STT-tensorflow/tensorflow/python/training/moving_averages_test.py
Eugene Brevdo 56f1d64998 Fix dependencies bugs
Change: 116925769
2016-03-11 11:41:23 -08:00

228 lines
8.9 KiB
Python

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional test for moving_averages.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.ops import state_ops
from tensorflow.python.training import moving_averages
class MovingAveragesTest(tf.test.TestCase):
def testAssignMovingAverage(self):
with self.test_session():
var = tf.Variable([10.0, 11.0])
val = tf.constant([1.0, 2.0], tf.float32)
decay = 0.25
assign = moving_averages.assign_moving_average(var, val, decay)
tf.initialize_all_variables().run()
self.assertAllClose([10.0, 11.0], var.eval())
assign.op.run()
self.assertAllClose([10.0 * 0.25 + 1.0 * (1.0 - 0.25),
11.0 * 0.25 + 2.0 * (1.0 - 0.25)],
var.eval())
def testWeightedMovingAverage(self):
with self.test_session() as sess:
decay = 0.5
weight = tf.placeholder(tf.float32, [])
val = tf.placeholder(tf.float32, [])
wma = moving_averages.weighted_moving_average(val, decay, weight)
tf.initialize_all_variables().run()
# Get the first weighted moving average.
val_1 = 3.0
weight_1 = 4.0
wma_array = sess.run(
wma, feed_dict={val: val_1, weight: weight_1})
numerator_1 = val_1 * weight_1 * (1.0 - decay)
denominator_1 = weight_1 * (1.0 - decay)
self.assertAllClose(numerator_1 / denominator_1, wma_array)
# Get the second weighted moving average.
val_2 = 11.0
weight_2 = 22.0
wma_array = sess.run(
wma, feed_dict={val: val_2, weight: weight_2})
numerator_2 = numerator_1 * decay + val_2 * weight_2 * (1.0 - decay)
denominator_2 = denominator_1 * decay + weight_2 * (1.0 - decay)
self.assertAllClose(numerator_2 / denominator_2, wma_array)
def _Repeat(value, dim):
if dim == 1:
return value
return [value] * dim
class ExponentialMovingAverageTest(tf.test.TestCase):
def _CheckDecay(self, ema, actual_decay, dim):
tens = _Repeat(10.0, dim)
thirties = _Repeat(30.0, dim)
var0 = tf.Variable(tens, name="v0")
var1 = tf.Variable(thirties, name="v1")
tf.initialize_all_variables().run()
# Note that tensor2 is not a Variable but just a plain Tensor resulting
# from the sum operation.
tensor2 = var0 + var1
update = ema.apply([var0, var1, tensor2])
avg0 = ema.average(var0)
avg1 = ema.average(var1)
avg2 = ema.average(tensor2)
self.assertItemsEqual([var0, var1], tf.moving_average_variables())
self.assertFalse(avg0 in tf.trainable_variables())
self.assertFalse(avg1 in tf.trainable_variables())
self.assertFalse(avg2 in tf.trainable_variables())
tf.initialize_all_variables().run()
self.assertEqual("v0/ExponentialMovingAverage:0", avg0.name)
self.assertEqual("v1/ExponentialMovingAverage:0", avg1.name)
self.assertEqual("add/ExponentialMovingAverage:0", avg2.name)
# Check initial values.
self.assertAllClose(tens, var0.eval())
self.assertAllClose(thirties, var1.eval())
self.assertAllClose(_Repeat(10.0 + 30.0, dim), tensor2.eval())
# Check that averages are initialized correctly.
self.assertAllClose(tens, avg0.eval())
self.assertAllClose(thirties, avg1.eval())
# Note that averages of Tensor's initialize to zeros_like since no value
# of the Tensor is known because the Op has not been run (yet).
self.assertAllClose(_Repeat(0.0, dim), avg2.eval())
# Update the averages and check.
update.run()
dk = actual_decay
expected = _Repeat(10.0 * dk + 10.0 * (1 - dk), dim)
self.assertAllClose(expected, avg0.eval())
expected = _Repeat(30.0 * dk + 30.0 * (1 - dk), dim)
self.assertAllClose(expected, avg1.eval())
expected = _Repeat(0.0 * dk + (10.0 + 30.0) * (1 - dk), dim)
self.assertAllClose(expected, avg2.eval())
# Again, update the averages and check.
update.run()
expected = _Repeat((10.0 * dk + 10.0 * (1 - dk)) * dk + 10.0 * (1 - dk),
dim)
self.assertAllClose(expected, avg0.eval())
expected = _Repeat((30.0 * dk + 30.0 * (1 - dk)) * dk + 30.0 * (1 - dk),
dim)
self.assertAllClose(expected, avg1.eval())
expected = _Repeat(((0.0 * dk + (10.0 + 30.0) * (1 - dk)) * dk +
(10.0 + 30.0) * (1 - dk)),
dim)
self.assertAllClose(expected, avg2.eval())
def testAverageVariablesNoNumUpdates_Scalar(self):
with self.test_session():
ema = tf.train.ExponentialMovingAverage(0.25)
self._CheckDecay(ema, actual_decay=0.25, dim=1)
def testAverageVariablesNoNumUpdates_Vector(self):
with self.test_session():
ema = tf.train.ExponentialMovingAverage(0.25)
self._CheckDecay(ema, actual_decay=0.25, dim=5)
def testAverageVariablesNumUpdates_Scalar(self):
with self.test_session():
# With num_updates 1, the decay applied is 0.1818
ema = tf.train.ExponentialMovingAverage(0.25, num_updates=1)
self._CheckDecay(ema, actual_decay=0.181818, dim=1)
def testAverageVariablesNumUpdates_Vector(self):
with self.test_session():
# With num_updates 1, the decay applied is 0.1818
ema = tf.train.ExponentialMovingAverage(0.25, num_updates=1)
self._CheckDecay(ema, actual_decay=0.181818, dim=5)
def testAverageVariablesWithControlDeps(self):
with self.test_session() as sess:
v0 = tf.Variable(0, name="v0")
add_to_v0 = v0.assign_add(1)
v1 = tf.Variable([10.0], name="v1")
assign_to_v1 = v1.assign([20.0])
ema = tf.train.ExponentialMovingAverage(0.25)
with tf.control_dependencies([add_to_v0]):
ema_op = ema.apply([v1])
# the moving average of v1 should not have any control inputs
v1_avg = ema.average(v1)
self.assertEqual([], v1_avg.initializer.control_inputs)
self.assertEqual([], v1_avg.value().op.control_inputs)
self.assertEqual([], v1_avg.ref().op.control_inputs)
# We should be able to initialize v1_avg before v0.
sess.run(v1_avg.initializer)
sess.run(v0.initializer)
self.assertEqual([10.0], sess.run(v1_avg))
# running ema_op should add to v0 (in addition to updating v1_avg)
sess.run(assign_to_v1)
sess.run(ema_op)
self.assertEqual(1, sess.run(v0))
self.assertEqual([17.5], sess.run(v1_avg))
def testAverageVariablesNames(self):
v0 = tf.Variable(10.0, name="v0")
v1 = tf.Variable(30.0, name="v1")
# Add a non-trainable variable.
v2 = tf.Variable(20.0, name="v2", trainable=False)
tensor2 = v0 + v1
ema = tf.train.ExponentialMovingAverage(0.25, name="foo_avg")
self.assertEqual("v0/foo_avg", ema.average_name(v0))
self.assertEqual("v1/foo_avg", ema.average_name(v1))
self.assertEqual("add/foo_avg", ema.average_name(tensor2))
ema.apply([v0, v1, tensor2])
vars_to_restore = ema.variables_to_restore()
# vars_to_restore should contain the following:
# {v0/foo_avg : v0,
# v1/foo_avg : v1,
# add/foo_avg : add/foo_avg
# v2 : v2}
self.assertEqual(sorted(vars_to_restore.keys()),
sorted([ema.average_name(v0),
ema.average_name(v1),
ema.average_name(tensor2),
v2.op.name]))
self.assertEqual(ema.average_name(v0), ema.average(v0).op.name)
self.assertEqual(ema.average_name(v1), ema.average(v1).op.name)
self.assertEqual(ema.average_name(tensor2), ema.average(tensor2).op.name)
def testAverageVariablesDeviceAssignment(self):
with tf.device("/job:dev_v0"):
v0 = tf.Variable(10.0, name="v0")
with tf.device("/job:dev_v1"):
v1 = state_ops.variable_op(shape=[1], dtype=tf.float32, name="v1")
tensor2 = v0 + v1
ema = tf.train.ExponentialMovingAverage(0.25, name="foo_avg")
with tf.device("/job:default"):
ema.apply([v0, v1, tensor2])
self.assertDeviceEqual("/job:dev_v0", ema.average(v0).device)
self.assertDeviceEqual("/job:dev_v1", ema.average(v1).device)
# However, the colocation property is maintained.
self.assertEqual([b"loc:@v1"],
ema.average(v1).op.colocation_groups())
self.assertDeviceEqual("/job:default", ema.average(tensor2).device)
if __name__ == "__main__":
tf.test.main()