_bilinear::Prepare,
|
|
resize_bilinear::Eval<resize_bilinear::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_RESIZE_BILINEAR_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, resize_bilinear::Prepare,
|
|
resize_bilinear::Eval<resize_bilinear::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_RESIZE_BILINEAR_NEON_OPT() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, resize_bilinear::Prepare,
|
|
resize_bilinear::Eval<resize_bilinear::kNeonOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_RESIZE_BILINEAR() {
|
|
#ifdef USE_NEON
|
|
return Register_RESIZE_BILINEAR_NEON_OPT();
|
|
#else
|
|
return Register_RESIZE_BILINEAR_GENERIC_OPT();
|
|
#endif
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|