STT-tensorflow/tensorflow/lite/python/optimize/calibration_wrapper.h
A. Unique TensorFlower 59e30f648f Append intermediate tensors to fused operator if necessary before creating calibrator.
PiperOrigin-RevId: 338118191
Change-Id: Ie4758443e914db22fd5513f043c70e8f5e2c18b2
2020-10-20 13:02:10 -07:00

109 lines
3.7 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_PYTHON_OPTIMIZE_CALIBRATION_WRAPPER_H_
#define TENSORFLOW_LITE_PYTHON_OPTIMIZE_CALIBRATION_WRAPPER_H_
#include <memory>
#include <string>
#include <vector>
// Place `<locale>` before <Python.h> to avoid build failures in macOS.
#include <locale>
// The empty line above is on purpose as otherwise clang-format will
// automatically move <Python.h> before <locale>.
#include <Python.h>
#include "tensorflow/lite/interpreter.h"
// We forward declare TFLite classes here to avoid exposing them to SWIG.
namespace tflite {
namespace ops {
namespace builtin {
class BuiltinOpResolver;
} // namespace builtin
} // namespace ops
class FlatBufferModel;
namespace interpreter_wrapper {
class PythonErrorReporter;
} // namespace interpreter_wrapper
namespace optimize {
namespace calibration {
class CalibrationReader;
} // namespace calibration
} // namespace optimize
namespace calibration_wrapper {
PyObject* AddIntermediateTensors(PyObject* data);
class CalibrationWrapper {
public:
// SWIG caller takes ownership of pointer.
static CalibrationWrapper* CreateWrapperCPPFromBuffer(PyObject* data);
~CalibrationWrapper();
PyObject* Prepare();
PyObject* Prepare(PyObject* input_shapes);
PyObject* FeedTensor(PyObject* input_value);
PyObject* QuantizeModel(int input_py_type, int output_py_type,
bool allow_float, int activations_py_type);
// Allows quantizing only the operator that produces the tensor with name
// operator_output_name. (This can be used to help debug.).
// TODO(suharshs): Allow providing multiple names.
PyObject* QuantizeModel(int input_py_type, int output_py_type,
bool allow_float, const char* operator_output_name);
// Writes the in-memory calibration results to the model flatbuffer. The
// produced model is as same as the original input model, but the min/max
// in the quantization field.
PyObject* Calibrate();
private:
// CalibrationWrapper is not copyable or assignable. We avoid the use of
// CalibrationWrapper() = delete here for SWIG compatibility.
CalibrationWrapper(
std::unique_ptr<tflite::Interpreter> interpreter,
std::unique_ptr<tflite::ops::builtin::BuiltinOpResolver> resolver,
std::unique_ptr<tflite::interpreter_wrapper::PythonErrorReporter>
error_reporter,
std::unique_ptr<tflite::FlatBufferModel> model,
std::unique_ptr<tflite::optimize::calibration::CalibrationReader> reader,
std::unique_ptr<std::string> model_str_);
CalibrationWrapper(const CalibrationWrapper& rhs);
PyObject* SetTensor(int index, PyObject* value);
std::unique_ptr<tflite::Interpreter> interpreter_;
std::unique_ptr<tflite::interpreter_wrapper::PythonErrorReporter>
error_reporter_;
std::unique_ptr<tflite::ops::builtin::BuiltinOpResolver> resolver_;
std::unique_ptr<tflite::FlatBufferModel> model_;
std::unique_ptr<tflite::optimize::calibration::CalibrationReader> reader_;
std::unique_ptr<std::string> model_str_;
};
} // namespace calibration_wrapper
} // namespace tflite
#endif // TENSORFLOW_LITE_PYTHON_OPTIMIZE_CALIBRATION_WRAPPER_H_